Wyniki wyszukiwania dla: allen-cahn equation
-
Fluid Mechanics and Hydraulics EE Msc sem. I r.a. 22/23
Kursy OnlineBasic definitions. Physical properties of liquids. Forces acting on fluids. Hydrostatics - basic equations. Pressure on a flat and curved wall. Buoyancy. Archimedes' law. Balance of submerged bodies. The balance of floating bodies. Hydrodynamics. Hydrodynamic quantities. Continuity equation for the liquid stream. Bernoulli equation. Basic laws of hydrodynamics. Equation of mass behavior, preservation of the amount of motion, Bernoulli's...
-
Fluid Mechanics and Hydraulics EE Msc sem. I r.a. 23/24
Kursy OnlineBasic definitions. Physical properties of liquids. Forces acting on fluids. Hydrostatics - basic equations. Pressure on a flat and curved wall. Buoyancy. Archimedes' law. Balance of submerged bodies. The balance of floating bodies. Hydrodynamics. Hydrodynamic quantities. Continuity equation for the liquid stream. Bernoulli equation. Basic laws of hydrodynamics. Equation of mass behavior, preservation of the amount of motion, Bernoulli's...
-
Torsional buckling and post-buckling of columns made of aluminium alloy
PublikacjaThe paper concerns torsional buckling and the initial post-buckling of axially compressed thin-walled aluminium alloy columns with bisymmetrical cross-section. It is assumed that the column material behaviour is described by the Ramberg–Osgood constitutive equation in non-linear elastic range. The stationary total energy principle is used to derive the governing non-linear differential equation. An approximate solution of the equation...
-
Numerical Simulations and Tracer Studies as a Tool to Support Water Circulation Modeling in Breeding Reservoirs
PublikacjaThe article presents a proposal of a method for computer-aided design and analysis of breeding reservoirs in zoos and aquariums. The method applied involves the use of computer simulations of water circulation in breeding pools. A mathematical model of a pool was developed, and a tracer study was carried out. A simplified model of two-dimensional flow in the form of a biharmonic equation for the stream function (converted into...
-
The finite-difference simulation of x-rays propagation through a system of lenses
PublikacjaThe propagation of X-ray waves through an optical system consisting of 33 aluminum X-ray refractive lenses is considered. For solving the problem, a finite-difference method is suggested and investigated. It is shown that very small steps of the difference grid are necessary for reliable computation of propagation of X-ray waves through the system of lenses. It is shown that the wave phase is a function very quickly increasing...
-
Entropy Production Associated with Aggregation into Granules in a Subdiffusive Environment
PublikacjaWe study the entropy production that is associated with the growing or shrinking of a small granule in, for instance, a colloidal suspension or in an aggregating polymer chain. A granule will fluctuate in size when the energy of binding is comparable to k_{B}T, which is the “quantum” of Brownian energy. Especially for polymers, the conformational energy landscape is often rough and has been commonly modeled as being self-similar...
-
Impact of Boundary Conditions on Acoustic Excitation of EntropyPerturbations in a Bounded Volume of Newtonian Gas
PublikacjaExcitation of the entropy mode in the field of intense sound, that is, acoustic heating, is theoreticallyconsidered in this work. The dynamic equation for an excess density which specifies the entropy mode,has been obtained by means of the method of projections. It takes the form of the diffusion equation withan acoustic driving force which is quadratically nonlinear in the leading order. The diffusion coefficient isproportional...
-
Acoustic heating produced in resonators filled by a newtonian fluid
PublikacjaAcoustic heating in resonators is studied. The governing equation of acoustic heating is derived by means of the special linear combination of conservation equations in differential form, allowing the reduction of all acoustic terms in the linear part of the final equation, but preserving terms belonging to the thermal mode responsible for heating. This equation is instantaneous and includes nonlinear acoustic terms that form a...
-
Balance errors generated by numerical diffusion in the solution of non-linear open channel flow equations
PublikacjaThe paper concerns the untypical aspect of application of the dissipative numerical methods to solve nonlinear hyperbolic partial differential equations used in open channel hydraulics. It is shown that in some cases the numerical diffusion generated by the applied method of solution produces not only inaccurate solution but as well as a balance error. This error may occur even for an equation written in the conservative form not...
-
On the Buckling Response of Axially Pressurized Nanotubes Based on a Novel Nonlocal Beam Theory
PublikacjaIn the present study, the buckling analysis of single-walled carbon nanotubes (SWCNT) on the basis of a new refined beam theory is analyzed. The SWCNT is modeled as an elastic beam subjected to unidirectional compressive loads. To achieve this aim, the new proposed beam theory has only one unknown variable which leads to one equation similar to Euler beam theory and is also free from any shear correction factors. The equilibrium...
-
On various modelling approaches to real-time visualisation of blood flow
PublikacjaThis paper reviews various modelling approaches to real-time visualisation of blood flow. These include classic, macroscale approach based on the momentum conservation equation together with a proper constitutive equation. Moreover, modern micro- and mesoscale approaches, such as molecular dynamics and dissipative particle dynamics, are discussed. Advantages and disadvantages of the discussed methods are highlighted with particular...
-
Analytical Buckling of FG Nanobeams on The Basis of A New One Variable First-Order Shear Deformation Beam Theory
PublikacjaIn this work, buckling analysis of functionally graded (FG) nanobeams based on a new refined beam theory has been analyzed. The beam is modeled as an elastic beam subjected to unidirectional compressive loads. To achieve this aim, the new obtained beam theory has only one variable which leads to one equation similar to the Euler beam theory and also is free of any shear correction factor. The equilibrium equation has been...
-
Flexomagnetic response of buckled piezomagnetic composite nanoplates
PublikacjaIn this paper, the equation governing the buckling of a magnetic composite plate under the influence of an in-plane one-dimensional magnetic field, assuming the concept of flexomagnetic and considering the resulting flexural force and moment, is investigated for the first time by different analytical boundary conditions. To determine the equation governing the stability of the plate, the nonlocal strain gradient theory has been...
-
On forced vibrations of piezo-flexomagnetic nano-actuator beams
PublikacjaThe effect of excitation frequency on the piezomagnetic Euler-Bernoulli nanobeam taking the flexomagnetic material phenomenon into consideration is investigated in this chapter. The magnetization with strain gradients creates flexomagneticity. We couple simultaneously the piezomagnetic and flexomagnetic properties in an inverse magnetization. Resemble the flexoelectricity, the flexomagneticity is also size-dependent. So, it has...
-
Vortex flow caused by periodic and aperiodic sound in a relaxing maxwell fluid
PublikacjaThis paper concerns the description of vortex flow generated by periodic and aperiodic sound in relaxing Maxwell fluid. The analysis is based on governing equation of vorticity mode, which is a result of decomposition of the hydrodynamic equations for fluid flow with relaxation and thermal conductivity into acoustical and non-acoustical parts. The equation governing vorticity mode uses only instantaneous, not averaged over sound...
-
On nonlinear dilatational strain gradient elasticity
PublikacjaWe call nonlinear dilatational strain gradient elasticity the theory in which the specific class of dilatational second gradient continua is considered: those whose deformation energy depends, in an objective way, on the gradient of placement and on the gradient of the determinant of the gradient of placement. It is an interesting particular case of complete Toupin–Mindlin nonlinear strain gradient elasticity: indeed, in it, the...
-
Jakub Golik dr
OsobyJakub Golik pracuje obecnie jako Asystent w grupie pracowników badawczo-dydaktycznych Wydziału Zarządzania i Ekonomii Politechniki Gdańskiej w Katedrze Przedsiębiorczości. Jakub prowadzi badania w zakresie modeli maksymalizujących użyteczność w ekonomii; przedsiębiorczości; zagadnienia wyboru kariery oraz teorii decyzji. W swoich badaniach używa głównie metod ilościowych i eksperymentalnych, takich jak Analiza Łączna (Conjoint...
-
Belinostat in Patients With Relapsed or Refractory Peripheral T-Cell Lymphoma: Results of the Pivotal Phase II BELIEF (CLN-19) Study
Publikacja -
A high-accuracy method of computation of x-ray waves propagation through an optical system consisting of many lenses
PublikacjaThe propagation of X-ray waves through an optical system consisting of many X-ray refractive lenses is considered. Two differential equations are contemplated for solving the problem for electromagnetic wave propagation: first – an equation for the electric field, second – an equation derived for a complex phase of an electric field. Both equations are solved by the use of a finite-difference method. The simulation error is estimated...
-
A high-accuracy complex-phase method of simulating X-ray propagation through a multi-lens system
PublikacjaThe propagation of X-ray waves through an optical system consisting of many X-ray refractive lenses is considered. For solving the problem for an electromagnetic wave, a finite-difference method is applied. The error of simulation is analytically estimated and investigated. It was found that a very detailed difference grid is required for reliable and accurate calculations of the propagation of X-ray waves through a multi-lens...
-
Acoustic heating produced in the boundary layer
Publikacja: Instantaneous acoustic heating of a viscous fluid flow in a boundary layer is the subject of investigation. The governing equation of acoustic heating is derived by means of a special linear combination of conservation equations in the differential form, which reduces all acoustic terms in the linear part of the final equation but preserves terms belonging to the thermal mode. The procedure of decomposition is valid in a weakly...
-
The α-µ model of the multipath fading channel
Dane BadawczeThe dataset contains the results of simulations that are part of the research on modelling the multipath fading in the communication channel. The envelope of the α-µ fading process is generated using the Monte-Carlo simulation (MCS) in the LabVIEW programming environment.
-
Temperature-dependent structure-property modeling of viscosity for ionic liquids
PublikacjaIn this paper we present the methodology for assessing the ionic liquids' viscosity at six temperature points (25, 35, 45, 50, 60 and 70 [C]), which utilizes only the in silico approach. The main idea of such assessment is based on the "correction equation" describing the correlation between experimentally measured viscosity and theoretically derived density (calculated with use of molecular mechanics), given at 6 different temperature...
-
Acoustic heating produced in the thermoviscous flow of a bingham plastic
PublikacjaThis study is devoted to the instantaneous acoustic heating of a Bingham plastic. The model of the Bingham plastic's viscous stress tensor includes the yield stress along with the shear viscosity, which differentiates a Bingham plastic from a viscous Newtonian fluid. A special linear combination of the conservation equations in differential form makes it possible to reduce all acoustic terms in the linear part of of the final equation...
-
Efficiency of acoustic heating produced in the thermoviscous flow of a fluid with relaxation
PublikacjaInstantaneous acoustic heating of a fluid with thermodynamic relaxation is the subject of investigation. Among others, viscoelastic biological media described by the Maxwell model of the viscous stress tensor, belong to this type of fluid. The governing equation of acoustic heating is derived by means of the special linear combination of conservation equations in differential form, allowing the reduction of all acoustic terms in...
-
Acoustic heating produced in the thermoviscous flow of a Bingham plastic
PublikacjaThis study is devoted to the instantaneous acoustic heating of a Bingham plastic. The model of the Bingham plastic's viscous stress tensor includes the yield stress along with the shear viscosity, which differentiates a Bingham plastic from a viscous Newtonian fluid. A special linear combination of the conservation equations in differential form makes it possible to reduce all acoustic terms in the linear part of of the final equation...
-
Examples of numerical simulations of two-dimensional unsaturated flow with VS2DI code using different interblock conductivity averaging schemes
PublikacjaFlow in unsaturated porous media is commonly described by the Richards equation. This equation is strongly nonlinear due to interrelationships between water pressure head (negative in unsaturated conditions), water content and hydraulic conductivity. The accuracy of numerical solution of the Richards equation often depends on the method used to estimate average hydraulic conductivity between neighboring nodes or cells of the numerical...
-
Influence of heterogeneous air entry pressure on large scale unsaturated flow in porous media
PublikacjaThe paper presents numerical simulations of water infiltration in unsaturated porous media containing coarse-textured inclusions embed- ded in fine-textured background material. The calculations are performed using the two-phase model for water and air flow and a simplified model known as the Richards equation. It is shown that the Richards equation cannot correctly describe flow in the presence of heterogeneities. How- ever, its...
-
Existence and uniqueness of solutions for single-population McKendrick-von Foerster models with renewal
PublikacjaWe study a McKendrick-von Foerster type equation with renewal. This model is represented by a single equation which describes one species which produces young individuals. The renewal condition is linear but takes into account some history of the population. This model addresses nonlocal interactions between individuals structured by age. The vast majority of size-structured models are also treatable. Our model generalizes a number...
-
Numerical modelling and experimental verification of compressible squeeze film pressure
PublikacjaThe validity of using the Reynolds equation for compressible squeeze film pressure was tested with computational fluid dynamics (CFD). A squeeze film air bearing was instrumented with pressure sensors and non-contacting displacement probes to provide transient measurements of film thickness and pressure. The film thickness measurements also provided input parameters to the numerical prediction. However, numerical results showed...
-
Analytical Buckling of FG Nanobeams on The Basis of A New One Variable First-Order Shear Deformation Beam Theory
PublikacjaIn this work, buckling analysis of functionally graded (FG) nanobeams based on a new refined beam theory has been analyzed. The beam is modeled as an elastic beam subjected to unidirectional compressive loads. To achieve this aim, the new obtained beam theory has only one variable which lead to one equation similar to Euler beam theory and also is free of any shear correction factor. The...
-
Comparison of Average Energy Slope Estimation Formulas for One-dimensional Steady Gradually Varied Flow
PublikacjaTo find the steady flow water surface profile, it is possible to use Bernoulli’s equation, which is a discrete form of the differential energy equation. Such an approach requires the average energy slope between cross-sections to be estimated. In the literature, many methods are proposed for estimating the average energy slope in this case, such as the arithmetic mean, resulting in the standard step method, the harmonic mean and...
-
Improvement of Thrust Bearing Calculation Considering the Convectional Heating within the Space between the Pads
PublikacjaA modern thrust bearing tool is used to estimate the behavior of tilting pad thrust bearings not only in the oil film between pad and rotating collar, but also in the space between the pads. The oil flow in the space significantly influences the oil film inlet temperature and the heating of pad and collar. For that reason, it is necessary to define an oil mixing model for the space between the pads. In the bearing tool, the solutions...
-
DL_MG: A Parallel Multigrid Poisson and Poisson–Boltzmann Solver for Electronic Structure Calculations in Vacuum and Solution
PublikacjaThe solution of the Poisson equation is a crucial step in electronic structure calculations, yielding the electrostatic potential -- a key component of the quantum mechanical Hamiltonian. In recent decades, theoretical advances and increases in computer performance have made it possible to simulate the electronic structure of extended systems in complex environments. This requires the solution of more complicated variants of the...
-
Modelowanie przepływu ustalonego niejednostajnego w sieciach kanałów otwartych z uwzględnieniem obiektów hydrotechnicznych
PublikacjaW pracy sformułowano zagadnienie brzegowe dla równania energii opisującego przepływ ustalony niejednostajny i przedstawiono sposób jego rozwiązania przy pomocy metody różnicowej. Zaproponowana metoda obliczeń nadaje się do analizy przepływu w dendrycznych i pierścieniowych sieciach kanałów otwartych. Ponadto na przykładzie przelewu prostokątnego zaproponowano metodę uwzględnienia w obliczeniach zabudowy hydrotechnicznej. Słowa...
-
On local buckling of cold-formed channel members
PublikacjaThe paper deals with local buckling of the compressed flanges of cold-formed thin-walled channel beams subjected to pure bending or axially compressed columns. Arbitrarily shaped flanges of open cross-sections and the web-flange interactions are taken into account. Buckling deformation of a beam flange is described by displacement related to torsion of the flange about the line of its connection with the web. Total potential energy...
-
ESTIMATING AVERSION TO RANK INEQUALITY UNDERLYING SELECTED ITALIAN INDICES OF INCOME INEQUALITY
PublikacjaIn this paper, we estimate aversion to rank inequality (ATRI) underlying selected Italian income inequality indices, I, notably the Pietra index, the Bonferroni index and the “new” Zenga index. We measure ATRI by the parameter v of the generalised Gini index G(v). ATRI is distinct from aversion to income inequality, as measured by parameter ε of Atkinson’s index A(ε). We propose eliciting v from the equation I = GE(v). As, in general,...
-
A Quasi-2D MOSFET Model — 2D-to-Quasi-2D Transformation
PublikacjaA quasi-two-dimensional (quasi-2D) representation of the MOSFET channel is proposed in this work. The representation lays the foundations for a quasi 2D MOSFET model. The quasi 2D model is a result of a 2D into quasi 2D transformation. The basis for the transformation are an analysis of a current density vector field and such phenomena as Gradual Channel Detachment Effect (GCDE), Channel Thickness Modulation Effect (CTME), and...
-
Mountain pass solutions to Euler-Lagrange equations with general anisotropic operator
PublikacjaUsing the Mountain Pass Theorem we show that the problem \begin{equation*} \begin{cases} \frac{d}{dt}\Lcal_v(t,u(t),\dot u(t))=\Lcal_x(t,u(t),\dot u(t))\quad \text{ for a.e. }t\in[a,b]\\ u(a)=u(b)=0 \end{cases} \end{equation*} has a solution in anisotropic Orlicz-Sobolev space. We consider Lagrangian $\Lcal=F(t,x,v)+V(t,x)+\langle f(t), x\rangle$ with growth conditions determined by anisotropic G-function and some geometric conditions...
-
The Suzuki model of the multipath fading channel
Dane BadawczeThe dataset contains the results of simulations that are part of the research on modelling the multipath fading in the communication channel. The Suzuki fading envelope is generated using the Monte-Carlo simulation (MCS) in the LabVIEW programming environment.
-
Biomass estimation using a length-weight relationship in beetle larvae (Coleoptera: Aphodiidae, Histeridae, Hydrophilidae, Staphylinidae) obtained from cow dung
PublikacjaThis research enabled the relationship between length and dry body mass to be determined for 158 beetle larvaetaken from cow dung in north-eastern Poland. The larvae were divided into three morphological types, for which the power and linear function of the body length-weight relationship were determined. The linear regression equation characterizes the relationship between body weight and...
-
Efficiency of acoustic heating in the Maxwell fluid
PublikacjaThe nonlinear effects of sound in a fluid describing by the Maxwell model of the viscous stress tensor is the subject of investigation. Among other, viscoelastic biological media belong to this non-newtonian type of fluids. Generation of heating of the medium caused by nonlinear transfer of acoustic energy, is discussed in details. The governing equation of acoustic heating is derived by means of the special linear combination...
-
Efficiency of acoustic heating in the Maxwell fluid
PublikacjaThe nonlinear effects of sound in a fluid describing by the Maxwell model of the viscous stress tensor is the subject of investigation. Among other, viscoelastic biological media belong to this non-newtonian type of fluids. Generation of heating of the medium caused by nonlinear transfer of acoustic energy, is discussed in details. The governing equation of acoustic heating is derived by means of the special linear combination...
-
Subcritical bifurcation of free elastic shell of biological cluster
PublikacjaIn this paper we will investigate symmetry-breaking bifurcation of equilibrium forms of biological cluster. A biological cluster is a two-dimensional analogue of a gas balloon. The cluster boundary is connected with its kernel by elastic links. The inside part is filled with compressed gas or fluid. Equilibrium forms of biological cluster can be found as solutions of a certain second order ordinary functional-differential equation...
-
Numerical Test for Stability Evaluation of Discrete-Time Systems
PublikacjaIn this paper, a new numerical test for stability evaluation of discrete-time systems is presented. It is based on modern root-finding techniques at the complex plane employing the Delaunay triangulation and Cauchy's Argument Principle. The method evaluates if a system is stable and returns possible values and multiplicities of unstable zeros of the characteristic equation. For state-space discrete-time models, the developed test...
-
Symmetry-Breaking Bifurcation for Free Elastic Shell of Biological Cluster, Part 2
PublikacjaWe will be concerned with a two-dimensional mathematical model for a free elastic shell of biological cluster. The cluster boundary is connected with its kernel by elastic links. The inside part is filled with compressed gas or fluid. Equilibrium forms of the shell of biological cluster may be found as solutions of a certain nonlinear functional-differential equation with several physical parameters. For each multiparameter this...
-
NUMERICAL SIMULATION OF CRATER CREATING PROCESS IN DYNAMIC REPLACEMENT METHOD BY SMOOTH PARTICLE HYDRODYNAMICS
PublikacjaA theoretical base of SPH method, including the governing equations, discussion of importance of the smoothing function length, contact formulation, boundary treatment and finally utilization in hydrocode simulations are presented. An application of SPH to a real case of large penetrations (crater creating) into the soil caused by falling mass in Dynamic Replacement Method is discussed. An influence of particles spacing on method...
-
Calculations of labyrinth seals with and without diagnostic extraction in fluid-flow machines
PublikacjaLabyrinth seals are essential components of steam turbine unit constructions. Two types of labyrinth seals can be named, the first of which is the seal without diagnostic steam extraction, and the second – with extraction. The distribution of flow parameters along the packing is affected remarkably by the average seal clearance. The presence of diagnostic extraction leads to the equation system which is determinable and can be...
-
Convergence of Monte Carlo algorithm for solving integral equations in light scattering simulations
PublikacjaThe light scattering process can be modeled mathematically using the Fredholm integral equation. This equation is usually solved after its discretization and transformation into the system of algebraic equations. Volume integral equations can be also solved without discretization using the Monte Carlo (MC) algorithm, but its application to the light scattering simulations has not been sufficiently studied. Here we present implementation...
-
Interaction of Acoustic and Thermal Modes in the Vibrationally Relaxing Gases. Acoustic Cooling
PublikacjaThe dynamic equation which governs an excess temperature associated with the thermal mode in vibrationally relaxing gas is derived. The nonlinear transfer of acoustic energy to the energy of the thermal mode in a relaxing gas causes slow variation of temperature with time. The nal dynamic equation is instantaneous. All types of sound, including aperiodic, may be considered as an acoustic source of corresponding heating or cooling....