Wyniki wyszukiwania dla: machine learning, music analysis, tonality - MOST Wiedzy

Wyszukiwarka

Wyniki wyszukiwania dla: machine learning, music analysis, tonality

Filtry

wszystkich: 735
wybranych: 672

wyczyść wszystkie filtry


Filtry wybranego katalogu

  • Kategoria

  • Rok

  • Opcje

wyczyść Filtry wybranego katalogu niedostępne

Wyniki wyszukiwania dla: machine learning, music analysis, tonality

  • Automatic music signal mixing system based on one-dimensional Wave-U-Net autoencoders

    The purpose of this paper is to show a music mixing system that is capable of automatically mixing separate raw recordings with good quality regardless of the music genre. This work recalls selected methods for automatic audio mixing first. Then, a novel deep model based on one-dimensional Wave-U-Net autoencoders is proposed for automatic music mixing. The model is trained on a custom-prepared database. Mixes created using the...

    Pełny tekst do pobrania w portalu

  • Architecture Design of a Networked Music Performance Platform for a Chamber Choir

    This paper describes an architecture design process for Networked Music Performance (NMP) platform for medium-sized conducted music ensembles, based on remote rehearsals of Academic Choir of Gdańsk University of Technology. The issues of real-time remote communication, in-person music performance, and NMP are described. Three iterative steps defining and extending the architecture of the NMP platform with additional features to...

    Pełny tekst do pobrania w portalu

  • From Linear Classifier to Convolutional Neural Network for Hand Pose Recognition

    Publikacja

    Recently gathered image datasets and the new capabilities of high-performance computing systems have allowed developing new artificial neural network models and training algorithms. Using the new machine learning models, computer vision tasks can be accomplished based on the raw values of image pixels instead of specific features. The principle of operation of deep neural networks resembles more and more what we believe to be happening...

    Pełny tekst do pobrania w portalu

  • Lessons learned from developing an Industry 4.0 mobile process management system supported by Artificial Intelligence

    Research, development and innovation (RDI) projects are undertaken in order to improve existing, or develop new, more efficient products and services. Moreover, the goal of innovation is to produce new knowledge through research, and disseminating it through education and training. In this line of thinking, this paper reports and discusses the lessons learned from the undertaken project, regarding three areas: machine learning...

    Pełny tekst do pobrania w portalu

  • The algorithm of building the hierarchical contextual framework of textual corpora

    Publikacja

    - Rok 2018

    This paper presents an approach for Modeling the Latent Semantic Relations. The approach is based on advantages of two computational approaches: Latent Semantic Analysis and Latent Dirichlet Allocation. The scientific question about the possibility of reducing the influence of these Methods limitation on the Quality of the Latent Semantic Relations Analysis Results is raised. The case study for building the Two-level Hierarchical Contextual...

    Pełny tekst do pobrania w portalu

  • Evaluation of a Novel Approach to Virtual Bass Synthesis Strategy

    Publikacja

    - Rok 2015

    The aim of this paper is to present a novel approach to the Virtual Bass Synthesis (VBS) strategy applied to portable computers. The developed algorithms involve intelligent, rule-based settings of bass synthesis parameters with regard to music genre of an audio excerpt and the type of a portable device in use. The Smart VBS algorithm performs the synthesis based on a nonlinear device (NLD) with artificial controlling synthesis...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • Motion Trajectory Prediction in Warehouse Management Systems: A Systematic Literature Review

    Publikacja

    - Applied Sciences-Basel - Rok 2023

    Background: In the context of Warehouse Management Systems, knowledge related to motion trajectory prediction methods utilizing machine learning techniques seems to be scattered and fragmented. Objective: This study seeks to fill this research gap by using a systematic literature review approach. Methods: Based on the data collected from Google Scholar, a systematic literature review was performed, covering the period from 2016...

    Pełny tekst do pobrania w portalu

  • Book Review

    Acting over the last three decades as an Editor and Associate Editor for a number of international journals in the general area of cybernetics and AI, as well as a Chair and Co-Chair of numerous conferences in this field, I have had the exciting opportunity to closely witness and to be actively engaged in the stimulating research area of machine learning and its important augmentation with deep learning techniques and technologies. From...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • Deep Learning: A Case Study for Image Recognition Using Transfer Learning

    Publikacja

    - Rok 2021

    Deep learning (DL) is a rising star of machine learning (ML) and artificial intelligence (AI) domains. Until 2006, many researchers had attempted to build deep neural networks (DNN), but most of them failed. In 2006, it was proven that deep neural networks are one of the most crucial inventions for the 21st century. Nowadays, DNN are being used as a key technology for many different domains: self-driven vehicles, smart cities,...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • Deep Learning

    Publikacja

    - Rok 2021

    Deep learning (DL) is a rising star of machine learning (ML) and artificial intelligence (AI) domains. Until 2006, many researchers had attempted to build deep neural networks (DNN), but most of them failed. In 2006, it was proven that deep neural networks are one of the most crucial inventions for the 21st century. Nowadays, DNN are being used as a key technology for many different domains: self-driven vehicles, smart cities,...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • Music genre classification applied to bass enhancement for mobile technology

    The aim of this paper is to present a novel approach to the Virtual Bass Synthesis (VBS) algorithms applied to portable computers. The proposed algorithm is related to intelligent, rule-based setting of synthesis parameters according to music genre of an audio excerpt. The classification of music genres is automatically executed employing MPEG 7 parameters and the Principal Component Analysis method applied to reduce information...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • Subjective tests for gathering konwledge for applaying color grading to video clips automatically

    Publikacja

    - Rok 2019

    The analysis of film music concerning caused emotions may allow for a more accurate adaptation of the color of the film in the context of color grading. Therefore, this paper aims to gather knowledge on the correlation between the applied color palette to a video clip, music associated with a particular shot,and emotions evoked. For that purpose, subjective tests are prepared in which several video clips are presented with...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • Subjective tests for gathering knowledge for applying color grading to video clips automatically

    Publikacja

    - Rok 2019

    The analysis of film music concerning caused emotions may allow for a more accurate adaptation of the color of the film in the context of color grading. Therefore, this paper aims to gather knowledge on the correlation between the applied color palette to a video clip, music associated with a particular shot, and emotions evoked. For that purpose, subjective tests are prepared in which several video clips are presented with or...

    Pełny tekst do pobrania w portalu

  • The Neural Knowledge DNA Based Smart Internet of Things

    Publikacja

    - CYBERNETICS AND SYSTEMS - Rok 2020

    ABSTRACT The Internet of Things (IoT) has gained significant attention from industry as well as academia during the past decade. Smartness, however, remains a substantial challenge for IoT applications. Recent advances in networked sensor technologies, computing, and machine learning have made it possible for building new smart IoT applications. In this paper, we propose a novel approach: the Neural Knowledge DNA based Smart Internet...

    Pełny tekst do pobrania w portalu

  • Klasyfikator SVM w zastosowaniu do synchronizacji sygnału OFDM zniekształconego przez kanał wielodrogowy

    W pracy przedstawiono analizę przydatności klasyfikatora SVM bazującego na uczeniu maszynowym do estymacji przesunięcia czasowego odebranego symbolu OFDM. Przedstawione wyniki wykazują, że ten klasyfikator potrafi zapewnić synchronizację dla różnych kanałów wielodrogowych o wysokim poziomie szumu. Eksperymenty przeprowadzone w Matlabie z użyciem modeli modulatora i demodulatora wykazały, że w większości przypadków klasyfikator...

    Pełny tekst do pobrania w portalu

  • DEEP CONVOLUTIONAL NEURAL NETWORKS AS A DECISION SUPPORT TOOL IN MEDICAL PROBLEMS – MALIGNANT MELANOMA CASE STUDY

    The paper presents utilization of one of the latest tool from the group of Machine learning techniques, namely Deep Convolutional Neural Networks (CNN), in process of decision making in selected medical problems. After the survey of the most successful applications of CNN in solving medical problems, the paper focuses on the very difficult problem of automatic analyses of the skin lesions. The authors propose the CNN structure...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • Comparing the Effectiveness of ANNs and SVMs in Forecasting the Impact of Traffic-Induced Vibrations on Building

    Traffic - induced vibrations may cause damage to structural elements and may even lead to structural collapse. The aim of the article is to compare the effectiveness of algorithms in forecasting the impact of vibrations on buildings using the Machine Learning (ML) methods. The paper presents two alternative approaches by using Artificial Neural Networks (ANNs) and Support Vector Machines (SVMs). Factors that may affect traffic-induced...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • Exploring Cause-and-Effect Relationships Between Public Company Press Releases and Their Stock Prices

    Publikacja

    - Rok 2024

    The aim of the work is to design and implement a method of exploring the cause-and-effect relationships between company announcements and the stock prices on NASDAQ stock exchange, followed by a brief discussion. For this purpose, it was necessary to download the stock quotes of selected companies from the NASDAQ market from public web sources. Additionally, media messages related to selected companies had to be downloaded, and...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • When Neural Networks Meet Decisional DNA: A Promising New Perspective for Knowledge Representation and Sharing

    Publikacja

    - CYBERNETICS AND SYSTEMS - Rok 2016

    ABSTRACT In this article, we introduce a novel concept combining neural network technology and Decisional DNA for knowledge representation and sharing. Instead of using traditional machine learning and knowledge discovery methods, this approach explores the way of knowledge extraction through deep learning processes based on a domain’s past decisional events captured by Decisional DNA. We compare our approach with kNN (k-nearest...

    Pełny tekst do pobrania w portalu

  • Kernel PCA in Application to Leakage Detection in Drinking Water Distribution System

    Monitoring plays an important role in advanced control of complex dynamic systems. Precise information about system's behaviour, including faults detection, enables efficient control. Proposed method- Kernel Principal Component Analysis (KPCA), a representative of machine learning, skilfully takes full advantage of the well known PCA method and extends its application to nonlinear case. The paper explains the general idea of KPCA...

  • Music Data Processing and Mining in Large Databases for Active Media

    Publikacja

    - Rok 2014

    The aim of this paper was to investigate the problem of music data processing and mining in large databases. Tests were performed on a large data-base that included approximately 30000 audio files divided into 11 classes cor-responding to music genres with different cardinalities. Every audio file was de-scribed by a 173-element feature vector. To reduce the dimensionality of data the Principal Component Analysis (PCA) with variable...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • AUDIO SIGNAL EQUALIZATION BASED ON IMPULSE RESPONSE OF A LISTENING ROOM AND MUSIC CONTENT REPRODUCED

    A research study presents investigations of the influence of the room acoustics on the frequency characteristic of the audio signal playback. First, a concept of a novel spectral equalization method of the room acoustic conditions is introduced. On the basis of the room spectral response, a system for room acoustics compensation based on an equalizer designed is proposed. The system settings depend on music genre recognized automatically....

  • Comparative analysis of spectral and cepstral feature extraction techniques for phoneme modelling

    Publikacja

    - Rok 2018

    Phoneme parameter extraction framework based on spectral and cepstral parameters is proposed. Using this framework, the phoneme signal is divided into frames and Hamming window is used. The performances are evaluated for recognition of Lithuanian vowel and semivowel phonemes. Different feature sets without noise as well as at different level of noise are considered. Two classical machine learning methods (Naive Bayes and Support...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • Leveraging spatio-temporal features for joint deblurring and segmentation of instruments in dental video microscopy

    Publikacja

    - Rok 2021

    In dentistry, microscopes have become indispensable optical devices for high-quality treatment and micro-invasive surgery, especially in the field of endodontics. Recent machine vision advances enable more advanced, real-time applications including but not limited to dental video deblurring and workflow analysis through relevant metadata obtained by instrument motion trajectories. To this end, the proposed work addresses dental...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • Fault diagnosis of marine 4-stroke diesel engines using a one-vs-one extreme learning ensemble

    This paper proposes a novel approach for intelligent fault diagnosis for stroke Diesel marine engines, which are commonly used in on-road and marine transportation. The safety and reliability of a ship's work rely strongly on the performance of such an engine; therefore, early detection of any type of failure that affects the engine is of crucial importance. Automatic diagnostic systems are of special importance because they can...

    Pełny tekst do pobrania w portalu

  • Experience-Oriented Knowledge Management for Internet of Things

    Publikacja

    - Rok 2016

    In this paper, we propose a novel approach for knowledge management in Internet of Things. By utilizing Decisional DNA and deep learning technologies, our approach enables Internet of Things of experiential knowledge discovery, representation, reuse, and sharing among each other. Rather than using traditional machine learning and knowledge discovery methods, this approach focuses on capturing domain’s decisional events via Decisional...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • Detection of Anomalies in the Operation of a Road Lighting System Based on Data from Smart Electricity Meters

    Publikacja

    - ENERGIES - Rok 2022

    Smart meters in road lighting systems create new opportunities for automatic diagnostics of undesirable phenomena such as lamp failures, schedule deviations, or energy theft from the power grid. Such a solution fits into the smart cities concept, where an adaptive lighting system creates new challenges with respect to the monitoring function. This article presents research results indicating the practical feasibility of real‐time...

    Pełny tekst do pobrania w portalu

  • A new multi-process collaborative architecture for time series classification

    Publikacja

    - KNOWLEDGE-BASED SYSTEMS - Rok 2021

    Time series classification (TSC) is the problem of categorizing time series data by using machine learning techniques. Its applications vary from cybersecurity and health care to remote sensing and human activity recognition. In this paper, we propose a novel multi-process collaborative architecture for TSC. The propositioned method amalgamates multi-head convolutional neural networks and capsule mechanism. In addition to the discovery...

    Pełny tekst do pobrania w portalu

  • Bimodal deep learning model for subjectively enhanced emotion classification in films

    Publikacja

    - INFORMATION SCIENCES - Rok 2024

    This research delves into the concept of color grading in film, focusing on how color influences the emotional response of the audience. The study commenced by recalling state-of-the-art works that process audio-video signals and associated emotions by machine learning. Then, assumptions of subjective tests for refining and validating an emotion model for assigning specific emotional labels to selected film excerpts were presented....

    Pełny tekst do pobrania w serwisie zewnętrznym

  • An Approach to Bass Enhancement in Portable Computers Employing Smart Virtual Bass Synthesis Algorithms

    Publikacja

    The aim of this paper is to present a novel approach to the Virtual Bass Synthesis (VBS) algorithms applied to portable computers. The developed algorithms are related to intelligent, rule-based setting of synthesis parameters according to music genre of an audio excerpt and to the type of a portable device in use. To find optimum synthesis parameters of the VBS algorithms, subjective listening tests based on a parametric procedure...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • Methodology of Constructing and Analyzing the Hierarchical Contextually-Oriented Corpora

    Publikacja

    - Rok 2018

    Methodology of Constructing and Analyzing the Hierarchical structure of the Contextually-Oriented Corpora was developed. The methodology contains the following steps: Contextual Component of the Corpora’s Structure Building; Text Analysis of the Contextually-Oriented Hierarchical Corpus. Main contribution of this study is the following: hierarchical structure of the Corpus provides advanced possibilities for identification of the...

    Pełny tekst do pobrania w portalu

  • Przegląd metod szybkiego prototypowania algorytmów uczenia maszynowego w FPGA

    W artykule opisano możliwe do wykorzystania otwarte narzędzia wspomagające szybkie prototypowanie algorytmów uczenia maszynowego (ML) i sztucznej inteligencji (AI) przy użyciu współczesnych platform FPGA. Przedstawiono przykład szybkiej ścieżki przy realizacji toru wideo wraz z implementacją przykładowego algorytmu prze-twarzania w trybie na żywo.

    Pełny tekst do pobrania w portalu

  • Eksperymentalne i numeryczne badania parametrów dynamicznych trybuny stalowej

    Publikacja

    - Rok 2013

    Trybuny stalowe to konstrukcje, które odnajdują swoje zastosowanie głównie podczas wydarzeń sportowych, koncertów muzycznych oraz innych wydarzeń, którym towarzyszą rytmiczne aktywności widzów i głośna muzyka. Ze względu na smukłość oraz lekkość elementów z jakich wykonana jest konstrukcja trybuny jest ona bardzo łatwo wzbudzana przez ludzi do drgań. Z przeprowadzonej w pracy [4] analizy modalnej wynika, że masa ludzi prowadzi...

  • How high-tech solutions support the fight against IUU and ghost fishing: a review of innovative approaches, methods, and trends

    Illegal, Unreported, and Unregulated fishing is a major threat to human food supply and marine ecosystem health. Not only is it a cause of significant economic loss but also its effects have serious long-term environmental implications, such as overfishing and ocean pollution. The beginning of the fight against this problem dates since the early 2000s. From that time, a number of approaches and methods have been developed and reported....

    Pełny tekst do pobrania w portalu

  • Are Pair Trading Strategies Profitable During COVID-19 Period?

    Publikacja
    • M. K. Sohail
    • A. Raheman
    • J. Iqbal
    • M. I. Sindhu
    • A. Staar
    • M. Mushafiq
    • H. Afzal

    - Journal of Information & Knowledge Management - Rok 2022

    Pair trading strategy is a well-known profitable strategy in stock, forex, and commodity markets. As most of the world stock markets declined during COVID-19 period, therefore this study is going to observe whether this strategy is still profitable after COVID-19 pandemic. One of the powerful algorithms of DBSCAN under the umbrella of unsupervised machine learning is applied and three clusters were formed by using market and accounting...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • THE ROLE OF INFERENCE IN MOBILE MEDICAL APPLICATION DESIGN

    Publikacja

    - Rok 2021

    In the early 21st century, artificial intelligence began to be used to process medical information. However, before this happened, predictive models used in healthcare could only consider a limited number of variables, and only in properly structured and organised medical data. Today, advanced tools based on machine learning techniques - which, using artificial neural networks, can explore extremely complex relationships - and...

  • Examining Feature Vector for Phoneme Recognition / Analiza parametrów w kontekście automatycznej klasyfikacji fonemów

    Publikacja

    - Rok 2017

    The aim of this paper is to analyze usability of descriptors coming from music information retrieval to the phoneme analysis. The case study presented consists in several steps. First, a short overview of parameters utilized in speech analysis is given. Then, a set of time and frequency domain-based parameters is selected and discussed in the context of stop consonant acoustical characteristics. A toolbox created for this purpose...

  • Monitoring the BTEX Volatiles during 3D Printing with Acrylonitrile Butadiene Styrene (ABS) Using Electronic Nose and Proton Transfer Reaction Mass Spectrometry

    We describe a concept study in which the changes of concentration of benzene, toluene, ethylbenzene, and xylene (BTEX) compounds and styrene within a 3D printer enclosure during printing with different acrylonitrile butadiene styrene (ABS) filaments were monitored in real-time using a proton transfer reaction mass spectrometer and an electronic nose. The quantitative data on the concentration of the BTEX compounds, in particular...

    Pełny tekst do pobrania w portalu

  • IFE: NN-aided Instantaneous Pitch Estimation

    Publikacja

    Pitch estimation is still an open issue in contemporary signal processing research. Nowadays, growing momentum of machine learning techniques application in the data-driven society allows for tackling this problem from a new perspective. This work leverages such an opportunity to propose a refined Instantaneous Frequency and power based pitch Estimator method called IFE. It incorporates deep neural network based pitch estimation...

    Pełny tekst do pobrania w portalu

  • Automatic audio signal mixing system based on one-dimensional Wave-U-Net autoencoders

    Publikacja

    - Rok 2023

    The purpose of this dissertation is to develop an automatic song mixing system that is capable of automatically mixing a song with good quality in any music genre. This work recalls first the audio signal processing methods used in audio mixing, and it describes selected methods for automatic audio mixing. Then, a novel architecture built based on one-dimensional Wave-U-Net autoencoders is proposed for automatic music mixing. Models...

    Pełny tekst do pobrania w portalu

  • Ontology-based text convolution neural network (TextCNN) for prediction of construction accidents

    Publikacja
    • S. Donghui
    • L. Zhigang
    • J. Zurada
    • A. Manikas
    • J. Guan
    • P. Weichbroth

    - KNOWLEDGE AND INFORMATION SYSTEMS - Rok 2024

    The construction industry suffers from workplace accidents, including injuries and fatalities, which represent a significant economic and social burden for employers, workers, and society as a whole.The existing research on construction accidents heavily relies on expert evaluations,which often suffer from issues such as low efficiency, insufficient intelligence, and subjectivity.However, expert opinions provided in construction...

    Pełny tekst do pobrania w portalu

  • Evaluating the Use of Edge Devices for Detection and Tracking of Vehicles in Smart City Environment

    Publikacja

    - Rok 2024

    This paper introduces a Smart City solution designed to run on edge devices, leveraging NVIDIA's DeepStream SDK for efficient urban surveillance. We evaluate five object-tracking approaches, using YOLO as the baseline detector and integrating three Nvidia DeepStream trackers: IOU, NvSORT, and NvDCF. Additionally, we propose a custom tracker based on Optical Flow and Kalman filtering. The presented approach combines advanced machine...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • MP3vec: A Reusable Machine-Constructed Feature Representation for Protein Sequences

    Publikacja
    • S. R. Gupte
    • D. S. Jain
    • A. Srinivasan
    • R. Aduri

    - Rok 2020

    —Machine Learning (ML) methods have been used with varying degrees of success on protein prediction tasks, with two inherent limitations. First, prediction performance often depends upon the features extracted from the proteins. Second, experimental data may be insufficient to construct reliable ML models. Here we introduce MP3vec, a transferable representation for protein sequences that is designed to be used specifically for sequence-to-sequence...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • Introduction to the ONDM 2022 special issue

    Publikacja
    • J. Turkiewicz
    • T. Gomes
    • M. Klinkowski
    • J. Rak
    • M. Tornatore

    - Journal of Optical Communications and Networking - Rok 2023

    This JOCN special issue contains extended versions of selected papers presented at the 26th International Conference on Optical Network Design and Modeling (ONDM 2022), which took place 16–19 May 2022 at Warsaw University of Technology, Warsaw, Poland. The topics covered by the papers represent trends in optical networking research: application of machine learning to network management, cross-layer network performance optimization,...

    Pełny tekst do pobrania w portalu

  • Data-driven, probabilistic model for attainable speed for ships approaching Gdańsk harbour

    Publikacja

    The growing demand for maritime transportation leads to increased traffic in ports. From this arises the need to observe the consequences of the specific speed ships reach when approaching seaports. However, usually the analyzed cases refer only to the statistical evaluation of the studied phenomenon or to the empirical modelling, ignoring the mutual influence of variables such as ship type, length or weather conditions. In this...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • Wpływ struktur wsparcia na efektywność nauczania języka pisanego w środowisku e-learningowym

    Publikacja

    The process of knowledge and language skills development during an online course can be very effective if student engagement in learning is achieved. This can be attained by introducing general and specific support mechanisms prior to the commencement of the course and during it. The former relates to the technological aspect, that is to familiarizing students with the functionalities of the virtual learning environment they will...

  • Examining Feature Vector for Phoneme Recognition

    Publikacja

    - Rok 2018

    The aim of this paper is to analyze usability of descriptors coming from music information retrieval to the phoneme analysis. The case study presented consists in several steps. First, a short overview of parameters utilized in speech analysis is given. Then, a set of time and frequency domain-based parameters is selected and discussed in the context of stop consonant acoustical characteristics. A toolbox created for this purpose...

  • Study of Multi-Class Classification Algorithms’ Performance on Highly Imbalanced Network Intrusion Datasets

    Publikacja

    - Informatica - Rok 2021

    This paper is devoted to the problem of class imbalance in machine learning, focusing on the intrusion detection of rare classes in computer networks. The problem of class imbalance occurs when one class heavily outnumbers examples from the other classes. In this paper, we are particularly interested in classifiers, as pattern recognition and anomaly detection could be solved as a classification problem. As still a major part of...

    Pełny tekst do pobrania w portalu

  • Intelligent Audio Signal Processing − Do We Still Need Annotated Datasets?

    Publikacja

    - Rok 2022

    In this paper, intelligent audio signal processing examples are shortly described. The focus is, however, on the machine learning approach and datasets needed, especially for deep learning models. Years of intense research produced many important results in this area; however, the goal of fully intelligent signal processing, characterized by its autonomous acting, is not yet achieved. Therefore, a review of state-of-the-art concerning...

    Pełny tekst do pobrania w portalu

  • Categorization of Cloud Workload Types with Clustering

    The paper presents a new classification schema of IaaS cloud workloads types, based on the functional characteristics. We show the results of an experiment of automatic categorization performed with different benchmarks that represent particular workload types. Monitoring of resource utilization allowed us to construct workload models that can be processed with machine learning algorithms. The direct connection between the functional...

    Pełny tekst do pobrania w serwisie zewnętrznym