Wyniki wyszukiwania dla: DEEP NEURAL NETWORKS - MOST Wiedzy

Wyszukiwarka

Wyniki wyszukiwania dla: DEEP NEURAL NETWORKS

Wyniki wyszukiwania dla: DEEP NEURAL NETWORKS

  • Outlier detection method by using deep neural networks

    Publikacja

    - Rok 2017

    Detecting outliers in the data set is quite important for building effective predictive models. Consistent prediction can not be made through models created with data sets containing outliers, or robust models can not be created. In such cases, it may be possible to exclude observations that are determined to be outlier from the data set, or to assign less weight to these points of observation than to other points of observation....

    Pełny tekst do pobrania w serwisie zewnętrznym

  • Explainable AI for Inspecting Adversarial Attacks on Deep Neural Networks

    Deep Neural Networks (DNN) are state of the art algorithms for image classification. Although significant achievements and perspectives, deep neural networks and accompanying learning algorithms have some important challenges to tackle. However, it appears that it is relatively easy to attack and fool with well-designed input samples called adversarial examples. Adversarial perturba-tions are unnoticeable for humans. Such attacks...

    Pełny tekst do pobrania w portalu

  • Selected Technical Issues of Deep Neural Networks for Image Classification Purposes

    In recent years, deep learning and especially Deep Neural Networks (DNN) have obtained amazing performance on a variety of problems, in particular in classification or pattern recognition. Among many kinds of DNNs, the Convolutional Neural Networks (CNN) are most commonly used. However, due to their complexity, there are many problems related but not limited to optimizing network parameters, avoiding overfitting and ensuring good...

    Pełny tekst do pobrania w portalu

  • Deep neural networks approach to skin lesions classification — A comparative analysis

    The paper presents the results of research on the use of Deep Neural Networks (DNN) for automatic classification of the skin lesions. The authors have focused on the most effective kind of DNNs for image processing, namely Convolutional Neural Networks (CNN). In particular, three kinds of CNN were analyzed: VGG19, Residual Networks (ResNet) and the hybrid of VGG19 CNN with the Support Vector Machine (SVM). The research was carried...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • Face with Mask Detection in Thermal Images Using Deep Neural Networks

    Publikacja

    As the interest in facial detection grows, especially during a pandemic, solutions are sought that will be effective and bring more benefits. This is the case with the use of thermal imaging, which is resistant to environmental factors and makes it possible, for example, to determine the temperature based on the detected face, which brings new perspectives and opportunities to use such an approach for health control purposes. The...

    Pełny tekst do pobrania w portalu

  • Neural networks and deep learning

    Publikacja

    - Rok 2022

    In this chapter we will provide the general and fundamental background related to Neural Networks and Deep Learning techniques. Specifically, we divide the fundamentals of deep learning in three parts, the first one introduces Deep Feed Forward Networks and the main training algorithms in the context of optimization. The second part covers Convolutional Neural Networks (CNN) and discusses their main advantages and shortcomings...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • Deep neural networks for data analysis

    Kursy Online
    • K. Draszawka

    The aim of the course is to familiarize students with the methods of deep learning for advanced data analysis. Typical areas of application of these types of methods include: image classification, speech recognition and natural language understanding. Celem przedmiotu jest zapoznanie studentów z metodami głębokiego uczenia maszynowego na potrzeby zaawansowanej analizy danych. Do typowych obszarów zastosowań tego typu metod należą:...

  • An Intelligent Approach to Short-Term Wind Power Prediction Using Deep Neural Networks

    Publikacja

    - Journal of Artificial Intelligence and Soft Computing Research - Rok 2023

    In this paper, an intelligent approach to the Short-Term Wind Power Prediction (STWPP) problem is considered, with the use of various types of Deep Neural Networks (DNNs). The impact of the prediction time horizon length on accuracy, and the influence of temperature on prediction effectiveness have been analyzed. Three types of DNNs have been implemented and tested, including: CNN (Convolutional Neural Networks), GRU (Gated Recurrent...

    Pełny tekst do pobrania w portalu

  • Accurate Modeling of Antenna Structures by Means of Domain Confinement and Pyramidal Deep Neural Networks

    Publikacja

    - IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION - Rok 2022

    The importance of surrogate modeling techniques has been gradually increasing in the design of antenna structures over the recent years. Perhaps the most important reason is a high cost of full-wave electromagnetic (EM) analysis of antenna systems. Although imperative in ensuring evaluation reliability, it entails considerable computational expenses. These are especially pronounced when carrying out EM-driven design tasks such...

    Pełny tekst do pobrania w portalu

  • Classification of objects in the LIDAR point clouds using Deep Neural Networks based on the PointNet model

    Publikacja

    This work attempts to meet the challenges associated with the classification of LIDAR point clouds by means of deep learning. In addition to achieving high accuracy, the designed system should allow the classification of point clouds covering an area of several dozen square kilometers within a reasonable time interval. Therefore, it must be characterized by fast processing and efficient use of memory. Thus, the most popular approaches...

    Pełny tekst do pobrania w portalu

  • Improving Accuracy of Contactless Respiratory Rate Estimation by Enhancing Thermal Sequences with Deep Neural Networks

    Estimation of vital signs using image processing techniques have already been proved to have a potential for supporting remote medical diagnostics and replacing traditional measurements that usually require special hardware and electrodes placed on a body. In this paper, we further extend studies on contactless Respiratory Rate (RR) estimation from extremely low resolution thermal imagery by enhancing acquired sequences using Deep...

    Pełny tekst do pobrania w portalu

  • Deep neural networks for human pose estimation from a very low resolution depth image

    The work presented in the paper is dedicated to determining and evaluating the most efficient neural network architecture applied as a multiple regression network localizing human body joints in 3D space based on a single low resolution depth image. The main challenge was to deal with a noisy and coarse representation of the human body, as observed by a depth sensor from a large distance, and to achieve high localization precision....

    Pełny tekst do pobrania w portalu

  • Deep neural networks for data analysis 24/25

    Kursy Online
    • J. Cychnerski
    • K. Draszawka

    This course covers introduction to supervised machine learning, construction of basic artificial deep neural networks (DNNs) and basic training algorithms, as well as the overview of popular DNNs architectures (convolutional networks, recurrent networks, transformers). The course introduces students to popular regularization techniques for deep models. Besides theory, large part of the course is the project in which students apply...

  • NEURAL NETWORKS

    Czasopisma

    ISSN: 0893-6080 , eISSN: 1879-2782

  • The Effectiveness of Using a Pretrained Deep Learning Neural Networks for Object Classification in Underwater Video

    Publikacja
    • P. Szymak
    • P. Piskur
    • K. Naus

    - Remote Sensing - Rok 2020

    Pełny tekst do pobrania w serwisie zewnętrznym

  • DEEP CONVOLUTIONAL NEURAL NETWORKS AS A DECISION SUPPORT TOOL IN MEDICAL PROBLEMS – MALIGNANT MELANOMA CASE STUDY

    The paper presents utilization of one of the latest tool from the group of Machine learning techniques, namely Deep Convolutional Neural Networks (CNN), in process of decision making in selected medical problems. After the survey of the most successful applications of CNN in solving medical problems, the paper focuses on the very difficult problem of automatic analyses of the skin lesions. The authors propose the CNN structure...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • GPU Power Capping for Energy-Performance Trade-Offs in Training of Deep Convolutional Neural Networks for Image Recognition

    Publikacja

    In the paper we present performance-energy trade-off investigation of training Deep Convolutional Neural Networks for image recognition. Several representative and widely adopted network models, such as Alexnet, VGG-19, Inception V3, Inception V4, Resnet50 and Resnet152 were tested using systems with Nvidia Quadro RTX 6000 as well as Nvidia V100 GPUs. Using GPU power capping we found other than default configurations minimizing...

    Pełny tekst do pobrania w portalu

  • International Journal of Neural Networks

    Czasopisma

    ISSN: 2249-2763

  • IEEE TRANSACTIONS ON NEURAL NETWORKS

    Czasopisma

    ISSN: 1045-9227

  • Neural Networks and the Evolution of Environmental Change

    Publikacja

    - Rok 2011

    Zmiany środowiskowe na Ziemii są odwieczne i liczą około 4 miliardy lat. Homo sapiens wpłynął na każdy aspekt środowiska ziemskiego w wyniku rozwoju ludzkości na przestrzeni ostatnich milionów lat. Ale nic tak nie wpłynęło na wzrost i szybkość zmian na Ziemi jak ludzka aktywność w ciągu ostatnich dwóch stuleci. Po raz pierwszy zmiany ekosystemów były tak intensywne i zachodziły na tka wielką skalę i z taką szybkością jak nigdy...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • Artificial Neural Networks for Comparative Navigation

    Publikacja

    - Rok 2004

    Pełny tekst do pobrania w serwisie zewnętrznym

  • Robustness in Compressed Neural Networks for Object Detection

    Publikacja

    Model compression techniques allow to significantly reduce the computational cost associated with data processing by deep neural networks with only a minor decrease in average accuracy. Simultaneously, reducing the model size may have a large effect on noisy cases or objects belonging to less frequent classes. It is a crucial problem from the perspective of the models' safety, especially for object detection in the autonomous driving...

    Pełny tekst do pobrania w portalu

  • Ship Resistance Prediction with Artificial Neural Networks

    Publikacja

    - Rok 2015

    The paper is dedicated to a new method of ship’s resistance prediction using Artificial Neural Network (ANN). In the initial stage selected ships parameters are prepared to be used as a training and validation sets. Next step is to verify several network structures and to determine parameters with the highest influence on the result resistance. Finally, other parameters expected to impact the resistance are proposed. The research utilizes...

    Pełny tekst do pobrania w portalu

  • Deep neural network architecture search using network morphism

    The paper presents the results of the research on neural architecture search (NAS) algorithm. We utilized the hill climbing algorithm to search for well-performing structures of deep convolutional neural network. Moreover, we used the function preserving transformations which enabled the effective operation of the algorithm in a short period of time. The network obtained with the advantage of NAS was validated on skin lesion classification...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • Architectural Modifications to Enhance Steganalysis with Convolutional Neural Networks

    Publikacja

    This paper investigates the impact of various modifications introduced to current state-of-the-art Convolutional Neural Network (CNN) architectures specifically designed for the steganalysis of digital images. Usage of deep learning methods has consistently demonstrated improved results in this field over the past few years, primarily due to the development of newer architectures with higher classification accuracy compared to...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • Categorization of emotions in dog behavior based on the deep neural network

    The aim of this article is to present a neural system based on stock architecture for recognizing emotional behavior in dogs. Our considerations are inspired by the original work of Franzoni et al. on recognizing dog emotions. An appropriate set of photographic data has been compiled taking into account five classes of emotional behavior in dogs of one breed, including joy, anger, licking, yawning, and sleeping. Focusing on a particular...

    Pełny tekst do pobrania w portalu

  • A survey of neural networks usage for intrusion detection systems

    In recent years, advancements in the field of the artificial intelligence (AI) gained a huge momentum due to the worldwide appliance of this technology by the industry. One of the crucial areas of AI are neural networks (NN), which enable commer‐ cial utilization of functionalities previously not accessible by usage of computers. Intrusion detection system (IDS) presents one of the domains in which neural networks are widely tested...

    Pełny tekst do pobrania w portalu

  • Performance Analysis of Convolutional Neural Networks on Embedded Systems

    Publikacja

    - Rok 2020

    Machine learning is no longer confined to cloud and high-end server systems and has been successfully deployed on devices that are part of Internet of Things. This paper presents the analysis of performance of convolutional neural networks deployed on an ARM microcontroller. Inference time is measured for different core frequencies, with and without DSP instructions and disabled access to cache. Networks use both real-valued and...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • Clothes Detection and Classification Using Convolutional Neural Networks

    Publikacja

    In this paper we describe development of a computer vision system for accurate detection and classification of clothes for e-commerce images. We present a set of experiments on well established architectures of convolutional neural networks, including Residual networks, SqueezeNet and Single Shot MultiBox Detector (SSD). The clothes detection network was trained and tested on DeepFashion dataset, which contains box annotations...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • Sign Language Recognition Using Convolution Neural Networks

    Publikacja

    The objective of this work was to provide an app that can automatically recognize hand gestures from the American Sign Language (ASL) on mobile devices. The app employs a model based on Convolutional Neural Network (CNN) for gesture classification. Various CNN architectures and optimization strategies suitable for devices with limited resources were examined. InceptionV3 and VGG-19 models exhibited negligibly higher accuracy than...

    Pełny tekst do pobrania w portalu

  • The impact of the AC922 Architecture on Performance of Deep Neural Network Training

    Publikacja

    - Rok 2020

    Practical deep learning applications require more and more computing power. New computing architectures emerge, specifically designed for the artificial intelligence applications, including the IBM Power System AC922. In this paper we confront an AC922 (8335-GTG) server equipped with 4 NVIDIA Volta V100 GPUs with selected deep neural network training applications, including four convolutional and one recurrent model. We report...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • Diagnosis of damages in family buildings using neural networks

    Publikacja

    The article concerns a problem of damages in family buildings, which result from traffic-induced vibrations. These vibrations arise from various causes and their size is influenced by many factors. The most important is the type of a road, type and weight of vehicles that run on the road, type and condition of the road surface, the distance from the house to the source of vibrations and many others which should be taken into account....

  • Artificial Neural Networks in Microwave Components and Circuits Modeling

    Artykuł dotyczy wykorzystania sztucznych sieci neuronowych (SNN) w projektowaniu i optymalizacji układów mikrofalowych.Zaprezentowano podstawowe zasady i założenia modelowania z użyciem SNN. Możliwości opisywanej metody opisano wykorzystując przykładowyprojekt anteny łatowej. Przedstawiono różne strategie modelowania układów, które wykorzystują możliwości opisywanej metody w połączeniu zwiedzą mikrofalową. Porównano również dokładność...

    Pełny tekst do pobrania w portalu

  • Application of neural networks for turbine rotor trajectory investigation.

    Publikacja

    - Rok 2004

    W pracy przedstawiono rezultaty badań sieci neuronowych przewidujących trajektorię wirnika turbinowego uzyskanych ze stanowiska turbiny modelowej. Badania wykazały, iż sieci neuronowe wydają się być z powodzeniem zastosowane do przewidywania trajektorii ruchu wirnika turbiny. Najważniejszym zadaniem wydaje się poprawne określenie wektorów sygnałów wejściowych oraz wyjściowych jak również prawidłowe stworzenie sieci neuronowej....

  • Problems in toxicity analysis - application of fuzzy neural networks

    Publikacja

    - Rok 2005

    Praca dotyczy zastosowania sztucznych sieci neuronowych do przygotowywania danych do szacowania toksyczności (wody powierzchniowe). Przygotowanie to polega na sztucznym zagęszczaniu zbioru danych, które następnie mogą być wykorzystane do szacowania/modelowania wartości toksyczności na ich podstawie.

  • Neural networks in the diagnostics of induction motor rotor cages.

    W środowisku Lab VIEW została stworzona aplikacja służąca do pomiaru, prezentacji i zapisu przebiegów widma prądu stojana z uwzględnieniem potrzeb pomiarowych występujących podczas badania wirników silników indukcyjnych przy użyciu sieci neuronowych. Utworzona na bazie zbioru uczącego sieć Kohonena z powodzeniem rozwiązała stawiany przed nią problem klasyfikacji widm prądu stojana, a co za tym idzie również diagnozy stanu...

  • Applications of neural networks and perceptual masking to audio restoration

    Omówiono zastosowania algorytmów uczących się w dziedzinie rekonstruowania nagrań fonicznych. Szczególną uwagę zwrócono na zastosowanie sztucznych sieci neuronowych do usuwania zakłócających impulsów. Ponadto opisano zastosowanie inteligentnego algorytmu decyzyjnego do sterowania maskowaniem perceptualnym w celu redukowania szumu.

  • Deep convolutional neural network for predicting kidney tumour malignancy 

    Publikacja

    - Rok 2021

    Purpose: According to the statistics, up to 15-20% of removed solid kidney tumors turn out to be benign in postoperative histopathological examination, despite having been identified as malignant by a radiologist. The aim of the research was to limit the number of unnecessary nephrectomies of benign tumors. Methods or Background: We propose a machine-aided diagnostic system for kidney...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • Exploring Neural Networks for Musical Instrument Identification in Polyphonic Audio

    Publikacja

    - IEEE INTELLIGENT SYSTEMS - Rok 2024

    The purpose of this paper is to introduce neural network-based methods that surpass state-of-the-art (SOTA) models, either by training faster or having simpler architecture, while maintaining comparable effectiveness in musical instrument identification in polyphonic music. Several approaches are presented, including two authors’ proposals, i.e., spiking neural networks (SNN) and a modular deep learning model named FMCNN (Fully...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • Evaluation of Facial Pulse Signals Using Deep Neural Net Models

    Publikacja

    - Rok 2019

    The reliable measurement of the pulse rate using remote photoplethysmography (PPG) is very important for many medical applications. In this paper we present how deep neural networks (DNNs) models can be used in the problem of PPG signal classification and pulse rate estimation. In particular, we show that the DNN-based classification results correspond to parameters describing the PPG signals (e.g. peak energy in the frequency...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • A MODEL FOR FORECASTING PM10 LEVELS WITH THE USE OF ARTIFICIAL NEURAL NETWORKS

    Publikacja

    - Rok 2014

    This work presents a method of forecasting the level of PM10 with the use of artificial neural networks. Current level of particulate matter and meteorological data was taken into account in the construction of the model (checked the correlation of each variable and the future level of PM10), and unidirectional networks were used to implement it due to their ease of learning. Then, the configuration of the network (built on the...

    Pełny tekst do pobrania w portalu

  • USING ARTIFICIAL NEURAL NETWORKS FOR PREDICTING SHIP FUEL CONSUMPTION

    Publikacja
    • G. V. Nguyen
    • R. Sakthivel
    • K. Rudzki
    • J. Kozak
    • S. Prabhakar
    • N. D. K. Pham
    • P. Q. P. Nguyen
    • N. X. Phuong

    - Polish Maritime Research - Rok 2023

    In marine vessel operations, fuel costs are major operating costs which affect the overall profitability of the maritime transport industry. The effective enhancement of using ship fuel will increase ship operation efficiency. Since ship fuel consumption depends on different factors, such as weather, cruising condition, cargo load, and engine condition, it is difficult to assess the fuel consumption pattern for various types...

    Pełny tekst do pobrania w portalu

  • Automatic Breath Analysis System Using Convolutional Neural Networks

    Publikacja

    Diseases related to the human respiratory system have always been a burden for the entire society. The situation has become particularly difficult now after the outbreak of the COVID-19 pandemic. Even now, however, it is not uncommon for people to consult their doctor too late, after the disease has developed. To protect patients from severe disease, it is recommended that any symptoms disturbing the respiratory system be detected...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • Automatic Breath Analysis System Using Convolutional Neural Networks

    Publikacja

    Diseases related to the human respiratory system have always been a burden for the entire society. The situation has become particularly difficult now after the outbreak of the COVID-19 pandemic. Even now, however, it is common for people to consult their doctor too late, after the disease has developed. To protect patients from severe disease, it is recommended that any symptoms disturbing the respiratory system be detected as...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • Automatic singing quality recognition employing artificial neural networks

    Publikacja

    Celem artykułu jest udowodnienie możliwości automatycznej oceny jakości technicznej głosów śpiewaczych. Pokrótce zaprezentowano w nim stworzoną bazę danych głosów śpiewaczych oraz zaimplementowane parametry. Przy pomocy sztucznych sieci neuronowych zaprojektowano system decyzyjny, który oceniono w pięciostopniowej skali jakość techniczną głosu. Przy pomocy metod statystycznych udowodniono, że wyniki generowane przez ten system...

    Pełny tekst do pobrania w portalu

  • Gesture Recognition With the Linear Optical Sensor and Recurrent Neural Networks

    In this paper, the optical linear sensor, a representative of low-resolution sensors, was investigated in the multiclass recognition of near-field hand gestures. The recurrent neural network (RNN) with a gated recurrent unit (GRU) memory cell was utilized as a gestures classifier. A set of 27 gestures was collected from a group of volunteers. The 27 000 sequences obtained were divided into training, validation, and test subsets....

    Pełny tekst do pobrania w portalu

  • Prediction of antimicrobial activity of imidazole derivatives by artificial neural networks

    Publikacja
    • M. Wnuk
    • M. Marszałł
    • A. Zapęcka
    • A. Nowaczyk
    • J. Krysiński
    • J. Romaszko
    • P. Kawczak
    • T. Bączek
    • A. Buciński

    - Open Medicine - Rok 2013

    Pełny tekst do pobrania w serwisie zewnętrznym

  • Forecasting of currency exchange rates using artificial neural networks

    Publikacja

    W rozdziale tym autor przedstawił wyniki swoich badań nad wykorzystaniem sztucznych sieci neuronowych do prognozowania kursu walut (na przykładzie pary walutowej PLN-USD).Głównym celem badań było porównanie skuteczności przewidywania kursu złotówki w latach 1997 - 2005 przy pomocy różnych rodzajów sieci neuronowych.

  • Neural networks based NARX models in nonlinear adaptive control

    Publikacja
    • A. Dzielinski

    - Rok 1999

    Pełny tekst do pobrania w serwisie zewnętrznym

  • Application of neural networks for description of pressure distribution in slide bearing.

    Publikacja

    - Rok 2004

    Badano rozkład ciśnienia hydrodynamicznego w łożysku ślizgowym dla wybranych wariantów łożyska. Wykazano, że zastosowanie sieci neuronowych umożliwia opis rozkładu ciśnienia hydrodynamicznego z uwzględnieniem zmian geometrycznych (bezwymiarowa długość - L) i mechanicznych (mimośrodowość względem H) łożyska.