Filtry
wszystkich: 2188
-
Katalog
- Publikacje 1491 wyników po odfiltrowaniu
- Czasopisma 17 wyników po odfiltrowaniu
- Konferencje 7 wyników po odfiltrowaniu
- Osoby 54 wyników po odfiltrowaniu
- Projekty 3 wyników po odfiltrowaniu
- Kursy Online 35 wyników po odfiltrowaniu
- Wydarzenia 3 wyników po odfiltrowaniu
- Dane Badawcze 578 wyników po odfiltrowaniu
wyświetlamy 1000 najlepszych wyników Pomoc
Wyniki wyszukiwania dla: e. coli, machine learning, optical method, spectroscopy, urine, urospesis
-
Can Evaluation Patterns Enable End Users to Evaluate the Quality of an e-learning System? An Exploratory Study.
PublikacjaThis paper presents the results of an exploratory study whose main aim is to verify if the Pattern-Based (PB) inspection technique enables end users to perform reliable evaluation of e-learning systems in real work-related settings. The study involved 13 Polish and Italian participants, who did not have an HCI background, but used e-learning platforms for didactic and/or administrative purposes. The study revealed that the participants...
-
Machine Learning and Text Analysis in an Artificial Intelligent System for the Training of Air Traffic Controllers
PublikacjaThis chapter presents the application of new information technology in education for the training of air traffic controllers (ATCs). Machine learning, multi-criteria decision analysis, and text analysis as the methods of artificial intelligence for ATCs training have been described. The authors have made an analysis of the International Civil Aviation Organization documents for modern principles of ATCs education. The prototype...
-
Perspektywy wykorzystania technologii internetowych typu E-learning w dydaktyce szkół wyższych.
PublikacjaArtykuł dotyczy nauczania przez Internet na poziomie uniwersyteckim. Zaprezentowany został model wirtualnego uniwersytetu, który obejmuje materiały dydaktyczne, komunikację, egzaminy i organizację. Artykuł koncentruje się na technicznych zagadnieniach. Przeanalizowano także wpływ wykorzystania technologii E-learning na różne aspekty życia wyższej uczelni.
-
Forewarned Is Forearmed: Machine Learning Algorithms for the Prediction of Catheter-Induced Coronary and Aortic Injuries
PublikacjaCatheter-induced dissections (CID) of coronary arteries and/or the aorta are among the most dangerous complications of percutaneous coronary procedures, yet the data on their risk factors are anecdotal. Logistic regression and five more advanced machine learning techniques were applied to determine the most significant predictors of dissection. Model performance comparison and feature importance ranking were evaluated. We identified...
-
A freeze-thaw method for desintegration of Escherichia coli cells producing T7 lysozyme used in pBAD expression systems
PublikacjaPlazmid pLysN zawierający gen kodujący lizozym T7 pod kontrolą promotora lac został skonstruowany w celu ułatwienia dezintegracji komórek po ekspresji rekombinantowych białek w systemach ekspresji indukowanych arabinozą. Użyteczność plazmidu została przetestowana w komórkach Escherichia coli TOP10 i E. coli LMG194, niosących plazmid pBADMHADgeSSB, zawierający gen kodujący białko SSB Deinococcus geothermalis pod kontrolą promotora...
-
Detection of People Swimming in Water Reservoirs with the Use of Multimodal Imaging and Machine Learning
PublikacjaEvery year in many countries, there are fatal unintentional drownings in different water reservoirs like swimming pools, lakes, seas, or oceans. The existing threats of this type require creating a method that could automatically supervise such places to increase the safety of bathers. This work aimed to create methods and prototype solutions for detecting people bathing in water reservoirs using a multimodal imaging system and...
-
Assessment Of the Relevance of Best Practices in The Development of Medical R&D Projects Based on Machine Learning
PublikacjaMachine learning has emerged as a fundamental tool for numerous endeavors within health informatics, bioinformatics, and medicine. However, novices among biomedical researchers and IT developers frequently lack the requisite experience to effectively execute a machine learning project, thereby increasing the likelihood of adopting erroneous practices that may result in common pitfalls or overly optimistic predictions. The paper...
-
Synthesis and transport studies of model dipeptides with modified n-terminal amino groups into e. coli k12 mutant strains
Publikacjaotrzymano na drodze syntezy chemicznej kilka modelowych dipeptydów zawierających n-terminalna guanidynę oraz betainę. zbadano transport tych peptydów do komorek e. coli k12, posiadających zróżnicowane systemy transportowe. wyniki badań potwierdziły brak transportu do komórek bakteryjnych z wykorzystaniem permeaz peptydowych. dodatnio naładowana i silnie polarna grupa aminowa uniemożliwia efektywny transport tych związków do komórek...
-
Computational Complexity and Its Influence on Predictive Capabilities of Machine Learning Models for Concrete Mix Design
PublikacjaThe design of concrete mixtures is crucial in concrete technology, aiming to produce concrete that meets specific quality and performance criteria. Modern standards require not only strength but also eco-friendliness and production efficiency. Based on the Three Equation Method, conventional mix design methods involve analytical and laboratory procedures but are insufficient for contemporary concrete technology, leading to overengineering...
-
A machine learning approach to classifying New York Heart Association (NYHA) heart failure
PublikacjaAccording to the European Society of Cardiology, globally the number of patients with heart failure nearly doubled from 33.5 million in 1990 to 64.3 million in 2017, and is further projected to increase dramatically in this decade, still remaining a leading cause of morbidity and mortality. One of the most frequently applied heart failure classification systems that physicians use is the New York Heart Association (NYHA) Functional...
-
Modeling lignin extraction with ionic liquids using machine learning approach
PublikacjaLignin, next to cellulose, is the second most common natural biopolymer on Earth, containing a third of the organic carbon in the biosphere. For many years, lignin was perceived as waste when obtaining cellulose and hemicellulose and used as a biofuel for the production of bioenergy. However, recently, lignin has been considered a renewable raw material for the production of chemicals and materials to replace petrochemical resources....
-
Explainable machine learning for diffraction patterns
PublikacjaSerial crystallography experiments at X-ray free-electron laser facilities produce massive amounts of data but only a fraction of these data are useful for downstream analysis. Thus, it is essential to differentiate between acceptable and unacceptable data, generally known as ‘hit’ and ‘miss’, respectively. Image classification methods from artificial intelligence, or more specifically convolutional neural networks (CNNs), classify...
-
Performance Analysis of Machine Learning Methods with Class Imbalance Problem in Android Malware Detection
PublikacjaDue to the exponential rise of mobile technology, a slew of new mobile security concerns has surfaced recently. To address the hazards connected with malware, many approaches have been developed. Signature-based detection is the most widely used approach for detecting Android malware. This approach has the disadvantage of being unable to identify unknown malware. As a result of this issue, machine learning (ML) for detecting malware...
-
E-learning in tourism and hospitality: A map
PublikacjaThe impact of information and communication technologies (ICT) on tourism and hospitality industries has been widely recognized and investigated as a one of the major changes within the domains in the last decade: new ways of communicating with prospective tourists and new ways of purchasing products arisen are now part of the industries’ everyday life. Poor attention has been paid so far to the role played by new media in education...
-
Evaluation of the fast impedance spectroscopy method in the laboratory measurement system
PublikacjaIn this paper the method for fast impedancespectroscopy of technical objects with very high impedance(|Zx| ≥ 1 GΩ) is evaluated by means of simulation and practicalexperiment. The method is based on excitation of an object, witha square pulse and measurements of voltage and currentresponses with DAQ card. The object impedance spectrum isobtained with use of continuous Fourier transform. Someimprovements of the method concerned...
-
Machine Learning-Based Wetland Vulnerability Assessment in the Sindh Province Ramsar Site Using Remote Sensing Data
PublikacjaWetlands provide vital ecological and socioeconomic services but face escalating pressures worldwide. This study undertakes an integrated spatiotemporal assessment of the multifaceted vulnerabilities shaping Khinjhir Lake, an ecologically significant wetland ecosystem in Pakistan, using advanced geospatial and machine learning techniques. Multi-temporal optical remote sensing data from 2000 to 2020 was analyzed through spectral...
-
Machine-Learning-Based Global Optimization of Microwave Passives with Variable-Fidelity EM Models and Response Features
PublikacjaMaximizing microwave passive component performance demands precise parameter tuning, particularly as modern circuits grow increasingly intricate. Yet, achieving this often requires a comprehensive approach due to their complex geometries and miniaturized structures. However, the computational burden of optimizing these components via full-wave electromagnetic (EM) simulations is substantial. EM analysis remains crucial for circuit...
-
Systemy z Uczeniem Maszynowym / Systems with Machine Learning
Kursy Online -
Road traffic can be predicted by machine learning equally effectively as by complex microscopic model
PublikacjaSince high-quality real data acquired from selected road sections are not always available, a traffic control solution can use data from software traffic simulators working offline. The results show that in contrast to microscopic traffic simulation, the algorithms employing neural networks can work in real-time, so they can be used, among others, to determine the speed displayed on variable message road signs. This paper describes...
-
Fast High-Impedance Spectroscopy Method Using SINC Signal Excitation
PublikacjaIn this paper the method of fast impedance spectroscopy of technical objects with high impedance (|Zx| > 1 Gohm) is evaluated by means of simulation and practical experiment. The method is based on excitation of an object with a sinc signal and sampling response signals proportional to current flowing through and voltage across the measured impedance. The object impedance spectrum is obtained with use of continuous Fourier transform...
-
Active Annotation in Evaluating the Credibility of Web-Based Medical Information: Guidelines for Creating Training Data Sets for Machine Learning
PublikacjaMethods Results Discussion References Abbreviations Copyright Abstract Background: The spread of false medical information on the web is rapidly accelerating. Establishing the credibility of web-based medical information has become a pressing necessity. Machine learning offers a solution that, when properly deployed, can be an effective tool in fighting medical misinformation on the web. Objective: The aim of this study is to...
-
Unsupervised machine-learning classification of electrophysiologically active electrodes during human cognitive task performance
PublikacjaIdentification of active electrodes that record task-relevant neurophysiological activity is needed for clinical and industrial applications as well as for investigating brain functions. We developed an unsupervised, fully automated approach to classify active electrodes showing event-related intracranial EEG (iEEG) responses from 115 patients performing a free recall verbal memory task. Our approach employed new interpretable...
-
Machine learning approach to packaging compatibility testing in the new product development process
PublikacjaThe paper compares the effectiveness of selected machine learning methods as modelling tools supporting the selection of a packaging type in new product development process. The main goal of the developed model is to reduce the risk of failure in compatibility tests which are preformed to ensure safety, durability, and efficacy of the finished product for the entire period of its shelf life and consumer use. This kind of testing...
-
Machine learning-based seismic fragility and seismic vulnerability assessment of reinforced concrete structures
PublikacjaMany studies have been performed to put quantifying uncertainties into the seismic risk assessment of reinforced concrete (RC) buildings. This paper provides a risk-assessment support tool for purpose of retrofitting and potential design strategies of RC buildings. Machine Learning (ML) algorithms were developed in Python software by innovative methods of hyperparameter optimization, such as halving search, grid search, random...
-
Integrating Optical Spectroscopy and Chemometric Methods
Publikacja -
A Universal Gains Selection Method for Speed Observers of Induction Machine
PublikacjaProperties of state observers depend on proper gains selection. Each method of state estimation may require the implementation of specific techniques of finding those gains. The aim of this study is to propose a universal method of automatic gains selection and perform its verification on an induction machine speed observer. The method utilizes a genetic algorithm with fitness function which is directly based on the impulse response...
-
Solubility of dapsone in deep eutectic solvents: Experimental analysis, molecular insights and machine learning predictions
PublikacjaBackground. Dapsone (DAP) is an anti-inflammatory and antimicrobial active pharmaceutical ingredient used to treat, e.g., AIDS-related diseases. However, low solubility is a feature hampering its efficient use. Objectives. First, deep eutectic solvents...
-
Tomasz Wąsowicz dr hab.
OsobyAbsolwent Technikum Elektrycznego w Słupsku (1997 rok) oraz Wydziału Matematyki, Fizyki i Informatyki Uniwersytetu Gdańskiego (2002 rok). W 2006 roku obronił dysertację doktorską z fizyki na WMFiI UG. Pracując już w PG, w 2018 roku uzyskał habilitację. W pierwszym okresie prace badawcze Tomasza Wąsowicza miały związek ze spektroskopią atomową wysokiej zdolności rozdzielczej i koncentrowały się na pomiarze i analizie prawdopodobieństw...
-
Is it too late now to say we’re sorry? Examining anxiety contagion and crisis communication strategies using machine learning
PublikacjaIn this paper, we explore the role of perceived emotions and crisis communication strategies via organizational computer-mediated communication in predicting public anxiety, the default crisis emotion. We use a machine-learning approach to detect and predict anxiety scores in organizational crisis announcements on social media and the public’s responses to these posts. We also control for emotional and language tones in organizational...
-
E-learning workshops with Norbert Berger
Kursy OnlineThe series of workshops supports MBA faculty in planning, designing, delivering and assessing blended and online modules for their cohorts. It is supplemented by individual coaching to create Moodle and conferencing solutions and their delivery.
-
Variable Resolution Machine Learning Optimization of Antennas Using Global Sensitivity Analysis
PublikacjaThe significance of rigorous optimization techniques in antenna engineering has grown significantly in recent years. For many design tasks, parameter tuning must be conducted globally, presenting a challenge due to associated computational costs. The popular bio-inspired routines often necessitate thousands of merit function calls to converge, generating prohibitive expenses whenever the design process relies on electromagnetic...
-
Karol Flisikowski dr inż.
OsobyKarol Flisikowski jest profesorem uczelni w Katedrze Statystyki i Ekonometrii, Wydziału Zarządzania i Ekonomii Politechniki Gdańskiej. Jest odpowiedzialny jest za prowadzenie zajęć ze statystyki opisowej i matematycznej (w języku polskim i angielskim), a także badań naukowych w zakresie statystyki społecznej. Był uczestnikiem wielu konferencji o zasięgu krajowym, jak i międzynarodowym, gdzie prezentował wyniki prowadzonych przez...
-
Rapid Surrogate-Aided Multi-Criterial Optimization of Compact Microwave Passives Employing Machine Learning and ANNs
PublikacjaThis article introduces an innovative method for achieving low-cost and reliable multi-objective optimization (MO) of microwave passive circuits. The technique capitalizes on the attributes of surrogate models, specifically artificial neural networks (ANNs), and multi-resolution electromagnetic (EM) analysis. We integrate the search process into a machine learning (ML) framework, where each iteration produces multiple infill points...
-
Application of a hybrid mechanistic/machine learning model for prediction of nitrous oxide (N2O) production in a nitrifying sequencing batch reactor
PublikacjaNitrous oxide (N2O) is a key parameter for evaluating the greenhouse gas emissions from wastewater treatment plants. In this study, a new method for predicting liquid N2O production during nitrification was developed based on a mechanistic model and machine learning (ML) algorithm. The mechanistic model was first used for simulation of two 15-day experimental trials in a nitrifying sequencing batch reactor. Then, model predictions...
-
Foundations and Trends in Machine Learning
Czasopisma -
Machine Learning and Knowledge Extraction
Czasopisma -
Machine Learning-Science and Technology
Czasopisma -
Machine learning-based seismic response and performance assessment of reinforced concrete buildings
PublikacjaComplexity and unpredictability nature of earthquakes makes them unique external loads that there is no unique formula used for the prediction of seismic responses. Hence, this research aims to implement the most well-known Machine Learning (ML) methods in Python software to propose a prediction model for seismic response and performance assessment of Reinforced Concrete Moment-Resisting Frames (RC MRFs). To prepare 92,400 data...
-
Quality negotiation mechanism for e-learning platforms
PublikacjaZarządzanie jakością w aplikacjach działających w środowiskach sieci WEB opiera się na zadaniach związanych z wykrywaniem jakości połączenia klient - serwer oraz na optymalnym przydziale zasobów wedle jakości takowego połączenia. Optymalne zarządzanie jakością zależy od wypracowanego kompromisu pomiędzy jakością łącza a jakości transportowanego łączem zasobu. Artykuł opisuje możliwy do implementacji mechanizm odpowiedzialny za...
-
Improving the prediction of biochar production from various biomass sources through the implementation of eXplainable machine learning approaches
PublikacjaExamining the game-changing possibilities of explainable machine learning techniques, this study explores the fast-growing area of biochar production prediction. The paper demonstrates how recent advances in sensitivity analysis methodology, optimization of training hyperparameters, and state-of-the-art ensemble techniques have greatly simplified and enhanced the forecasting of biochar output and composition from various biomass...
-
Publicly available lecture webcasts - e-learning or promotion tool? case study
PublikacjaThis paper aims to show how universities interact with Internet users by webcasting selected courses. Paper has exploratory case-study character, presenting example of Berkeley Webcast initiative of University of California, Berkeley, webcasting undergraduate courses and on-campus events. On the base of short introduction to webcasting usage as an e-learning and promotional tool, the analysis of 3 purposely chosen different courses...
-
Open source solution LMS for supporting e-learning/blended learning engineers
PublikacjaW artykule zaprezentowano darmowe systemy zarządzania kształceniem na odległość wspomagające e-learningowe/mieszane nauczanie inżynierów. Pierwszy system TeleCAD został opracowany w ramach projektu Leonardo da Vinci (1998-2001). System TeleCAD był propozycją w projekcie V Ramowy CURE (2003-2006). W roku 2003 dzięki projektowi Leonardo da Vinci EMDEL (2001-2005) Centrum Edukacji Niestacjonarnej Politechniki Gdańskiej wybrało system...
-
Prediction of fracture toughness in fibre-reinforced concrete, mortar, and rocks using various Machine learning techniques
PublikacjaMachine Learning (ML) method is widely used in engineering applications such as fracture mechanics. In this study, twenty different ML algorithms were employed and compared for the prediction of the fracture toughness and fracture load in modes I, II, and mixed-mode (I-II) of various materials, including fibre-reinforced concrete, cement mortar, sandstone, white travertine, marble, and granite. A set of 401 specimens of “Brazilian...
-
Detection of circulating tumor cells by means of machine learning using Smart-Seq2 sequencing
PublikacjaCirculating tumor cells (CTCs) are tumor cells that separate from the solid tumor and enter the bloodstream, which can cause metastasis. Detection and enumeration of CTCs show promising potential as a predictor for prognosis in cancer patients. Furthermore, single-cells sequencing is a technique that provides genetic information from individual cells and allows to classify them precisely and reliably. Sequencing data typically...
-
Seismic response and performance prediction of steel buckling-restrained braced frames using machine-learning methods
PublikacjaNowadays, Buckling-Restrained Brace Frames (BRBFs) have been used as lateral force-resisting systems for low-, to mid-rise buildings. Residual Interstory Drift (RID) of BRBFs plays a key role in deciding to retrofit buildings after seismic excitation; however, existing formulas have limitations and cannot effectively help civil engineers, e.g., FEMA P-58, which is a conservative estimation method. Therefore, there is a need to...
-
Optical spectroscopy and scintillation mechanisms ofCexLa1−xF3
Publikacja -
E-Learning
Czasopisma -
Anita Maria Dąbrowicz-Tlałka dr
OsobyUzyskała, z wynikiem bardzo dobrym, tytuł magistra na kierunku matematyka na Wydziale Matematyki Uniwersytetu Gdańskiego. Praca magisterska pt. „Zbiory swojskie i dzikie w R3” była z dziedziny topologia geometryczna. Równolegle ukończyła na Uniwersytecie Gdańskim „Podyplomowe Studium Podstaw Informatyki”. W 2001 roku uzyskała na Politechnice Poznańskiej tytuł doktora nauk matematycznych. Praca doktorska pt. „Iteracje monotoniczne...
-
Machine-Learning Methods for Estimating Performance of Structural Concrete Members Reinforced with Fiber-Reinforced Polymers
PublikacjaIn recent years, fiber-reinforced polymers (FRP) in reinforced concrete (RC) members have gained significant attention due to their exceptional properties, including lightweight construction, high specific strength, and stiffness. These attributes have found application in structures, infrastructures, wind power equipment, and various advanced civil products. However, the production process and the extensive testing required for...
-
Machine-learning methods for estimating compressive strength of high-performance alkali-activated concrete
PublikacjaHigh-performance alkali-activated concrete (HP-AAC) is acknowledged as a cementless and environmentally friendly material. It has recently received a substantial amount of interest not only due to the potential it has for being used instead of ordinary concrete but also owing to the concerns associated with climate change, sustainability, reduction of CO2 emissions, and energy consumption. The characteristics and amounts of the...