Filtry
wszystkich: 1970
-
Katalog
- Publikacje 1534 wyników po odfiltrowaniu
- Czasopisma 70 wyników po odfiltrowaniu
- Konferencje 110 wyników po odfiltrowaniu
- Osoby 133 wyników po odfiltrowaniu
- Projekty 1 wyników po odfiltrowaniu
- Zespoły Badawcze 1 wyników po odfiltrowaniu
- Kursy Online 80 wyników po odfiltrowaniu
- Wydarzenia 19 wyników po odfiltrowaniu
- Dane Badawcze 22 wyników po odfiltrowaniu
wyświetlamy 1000 najlepszych wyników Pomoc
Wyniki wyszukiwania dla: sztuczna inteligencja
-
Study of various machine learning approaches for Sentinel-2 derived bathymetry
PublikacjaIn recent years precise and up-to-date information regarding seabed depth has become more and more important for companies and institutions that operate on coastlines. While direct, in-situ measurements are performed regularly, they are expensive, time-consuming and impractical to be performed in short time intervals. At the same time, an ever-increasing amount of satellite imaging data becomes available. With these images, it...
-
COMPUTER VISION AND IMAGE UNDERSTANDING
Czasopisma -
INTERNATIONAL JOURNAL OF COMPUTER VISION
Czasopisma -
An Approach to Bass Enhancement in Portable Computers Employing Smart Virtual Bass Synthesis Algorithms
PublikacjaThe aim of this paper is to present a novel approach to the Virtual Bass Synthesis (VBS) algorithms applied to portable computers. The developed algorithms are related to intelligent, rule-based setting of synthesis parameters according to music genre of an audio excerpt and to the type of a portable device in use. To find optimum synthesis parameters of the VBS algorithms, subjective listening tests based on a parametric procedure...
-
A modelling approach to the transport support for the harvesting and transportation complex under uncertain conditions
PublikacjaThe article proposes a modelling approach based on structural and parametric identification of the transport support of the harvesting and transportation complex. The efficiency and effectiveness of the proposed methods of structural and parametric identification for the development of a system for harvesting and transportation complex operation has been proved. A mathematical model based on fuzzy logic has been developed. It reflects...
-
Intelligence Augmentation and Amplification: Approaches, Tools, and Case Studies
PublikacjaMost experts agree that truly intelligent artificial system is yet to be developed. The main issue that still remains a challenge is imposing trust and explainability into such systems. However, is full replication of human intelligence really desirable key aim in intelligence related technology and research? This is where the concept of augmented intelligence comes into play. It is an alternative conceptualization of artificial...
-
Development of a tropical disease diagnosis system using artificial neural network and GIS
PublikacjaExpert systems for diagnosis of tropical diseases have been developed and implemented for over a decade with varying degrees of success. While the recent introduction of artificial neural networks has helped to improve the diagnosis accuracy of such systems, this aspect is still negatively affected by the number of supported diseases. A large number of supported diseases usually corresponds to a high number of overlapping symptoms,...
-
Performance Analysis of the OpenCL Environment on Mobile Platforms
PublikacjaToday’s smartphones have more and more features that so far were only assigned to personal computers. Every year these devices are composed of better and more efficient components. Everything indicates that modern smartphones are replacing ordinary computers in various activities. High computing power is required for tasks such as image processing, speech recognition and object detection. This paper analyses the performance of...
-
Signature Partitioning Using Selected Population-Based Algorithms
PublikacjaDynamic signature is a biometric attribute which is commonly used for identity verification. Artificial intelligence methods, especially population-based algorithms (PBAs), can be very useful in the dynamic signature verification process. They are able to, among others, support selection of the most characteristic descriptors of the signature or perform signature partitioning. In this paper, we focus on creating the most characteristic...
-
Artificial intelligence-based imaging analysis of stem cells: a systematic scoping review protocol
Publikacja -
Artificial intelligence and health-related data: The patient’s best interest and data ownership dilemma
Publikacja -
Enhancing Facial Palsy Treatment through Artificial Intelligence: From Diagnosis to Recovery Monitoring
PublikacjaThe objective of this study is to develop and assess a mobile application that leverages artificial intelligence (AI) to support the rehabilitation of individuals with facial nerve paralysis. The application features two primary functionalities: assessing the paralysis severity and facilitating the monitoring of rehabilitation exercises. The AI algorithm employed for this purpose was Google's ML Kit “face-detection”. The classification...
-
AI-powered Digital Transformation: Tools, Benefits and Challenges for Marketers – Case Study of LPP
PublikacjaThe article aims to show the role (benefits and challenges) of AI-powered digital marketing tools for marketers in the age of digital transformation. The considerations were related to the Polish market and a case study of LPP, a Polish clothing retailer. The starting point for this study was the analysis of the literature on the concept of artificial intelligence (AI) with reference to digital marketing. In the next steps, the...
-
Investigating Feature Spaces for Isolated Word Recognition
PublikacjaThe study addresses the issues related to the appropriateness of a two-dimensional representation of speech signal for speech recognition tasks based on deep learning techniques. The approach combines Convolutional Neural Networks (CNNs) and time-frequency signal representation converted to the investigated feature spaces. In particular, waveforms and fractal dimension features of the signal were chosen for the time domain, and...
-
Federated Learning in Healthcare Industry: Mammography Case Study
PublikacjaThe paper focuses on the role of federated learning in a healthcare environment. The experimental setup involved different healthcare providers, each with their datasets. A comparison was made between training a deep learning model using traditional methods, where all the data is stored in one place, and using federated learning, where the data is distributed among the workers. The experiment aimed to identify possible challenges...
-
Data Mining Path
Kursy OnlineWithin this path, various issues regarding data mining and their practical application in various systems are discussed. 4 semestr specjalności ISI i ZAD
-
Some Optimization Methods for Simulations in Volunteer and Grid Systems
PublikacjaIn this chapter, some optimization methods have been presented for improving performance of simulations in the volunteer and grid computing system called Comcute. Some issues related to the cloud computing can be solved by presented approaches as well as the Comcute platform can be used to simulate execution of expensive and energy consuming long-term tasks in the cloud environment. In particular, evolutionary algorithms as well...
-
Diagnostyka łożysk silnika indukcyjnego na podstawie prądu zasilającego przy użyciu sztucznych sieci neuronowych
PublikacjaW artykule zawarto wyniki badań dotyczące diagnostyki łożysk silnika indukcyjnego na podstawie pomiarów prądu zasilającego z wyko-rzystaniem sztucznych sieci neuronowych. Zaprezentowano wyniki uczenia sieci oraz rezultaty testów przeprowadzonych na danych spoza zbioru uczącego. Badania wykonane zostały na obiektach z celowo wprowadzonymi uszkodzeniami łożysk. Przedstawiona nowa koncepcja zakłada użycie zestawu sieci neuronowych...
-
An automated learning model for twitter sentiment analysis using Ranger AdaBelief optimizer based Bidirectional Long Short Term Memory
PublikacjaSentiment analysis is an automated approach which is utilized in process of analysing textual data to describe public opinion. The sentiment analysis has major role in creating impact in the day-to-day life of individuals. However, a precise interpretation of text still relies as a major concern in classifying sentiment. So, this research introduced Bidirectional Long Short Term Memory with Ranger AdaBelief Optimizer (Bi-LSTM RAO)...
-
Determination of the dynamic critical maneuvering area in an encounter between two vessels: Operation with negligible environmental disruption
PublikacjaThis paper introduces the concept of Collision Avoidance Dynamic Critical Area (CADCA) for onboard Decision Support Systems (DSS). The indicator proposed is derived via identification of a minimum required maneuvering zone in an encounter between two vessels. The CADCA model accounts for ship maneuvering dynamics and associated hydrodynamic actions emerging from different rudder angles and forward speed effects. The method presented...
-
Fault detection in measuring systems of power plants
PublikacjaThis paper describes possibility of forming diagnostic relations based on application of the artifical neural networks (ANNs), intended for the identifying of degradation of measuring instruments used in developed power systems. As an example a steam turbine high-power plant was used. And, simulative calculations were applied to forming diagnostic neural relations. Both degradation of the measuring instruments and simultaneously...
-
Investigation of vortex assisted magnetic deep eutectic solvent based dispersive liquid–liquid microextraction for separation and determination of vanadium from water and food matrices: Multivariate analysis
PublikacjaA new and simple vortex assisted magnetic deep eutectic solvent dispersive liquid–liquid microextraction procedure (VA-MDES-DLLME) was developed for the determination of vanadium (V) in food and water samples by flame atomic absorption spectrometry (FAAS). In the extraction medium, a bis(acetylpivalylmethane) ethylenediimine (H2APM2en) was used for the complexation of V(V) in sample solution at pH 6. The VA-MDES-DLLME was optimized...
-
Detection of the Oocyte Orientation for the ICSI Method Automation
PublikacjaAutomation or even computer assistance of the popular infertility treatment method: ICSI (Intracytoplasmic Sperm Injection) would speed up the whole process and improve the control of the results. This paper introduces a preliminary research for automatic spermatozoon injection into the oocyte cytoplasm. Here, the method for detection a correct orientation of the polar body of the oocyte is presented. Proposed method uses deep...
-
Medical Image Segmentation Using Deep Semantic-based Methods: A Review of Techniques, Applications and Emerging Trends
PublikacjaSemantic-based segmentation (Semseg) methods play an essential part in medical imaging analysis to improve the diagnostic process. In Semseg technique, every pixel of an image is classified into an instance, where each class is corresponded by an instance. In particular, the semantic segmentation can be used by many medical experts in the domain of radiology, ophthalmologists, dermatologist, and image-guided radiotherapy. The authors...
-
Exploration of the Solubility Hyperspace of Selected Active Pharmaceutical Ingredients in Choline- and Betaine-Based Deep Eutectic Solvents: Machine Learning Modeling and Experimental Validation
PublikacjaDeep eutectic solvents (DESs) are popular green media used for various industrial, pharmaceutical, and biomedical applications. However, the possible compositions of eutectic systems are so numerous that it is impossible to study all of them experimentally. To remedy this limitation, the solubility landscape of selected active pharmaceutical ingredients (APIs) in choline chloride- and betaine-based deep eutectic solvents was...
-
Autonomous Perception and Grasp Generation Based on Multiple 3D Sensors and Deep Learning
PublikacjaGrasping objects and manipulating them is the main way the robot interacts with its environment. However, for robots to operate in a dynamic environment, a system for determining the gripping position for objects in the scene is also required. For this purpose, neural networks segmenting the point cloud are usually applied. However, training such networks is very complex and their results are unsatisfactory. Therefore, we propose...
-
Deep Learning-Based LOS and NLOS Identification in Wireless Body Area Networks
PublikacjaIn this article, the usage of deep learning (DL) in ultra-wideband (UWB) Wireless Body Area Networks (WBANs) is presented. The developed approach, using channel impulse response, allows higher efficiency in identifying the direct visibility conditions between nodes in off-body communication with comparison to the methods described in the literature. The effectiveness of the proposed deep feedforward neural network was checked on...
-
Influence of Thermal Imagery Resolution on Accuracy of Deep Learning based Face Recognition
PublikacjaHuman-system interactions frequently require a retrieval of the key context information about the user and the environment. Image processing techniques have been widely applied in this area, providing details about recognized objects, people and actions. Considering remote diagnostics solutions, e.g. non-contact vital signs estimation and smart home monitoring systems that utilize person’s identity, security is a very important factor....
-
Selection of an artificial pre-training neural network for the classification of inland vessels based on their images
PublikacjaArtificial neural networks (ANN) are the most commonly used algorithms for image classification problems. An image classifier takes an image or video as input and classifies it into one of the possible categories that it was trained to identify. They are applied in various areas such as security, defense, healthcare, biology, forensics, communication, etc. There is no need to create one’s own ANN because there are several pre-trained...
-
A New Fuzzy Sliding Mode Controller with PID Sliding Surface for Underwater Manipulators
PublikacjaDesign of an accurate and robust controller is challenging topic in underwater manipulator control. This is due to hydrodynamic disturbances in underwater environment. In this paper a sliding mode control (SMC) included a PID sliding surface and fuzzy tunable gain is designed. In this proposed controller robustness property of SMC and fast response of PID are incorporated with fuzzy rules to reduce error tracking. In the control...
-
Multi-criteria Differential Evolution for Optimization of Virtual Machine Resources in Smart City Cloud
PublikacjaIn a smart city, artificial intelligence tools support citizens and urban services. From the user point of view, smart applications should bring computing to the edge of the cloud, closer to citizens with short latency. However, from the cloud designer point of view, the trade-off between cost, energy and time criteria requires the Pareto solutions. Therefore, the proposed multi-criteria differential evolution can optimize virtual...
-
A survey of neural networks usage for intrusion detection systems
PublikacjaIn recent years, advancements in the field of the artificial intelligence (AI) gained a huge momentum due to the worldwide appliance of this technology by the industry. One of the crucial areas of AI are neural networks (NN), which enable commer‐ cial utilization of functionalities previously not accessible by usage of computers. Intrusion detection system (IDS) presents one of the domains in which neural networks are widely tested...
-
DNAffinity: a machine-learning approach to predict DNA binding affinities of transcription factors
PublikacjaWe present a physics-based machine learning approach to predict in vitro transcription factor binding affinities from structural and mechanical DNA properties directly derived from atomistic molecular dynamics simulations. The method is able to predict affinities obtained with techniques as different as uPBM, gcPBM and HT-SELEX with an excellent performance, much better than existing algorithms. Due to its nature, the method can...
-
Machine learning for the management of biochar yield and properties of biomass sources for sustainable energy
PublikacjaBiochar is emerging as a potential solution for biomass conversion to meet the ever increasing demand for sustainable energy. Efficient management systems are needed in order to exploit fully the potential of biochar. Modern machine learning (ML) techniques, and in particular ensemble approaches and explainable AI methods, are valuable for forecasting the properties and efficiency of biochar properly. Machine-learning-based forecasts,...
-
Preeclampsia Risk Prediction Using Machine Learning Methods Trained on Synthetic Data
PublikacjaThis paper describes a research study that investigates the use of machine learning algorithms on synthetic data to classify the risk of developing preeclampsia by pregnant women. Synthetic datasets were generated based on parameter distributions from three real patient studies. Four models were compared: XGBoost, Support Vector Machine (SVM), Random Forest, and Explainable Boosting Machines (EBM). The study found that the XGBoost...
-
Driver’s Condition Detection System Using Multimodal Imaging and Machine Learning Algorithms
PublikacjaTo this day, driver fatigue remains one of the most significant causes of road accidents. In this paper, a novel way of detecting and monitoring a driver’s physical state has been proposed. The goal of the system was to make use of multimodal imaging from RGB and thermal cameras working simultaneously to monitor the driver’s current condition. A custom dataset was created consisting of thermal and RGB video samples. Acquired data...
-
IEEE Swarm Intelligence Symposium
Konferencje -
Deep learning-based waste detection in natural and urban environments
PublikacjaWaste pollution is one of the most significant environmental issues in the modern world. The importance of recycling is well known, both for economic and ecological reasons, and the industry demands high efficiency. Current studies towards automatic waste detection are hardly comparable due to the lack of benchmarks and widely accepted standards regarding the used metrics and data. Those problems are addressed in this article by...
-
Interpretable Deep Learning Model for the Detection and Reconstruction of Dysarthric Speech
PublikacjaWe present a novel deep learning model for the detection and reconstruction of dysarthric speech. We train the model with a multi-task learning technique to jointly solve dysarthria detection and speech reconstruction tasks. The model key feature is a low-dimensional latent space that is meant to encode the properties of dysarthric speech. It is commonly believed that neural networks are black boxes that solve problems but do not...
-
Generation of microbial colonies dataset with deep learning style transfer
Publikacja -
DentalSegmentator: robust deep learning-based CBCT image segmentation
Publikacja -
Deep learning-based waste detection in natural and urban environments
Publikacja -
Personalized avatar animation for virtual reality
PublikacjaThe paper presents a method for creating a personalized animation of avatar for virtual reality application such as multiplayer on-line games. Animation is stored in a simplified version, containing only keyframes for important avatar poses. This version defines key movements, i.e. roughly describes the avatar's action. Animation is enriched by the user with new motion phases utilizing fuzzy descriptors.Various degrees of motion...
-
Robustness in Compressed Neural Networks for Object Detection
PublikacjaModel compression techniques allow to significantly reduce the computational cost associated with data processing by deep neural networks with only a minor decrease in average accuracy. Simultaneously, reducing the model size may have a large effect on noisy cases or objects belonging to less frequent classes. It is a crucial problem from the perspective of the models' safety, especially for object detection in the autonomous driving...
-
Architectural project V Design for all
Kursy OnlineThis course centers on designing a modern hotel/student dormitory incorporating additional ground-floor services, such as restaurants, shops, and conference spaces. Students will tackle the challenge of creating a dynamic and flexible design responsive to the urban context and sustainability goals while using advanced conceptual tools such as artificial intelligence.This course aims to guide students in designing a hotel that serves...
-
Antenna Optimization Using Machine Learning with Reduced-Dimensionality Surrogates
PublikacjaIn modern times, antenna design has become more demanding than ever. The escalating requirements for performance and functionality drive the development of intricately structured antennas, where parameters must be meticulously adjusted to achieve peak performance. Often, global adjustments to geometry are necessary for optimal results. However, direct manipulation of antenna responses evaluated with full-wave electromagnetic (EM)...
-
Machine learning-based prediction of preplaced aggregate concrete characteristics
PublikacjaPreplaced-Aggregate Concrete (PAC) is a type of preplaced concrete where coarse aggregate is placed in the mold and a Portland cement-sand grout with admixtures is injected to fill the voids. Due to the complex nature of PAC, many studies were conducted to determine the effects of admixtures and the compressive and tensile strengths of PAC. Considering that a prediction tool is needed to estimate the compressive and tensile strengths...
-
Civil liability for artificial intelligence products versus the sustainable development of CEECs: which institutions matter?
PublikacjaThe aim of this paper is to conduct a meta-analysis of the EU and CEECs civil liability institutions in order to find out if they are ready for the Artificial Intelligence (AI) race. Particular focus is placed on ascertaining whether civil liability institutions such as the Product Liability Directive (EU) or civil codes (CEECs) will protect consumers and entrepreneurs, as well as ensure undistorted competition. In line with the...
-
Biomedical, Artificial Intelligence, and DNA Computing Photonics Applications and Web Engineering, Wilga, May 2012
Publikacja -
Artificial intelligence support for disease detection in wireless capsule endoscopy images of human large bowel
PublikacjaIn the work the chosen algorithms of disease recognition in endoscopy images were described and compared for theirs efficiency. The algorithms were estimated with regard to utility for application in computer system's support for digestive system's diagnostics. Estimations were achieved in an advanced testing environment, which was built with use of the large collection of endoscopy movies received from Medical University in Gdańsk....