Filtry
wszystkich: 1018
wyświetlamy 1000 najlepszych wyników Pomoc
Wyniki wyszukiwania dla: curved graphene layers
-
Review of the Application of Graphene-Based Coatings as Anticorrosion Layers
PublikacjaDue to the excellent properties of graphene, including flexibility that allows it to adjust to the curvature of the substrate surface, chemical inertness, and impermeability, graphene is used as an anticorrosion layer. In this review, we present the current state-of-the-art in the application of graphene in the field of protective coatings. This review provides detailed discussions about the protective properties of graphene coatings...
-
UV Light-Modulated Fluctuation-Enhanced Gas Sensing by Layers of Graphene Flakes/TiO2 Nanoparticles
PublikacjaWe present experimental results of fluctuation-enhanced gas sensing by low-cost resistive sensors made of a mixture of graphene flakes and TiO2 nanoparticles. Both components are photocatalytic and activated by UV light. Two UV LEDs of different wavelengths (362 and 394 nm) were applied to modulate the gas sensing of the layers. Resistance noise was recorded at low frequencies, between 8 Hz and 10 kHz. The sensors’ response was...
-
Salt melt synthesis of curved nitrogen-doped carbon nanostructures: ORR kinetics boost
PublikacjaImplementing metal-free electrocatalysts for the oxygen reduction reaction (ORR) and revealing crucial chemical or topographical parameters driving their activity are vital for the development of power cells. The carbon-based catalysts are very often synthesized through carbonization of biopolymers, in particular, those one containing nitrogen groups such as chitosan. Unfortunately, the resulting carbonaceous materials usually...
-
Continuum contact model for friction between graphene sheets that accounts for surface anisotropy and curvature
PublikacjaUnderstanding the interaction mechanics between graphene layers and co-axial carbon nanotubes (CNTs) is essential for modeling graphene and CNT-based nanoelectromechanical systems. This work proposes a new continuum contact model to study interlayer interactions between curved graphene sheets. The continuum model is calibrated and validated using molecular dynamics (MD) simulations. These are carried out employing the reactive...
-
Imaging of graphene surface by means of tapping mode AFM
Dane BadawczeGraphene [1] is a material consisting of carbon planes with a hexagonal structure. One of the facts of interest from a purely scientific point of view is the very high mobility of electrons in the described material, allowing the study of relativistic effects inside a solid sample. Other features, such as bactericidal activity, make graphene an interesting...
-
3D Hierarchical Boron-Doped Diamond-Multilayered Graphene Nanowalls as an Efficient Supercapacitor Electrode
PublikacjaSynthesis of stable hybrid carbon nanostructure for high-performance supercapacitor electrode with long life-cycle for electronic and energy storage devices is a real challenge. Here, we present a one-step synthesis method to produce conductive boron-doped hybrid carbon nanowalls (HCNWs), where sp2-bonded graphene has been integrated with and over a three-dimensional curved wall-like network of sp3-bonded diamond. The spectroscopic...
-
Facile synthesis and characterization of graphene and N-doped graphene by CVD method from liquid precursors for promising electrode materials
PublikacjaIn this study, high-quality and few-layered graphene was synthesized using the chemical vapor deposition (CVD) method from liquid sources. Two different liquid carbon sources, pyridine, and benzene, were used and deposited on nickel foam under heat conditions using a bubbler in a quartz tube. X-ray diffraction (XRD) and Raman analysis confirmed the crystalline properties of graphene and N-doped graphene, demonstrating the high...
-
The protective properties of graphene oxide coatings functionalized with phosphorus atoms.
PublikacjaRecently, electrophoretically deposited graphene oxide coatings are commonly applied as an anti-corrosion layer. However, improper adjustment of electrophoretic deposition (EPD) parameters as well as the hydrophilic nature of graphene oxide contribute to the formation of defects in the coatings and the increase in the wetting properties, respectively, and thus lead to a reduction of protective properties. The growth of wetting...
-
Thermal Buckling Analysis of Circular Bilayer Graphene sheets Resting on an Elastic Matrix Based on Nonlocal Continuum Mechanics
PublikacjaIn this article, the thermal buckling behavior of orthotropic circular bilayer graphene sheets embedded in the Winkler–Pasternak elastic medium is scrutinized. Using the nonlocal elasticity theory, the bilayer graphene sheets are modeled as a nonlocal double–layered plate that contains small scale effects and van der Waals (vdW) interaction forces. The vdW interaction forces between the layers are simulated as a set of linear springs...
-
Facilitated water transport in composite reduced graphene oxide pervaporation membranes for ethanol upgrading
PublikacjaHigh purity ethanol is one of the most sought-after renewable energy sources. However, standard production methods yield ethanol of insufficient quality. Membrane processes such as pervaporation are recognized as a viable method for upgrading ethanol. Their performance and selectivity depend solely on membrane employed. Hydrophilic polyvinyl alcohol (PVA) membranes are used industrially for this purpose, but there is a trade-off...
-
Nonlinear finite element modeling of vibration control of plane rod-type structural members with integrated piezoelectric patches
PublikacjaThis paper addresses modeling and finite element analysis of the transient large-amplitude vibration response of thin rod-type structures (e.g., plane curved beams, arches, ring shells) and its control by integrated piezoelectric layers. A geometrically nonlinear finite beam element for the analysis of piezolaminated structures is developed that is based on the Bernoulli hypothesis and the assumptions of small strains and finite...
-
Mechanical exfoliation and layer number identification of single crystal monoclinic CrCl3
PublikacjaAfter the recent finding that CrI3, displays ferromagnetic order down to its monolayer, extensive studies have followed to pursue new two-dimensional (2D) magnetic materials. In this article, we report on the growth of single crystal CrCl3 in the layered monoclinic phase. The system after mechanical exfoliation exhibits stability in ambient air (the degradation occurs on a time scale at least four orders of magnitude longer than...
-
Polarization-dependent optical absorption in phosphorene flakes
PublikacjaThe interest of 2D materials is constantly increasing because of their very attractive mechanical, electrical and optical parameters. They have been used in many applications, e.g. photodetectors, sensors, modulators, insulators. One of the recently discovered 2D materials is phosphorene. In contrast to graphene, phosphorene has a direct bandgap tuned by numbers of layers in the 2D structure. The phosphorene flakes are strongly...
-
Understanding the capacitance of thin composite films based on conducting polymer and carbon nanostructures in aqueous electrolytes
PublikacjaIn this work electrochemical performance of thin composite films consisted of poly(3,4-ethylenedioxythiophene) (PEDOT), graphene oxide (GOx) and oxidized multiwalled carbon nanotubes (oxMWCNTs) is investigated in various sulphates (Li2SO4, Na2SO4, K2SO4, MgSO4) and acidic (H2SO4) electrolytes. Capacitance values, rate capability and cycling stability achieved for the composite layers are correlated with the electrolytes’ properties...
-
Investigating Layered Topological Magnetic Materials as Efficient Electrocatalysts for the Hydrogen Evolution Reaction under High Current Densities
PublikacjaDespite considerable progress, high-performing durable catalysts operating under large current densities (i.e., >1000 mA/cm2) are still lacking. To discover platinum group metal-free (PGMfree) electrocatalysts for sustainable energy, our research involves investigating layered topological magnetic materials (semiconducting ferromagnets) as highly efficient electrocatalysts for the hydrogen evolution reaction under high current...
-
On the plastic buckling of curved carbon nanotubes
PublikacjaThis research, for the first time, predicts theoretically static stability response of a curved carbon nanotube (CCNT) under an elastoplastic behavior with several boundary conditions. The CCNT is exposed to axial compressive loads. The equilibrium equations are extracted regarding the Euler–Bernoulli displacement field by means of the principle of minimizing total potential energy. The elastoplastic stress-strain is concerned...
-
Optoelectronic properties of curved carbon systems
PublikacjaSystematic investigation of optoelectronic properties of curved carbon systems has been performed and the results have been compared with the representatives of flat carbon systems. Moreover, the application of third order dispersion corrected density functional tight binding method (with third order corrections of self-consistent charges) including Becke-Johnson dumping (DFTB3-D3(BJ)) has been validated in order to obtain reliable...
-
Resonant Frequencies in the Open Microstrip Structures Placed on Curved Surfaces
PublikacjaThe paper presents the research on open microstrip structures placed on curved surfaces such as cylindrical, elliptical or spherical. The numerical analysis of investigated structures is based on expansion of electric and magnetic fields into suitable function series. Utilizing the continuity conditions the boundary problem is formulated which is solved with the use of method of moments. The investigated structures find application...
-
Thermal and hydraulic phenomena in boundary layer of minijets impingement on curved surfaces
PublikacjaPresented work considers flow and thermal phenomena occurring during the single minijet impingement on curved surfaces, heated with a constant heat flux, as well as the array of minijets. Numerical analyses, based on the mass, momentum and energy conservation laws, were conducted, regarding single phase and two-phase simulations. Focus was placed on the proper model construction, in which turbulence and boundary layer modeling...
-
Piotr Jasiński prof. dr hab. inż.
OsobyPiotr Jasinski obtained MSc in electronics in 1992 from the Gdansk University of Technology (GUT), Poland. Working at GUT, he received PhD in 2000 and DSc in 2009. Between 2001 and 2004 Post Doctoral Fellow at Missouri University of Science and Technology, while between 2008 and 2010 an Assistant Research Professor. Currently is an Associate Professor at Gdansk University of Technology working in the field of electronics, biomedical...
-
3D Metamaterial Ultra-Wideband Absorber for curved surface
PublikacjaThis paper proposes a three-dimensional metamaterial absorber based on a resistive film patch array to develop a low-cost, lightweight absorber for curved surfaces. An excellent absorption over a large frequency band is achieved through two different yet controllable mechanisms; In the first mechanism, a considerable attenuation in the wave power is achieved via graphite resistive films. The absorption is then intensified through...
-
GRAPHENE IN GAS CHEMIRESISTORS
PublikacjaGraphene has a range of unique physical properties which could be exploited in gas sensing. Every atom of graphene may be considered as a surface atom, able to interact even with single molecule of the target gas or vapour species resulting in the ultrasensitive sensor response. In this paper the potential of graphene as a nanomaterial for fabricating chemiresistors was described. Recent development in graphene sensors was considered...
-
Graphene Reinforced Phenolic Foams
PublikacjaPhenolic foams (PF) belong to the polymeric materials, which are very attractive from the point of many possible applications such as insulation or fire protection materials. This chapter attempts to explain the influence of graphene and graphene derivatives on the phenolic foams. This work briefly presents different graphene nanoparticles introduced to the phenolic foams matrix, in terms of impact on the thermal, mechanical, and...
-
Curved and Layered Structures
Czasopisma -
Graphene oxide, reduced graphene oxide and composite thin films NO2 sensing properties
PublikacjaA graphene oxide (GO), reduced graphene oxide (RGO) and poly(3,4-ethylenedioxytiophene)-reduced graphene oxide (PEDOT-RGO composite) gas sensors were successfully fabricated using an electrodeposition method. The electrodeposition was carried out in aqueous GO dispersions. To obtain RGO and PEDOT-RGO, the electrochemical reduction of GO and PEDOT-GO was carried out in 0.1 M KCl at a constant potential of −0.85 V. The GO, RGO and PEDOT-RGO...
-
Application of the neural networks for developing new parametrization of the Tersoff potential for carbon
PublikacjaPenta-graphene (PG) is a 2D carbon allotrope composed of a layer of pentagons having sp2- and sp3-bonded carbon atoms. A study carried out in 2018 has shown that the parameterization of the Tersoff potential proposed in 2005 by Ehrhart and Able (T05 potential) performs better than other potentials available for carbon, being able to reproduce structural and mechanical properties of the PG. In this work, we tried to improve the...
-
A Comprehensive Survey on Antennas On-Chip Based on Metamaterial, Metasurface, and Substrate Integrated Waveguide Principles for Millimeter-Waves and Terahertz Integrated Circuits and Systems
PublikacjaAntennas on-chip are a particular type of radiating elements valued for their small footprint. They are most commonly integrated in circuit boards to electromagnetically interface free space, which is necessary for wireless communications. Antennas on-chip radiate and receive electromagnetic (EM) energy as any conventional antennas, but what distinguishes them is their miniaturized size. This means they can be integrated inside...
-
Morphology, Mechanical and Thermal Properties of Thermoplastic Polyurethane Containing Reduced Graphene Oxide and Graphene Nanoplatelets
PublikacjaPolyurethane/graphene nanocomposites were synthesized using commercial thermoplastic polyurethane (TPU, Apilon 52DE55), and two types of graphene derivatives: graphene nanoplatelets (GNP) and reduced graphene oxide (RGO). Fourier Transformation Infrared Spectroscopy Fourier Transformation Infrared Spectroscopy (FTIR) spectroscopy, TEM, and SEM microscopy and XRD techniques were used to chemically and structurally characterize GNP...
-
Measurements of Subnanometer Molecular Layers
PublikacjaSelected methods of formation and detection of nanometer and subnanometer molecular layers were shown. Additionally, a new method of detection and measurement with subnanometer resolution of layers adsorbed or bonded to the gate dielectric of the ion selective field effect transistor (ISFET) was presented.
-
Graphene Production and Biomedical Applications: A Review
PublikacjaGraphene is a two-dimensional nanomaterial composed of carbon atoms with sp2 hybrid orbitals. Both graphene and graphene-based composite have gained broad interest among researchers because of their outstanding physiochemical, mechanical, and biological properties. Graphene production techniques are divided into top-down and bottom-up synthesis methods, of which chemical vapor deposition (CVD) is the most popular. The biomedical...
-
Graphene oxide, reduced graphene oxide and composite thin films NO2 sensing properties
PublikacjaA graphene oxide (GO), reduced graphene oxide (RGO) and poly(3,4-ethylenedioxytiophene)- reduced graphene oxide (PEDOT-RGO composite) gas sensors were successfully fabricated using an electrodeposition method. The electrodeposition was carried out in aqueous GO dispersions. In order to obtain RGO and PEDOT-RGO, the electrochemical reduction of GO and PEDOT-GO was carried out in 0.1 M KCl at constant potential of −0.85 V. The GO, RGO...
-
Dynamic modeling of non-cylindrical curved viscoelastic single-walled carbon nanotubes based on the second gradient theory
PublikacjaThis paper is devoted to the theoretical study of the dynamic response of non-cylindrical curved viscoelastic single-walled carbon nanotubes (SWCNTs). The curved nanotubes are largely used in many engineering applications, but it is challenging in understanding mechanically the dynamic response of these curved SWCNTs when considering the influences of the material viscosity. The viscoelastic damping effect on the dynamic response...
-
Graphene-based Silicone rubber Nanocomposites: Preparation, Characterization, and Properties
PublikacjaThis study aims to understand better the mechanical, thermal, and tribological behavior of silicone rubber nanocomposites. Graphite, exfoliated graphite, reduced graphene oxide, ionic liquid modified graphene oxide, silane-modified graphene oxide, fumed silica, and other fillers were used in this study. Adding graphene-based fillers to the silicone rubber matrix substantially improves the nanocomposite's mechanical, thermal, and...
-
Optimization of Graphene Oxide Synthesis and Its Reduction
PublikacjaIn this article, we present the review of the chemical methods of synthesis of graphene oxide and its reduction in order to obtain the so-called reduced graphene oxide (rGO) whose properties are similar to those of pure graphene. We also present our experiments and the results in this field and the comparison of the efficiency of different methods of synthesis as well as the reduction of graphene oxide. To characterize the obtained...
-
Curved Surface Minijet Impingement Phenomena Analysed with ζ-f Turbulence Model
PublikacjaThe jet impingement phenomenon plays an important role among the heat transfer intensification methods. Very often its application and analyses refer to simple flat surfaces, while there is a lack of information in the literature for cases addressing curved surfaces. In the present work, the single jet impingement on the non-flat (concave and convex) surface is studied for a wide range of geometries, which originate from the mini-jet...
-
Reduced Graphene Oxide Joins Graphene Oxide To Teach Undergraduate Students Core Chemistry and Nanotechnology Concepts
PublikacjaNovel carbon nanomaterials such as reduced graphene oxide (rGO) and graphene oxide (GO) can be easily incorporated into the undergraduate curriculum to discuss basic chemistry and nanotechnology concepts. This paper describes a laboratory experiment designed to study the differences between GO and rGO regarding their physico-chemical properties (e.g. color, hydrophobicity, type of functional groups, electrical conductivity etc.)....
-
RECENT ADVANCES IN GRAPHENE APPLICATION FOR ELECTRONIC SENSING
PublikacjaThe great interest in graphene is caused by its potential for constructing various sensors exhibiting excellent parameters. The high carrier mobility and the unique band structure of graphene makes it promising especially in the field-effect transistors (GFET) applications. In this article, recent advances of the selected graphene-based sensor applications were presented and the possible directions for further investigations were...
-
Properties of Composite Oxide Layers on The Ti13Nb13Zr Alloy
PublikacjaThe development of composite oxide layers on the Ti13Nb13Zr alloy, their structure and properties have been demonstrated. Two subsequent methods were applied to prepare the composite layers. During the first stage gas oxidation produced a solid oxide layer, and subsequently oxide nanotubes were produced by using an electrochemical method. Scanning electron microscopy (SEM), chemical analysis, energy dispersive X-ray spectroscopy...
-
Multicomponent layers for aluminium alloys surface consolidation
PublikacjaThe main reason of the surface modification of the components such as pistons and cylinder blocks made of cast aluminium alloys is to obtain high hardness, wear and corrosion resistance of the working surface for larger lifetime of the motor-car and aircraft engines. In that aspect, the new conception of development - by hybrid method - of surface layers containing manganese, nitrogen, sulphur (Mn-N-S) and manganese, nitrogen,...
-
GRAPHENE-BASED SUPERCAPACITORS APPLICATION FOR ENERGY STORAGE
PublikacjaRecent advances in graphene-based supercapacitor technology for energy storage application were summarized. The comparison of different types of electrode materials in such supercapacitors was performed. The supercapacitors with graphene-based electrodes exhibit outstanding performance: high charge-discharge rate, high power density, high energy density and long cycle-life, what makes them suitable for various applications, e.g....
-
Applying of Doped Graphene Oxide Coatings for Corrosion Prevention
PublikacjaINTRODUCTION Graphene is a carbonaceous material characterized by extraordinary properties (high electron mobility, high surface area, high mechanical strength of 1100 GPa, very dense network hindering the passage of even the smallest helium atoms) [1]. Therefore, it found many applications, also as an anti-corrosive layer [2]. Electrophoretic Deposition (EPD) is one of the methods to deposit coatings. However, due to slight solubility...
-
3D porous graphene-based structures- synthesis and applications
PublikacjaPorous carbon-based materials are of the great industrial and academic interest due to their high surface area, low density, good electrical conductivity, chemical inertness and low cost of fabrication. Up to now, the main approach to obtain porous carbon structures has involved the pyrolysis of carbonaceous natural or synthetic precursors. After the isolation of graphene, the interest in 3D porous graphene-based structures (called...
-
Silica-templated three-dimensional graphene xerogels
PublikacjaMost porous carbons require the uniform pore size distribution therefore many approaches have been applied to template the carbon scaffolds and among them the use of silica particles is the easiest and the most effective. After discovering of graphene, the whole family of new carbon nanomaterials arose and one of the promising materials is graphene xerogel (GX) with a three-dimensional, highly porous structure. This monograph reviews...
-
Fully scalable one-pot method for the production of phosphonic graphene derivatives
PublikacjaGraphene oxide was functionalized with simultaneous reduction to produce phosphonated reduced graphene oxide in a novel, fully scalable, one-pot method. The phosphonic derivative of graphene was obtained through the reaction of graphene oxide with phosphorus trichloride in water. The newly synthesized reduced graphene oxide derivative was fully characterized by using spectroscopic methods along with thermal analysis. The morphology...
-
The silver layers in fiber-optic sensors
PublikacjaIn this paper a method of application of the silver layers on the surface of an optical fiber was proposed. The optical properties and surface quality of the silver layer was examined by optical microscopy. The reflection and transmission of the sample were investigated. To evaluate the silver mirror it was placed in a fiber optic Fabry-Perot interferometer and the quality of the spectra was analyzed. The commercial mirror was...
-
Enhanced supercapacitor materials from pyrolyzed algae and graphene composites
PublikacjaThis study focuses on the synthesis and characterization of supercapacitor materials derived from pyrolyzed natural compounds. Four compounds were investigated: methylcellulose with lysine (ML), methylcellulose with lysine-graphene composite (MLG), algae (A), and algae-graphene composite (AG). The pyrolysis process was utilized to convert these natural compounds into carbon-based materials suitable for supercapacitor applications....
-
Recent and Emerging Applications of Graphene-based metamaterials in Electromagnetics
PublikacjaSurface Plasmon Polaritons (SPPs) operating in mid-infrared up to terahertz (THz) frequencies have been traditionally manufactured on expensive metals such as gold, silver, etc. However, such metals have poor surface confinement that limits the optical applications of SPPs. The invention of graphene is a breakthrough in plasmon-based devices in terms of design, fabrication and applications, thanks to its plasmonic wave distribution,...
-
New approach for the synthesis of Ag3PO4-graphene photocatalysts
PublikacjaA facile and effective plasma sputtering method for the preparation of a visible light active photocatalyst - rhombic dodecahedral silver phosphate Ag3PO4 covered with nanographene (Ag3PO4-GR) with improved stability has been developed. Proposed method allows for the usage of readily available materials for nanographene sputtering and for easy scaling-up. The stability improvement, confirmed by visible light-induced phenol degradation...
-
Polyurethane Nanocomposites Containing Reduced Graphene Oxide, FTIR, Raman, and XRD Studies
PublikacjaRecently, graphene and other graphene-based materials have become an essential part of composite science and technology. Their unique properties are not only restricted to graphene but also shared with derivative compounds like graphene oxide, reduced graphene oxide, functionalized graphene, and so forth. One of the most structurally important materials, graphene oxide (GO), is prepared by the oxidation of graphite. Though removal...
-
Graphene field-effect transistor application for flow sensing
PublikacjaMicroflow sensors offer great potential for applications in microfluidics and lab-on-a-chip systems. However, thermal-based sensors, which are commonly used in modern flow sensing technology, are mainly made of materials with positive temperature coefficients (PTC) and suffer from a self-heating effect and slow response time. Therefore, the design of novel devices and careful selection of materials are required to improve the overall...