Filtry
wszystkich: 1160
wyświetlamy 1000 najlepszych wyników Pomoc
Wyniki wyszukiwania dla: artificial neural network, modelling,ship speed, engine fuel consumption
-
Compressive Sensing Approach to Harmonics Detection in the Ship Electrical Network
PublikacjaThe contribution of this paper is to show the opportunities for using the compressive sensing (CS) technique for detecting harmonics in a frequency sparse signal. The signal in a ship’s electrical network, polluted by harmonic distortions, can be modeled as a superposition of a small number of sinusoids and the discrete Fourier transform (DFT) basis forms its sparse domain. According to the theory of CS, a signal may be reconstructed...
-
Highlighting interlanguage phoneme differences based on similarity matrices and convolutional neural network
PublikacjaThe goal of this research is to find a way of highlighting the acoustic differences between consonant phonemes of the Polish and Lithuanian languages. For this purpose, similarity matrices are employed based on speech acoustic parameters combined with a convolutional neural network (CNN). In the first experiment, we compare the effectiveness of the similarity matrices applied to discerning acoustic differences between consonant...
-
Artificial neural network model of hardness, porosity and cavitation erosion wear of APS deposited Al2O3 -13 wt% TiO2 coatings
Publikacja -
Performance and Energy Aware Training of a Deep Neural Network in a Multi-GPU Environment with Power Capping
PublikacjaIn this paper we demonstrate that it is possible to obtain considerable improvement of performance and energy aware metrics for training of deep neural networks using a modern parallel multi-GPU system, by enforcing selected, non-default power caps on the GPUs. We measure the power and energy consumption of the whole node using a professional, certified hardware power meter. For a high performance workstation with 8 GPUs, we were...
-
Comparative study of learning methods for artificial network
PublikacjaW artykule przedstawiono wyniki badań porównawczych metod uczenia sieci neuronowych takich jak: metoda propagacji wstecznej błędów, rekurencyjna metoda najmniejszych kwadratów, metoda Zangwill'a, metoda algorytmów ewolucyjnych. Celem tych badań jest dobieranie najefektywniejszej metody uczenia do projektowania adaptacyjnego neuronowego regulatora napięcia generatora synchronicznego.metody uczenia, sieć neuronowa, neuronowy regulator...
-
Classification of Covid-19 using Differential Evolution Chaotic Whale Optimization based Convolutional Neural Network
PublikacjaCOVID-19, also known as the Coronavirus disease-2019, is an transferrable disease that spreads rapidly, affecting countless individuals and leading to fatalities in this worldwide pandemic. The precise and swift detection of COVID-19 plays a crucial role in managing the pandemic's dissemination. Additionally, it is necessary to recognize COVID-19 quickly and accurately by investigating chest x-ray images. This paper proposed a...
-
The Use of Artificial Neural Networks and Decision Trees to Predict the Degree of Odor Nuisance of Post-Digestion Sludge in the Sewage Treatment Plant Process
PublikacjaThis paper presents the application of artificial neural networks and decision trees for the prediction of odor properties of post-fermentation sludge from a biological-mechanical wastewater treatment plant. The input parameters were concentrations of popular compounds present in the sludge, such as toluene, p-xylene, and p-cresol, and process parameters including the concentration of volatile fatty acids, pH, and alkalinity in...
-
Artificial Neural Networks in Microwave Components and Circuits Modeling
PublikacjaArtykuł dotyczy wykorzystania sztucznych sieci neuronowych (SNN) w projektowaniu i optymalizacji układów mikrofalowych.Zaprezentowano podstawowe zasady i założenia modelowania z użyciem SNN. Możliwości opisywanej metody opisano wykorzystując przykładowyprojekt anteny łatowej. Przedstawiono różne strategie modelowania układów, które wykorzystują możliwości opisywanej metody w połączeniu zwiedzą mikrofalową. Porównano również dokładność...
-
Adaptive Hyperparameter Tuning within Neural Network-based Efficient Global Optimization
PublikacjaIn this paper, adaptive hyperparameter optimization (HPO) strategies within the efficient global optimization (EGO) with neural network (NN)-based prediction and uncertainty (EGONN) algorithm are proposed. These strategies utilize Bayesian optimization and multiarmed bandit optimization to tune HPs during the sequential sampling process either every iteration (HPO-1itr) or every five iterations (HPO-5itr). Through experiments using...
-
Application of PSO-artificial neural network and response surface methodology for removal of methylene blue using silver nanoparticles from water samples
Publikacja -
Simulation of ammonia combustion in dual-fuel compression-ignition engine
Publikacja -
Influence of the use of ethanol fuel on selected parameters of the gasoline engine
Publikacja -
A semi-Markov model of fuel combustion process in a Diesel engine
PublikacjaW artykule przedstawiono czterostanowy model procesu spalania w przestrzeniach roboczych (cylindrach) silników o zapłonie samoczynnym w formie procesu semimarkowskiego, dyskretnego w stanach i ciągłego w czasie. Wartościami tego procesu są stany odpowiadające powszechnie akceptowanym rodzajom spalania w tego rodzaju silnikach a mianowicie takie stany procesu jak: spalanie pełne (całkowite i zupełne), spalanie niezupełne, spalanie...
-
Speaker Recognition Using Convolutional Neural Network with Minimal Training Data for Smart Home Solutions
PublikacjaWith the technology advancements in smart home sector, voice control and automation are key components that can make a real difference in people's lives. The voice recognition technology market continues to involve rapidly as almost all smart home devices are providing speaker recognition capability today. However, most of them provide cloud-based solutions or use very deep Neural Networks for speaker recognition task, which are...
-
APPLICATION OF STATISTICAL FEATURES AND MULTILAYER NEURAL NETWORK TO AUTOMATIC DIAGNOSIS OF ARRHYTHMIA BY ECG SIGNALS
PublikacjaAbnormal electrical activity of heart can produce a cardiac arrhythmia. The electrocardiogram (ECG) is a non-invasive technique which is used as a diagnostic tool for cardiac diseases. Non-stationarity and irregu- larity of heartbeat signal imposes many difficulties to clinicians (e.g., in the case of myocardial infarction arrhythmia). Fortunately, signal processing algorithms can expose hidden information within ECG signal contaminated...
-
On application of some artificial intelligence methods in ship design
PublikacjaWprowadzenie odrębnego etapu badań własności strukturalnych do analizy i syntezy układów sterowania o złożonej strukturze, umożliwia wyznaczenie i analizę nieprzesuwnych biegunów układów. Te bieguny charakteryzują się zerową wrażliwością na zmianę szeregu parametrów modelu układu.
-
Jerzy Kowalski dr hab. inż.
Osoby -
DIAGNOSIS OF MALIGNANT MELANOMA BY NEURAL NETWORK ENSEMBLE-BASED SYSTEM UTILISING HAND-CRAFTED SKIN LESION FEATURES
PublikacjaMalignant melanomas are the most deadly type of skin cancer but detected early have high chances for successful treatment. In the last twenty years, the interest of automated melanoma recognition detection and classification dynamically increased partially because of public datasets appearing with dermatoscopic images of skin lesions. Automated computer-aided skin cancer detection in dermatoscopic images is a very challenging task...
-
Identification of the Contamination Source Location in the Drinking Water Distribution System Based on the Neural Network Classifier
PublikacjaThe contamination ingression to the Water Distribution System (WDS) may have a major impact on the drinking water consumers health. In the case of the WDS contamination the data from the water quality sensors may be efficiently used for the appropriate disaster management. In this paper the methodology based on the Learning Vector Quantization (LVQ) neural network classifier for the identification of the contamination source location...
-
Forecasting of currency exchange rates using artificial neural networks
PublikacjaW rozdziale tym autor przedstawił wyniki swoich badań nad wykorzystaniem sztucznych sieci neuronowych do prognozowania kursu walut (na przykładzie pary walutowej PLN-USD).Głównym celem badań było porównanie skuteczności przewidywania kursu złotówki w latach 1997 - 2005 przy pomocy różnych rodzajów sieci neuronowych.
-
Application of Artificial Neural Networks in Investigations of Steam Turbine Cascades
PublikacjaZaprezentowano wyniki badań numerycznych zastosowania sieci neuronowych przy obliczeniach przepływów w palisadach turbin parowych. Na podstawie uzyskanych wyników wykazano, że sieci neuronowe mogą być używane do szacowania przestrzennego rozkładu parametrów przepływu, takich jak entalpia, entropia, ciśnienie czy prędkość czynnika w kanale przepływowym. Omówiono również zastosowania tego typu metod przy projektowaniu palisad, stopni...
-
Prediction of antimicrobial activity of imidazole derivatives by artificial neural networks
Publikacja -
Particle swarm optimization–artificial neural network modeling and optimization of leachable zinc from flour samples by miniaturized homogenous liquid–liquid microextraction
Publikacja -
Generalized regression neural network and fitness dependent optimization: Application to energy harvesting of centralized TEG systems
PublikacjaThe thermoelectric generator (TEG) system has attracted extensive attention because of its applications in centralized solar heat utilization and recoverable heat energy. The operating efficiency of the TEG system is highly affected by operating conditions. In a series-parallel structure, due to diverse temperature differences, the TEG modules show non-linear performance. Due to the non-uniform temperature distribution (NUTD) condition,...
-
Co-gasification of waste biomass-low grade coal mix using downdraft gasifier coupled with dual-fuel engine system: Multi-objective optimization with hybrid approach using RSM and Grey Wolf Optimizer
PublikacjaThe looming global crisis over increasing greenhouse gases and rapid depletion of fossil fuels are the motivation factors for researchers to search for alternative fuels. There is a need for more sustainable and less polluting fuels for internal combustion engines. Biomass offers significant potential as a feed material for gasification to produce gaseous fuel. It is carbon neutral, versatile, and abundant on earth. The present...
-
Application of Generalized Regression Neural Network and Gaussian Process Regression for Modelling Hybrid Micro-Electric Discharge Machining: A Comparative Study
Publikacja -
Neural Modelling of Steam Turbine Control Stage
PublikacjaThe paper describes possibility of steam turbine control stage neural model creation. It is of great importance because wider application of green energy causes severe conditions for control of energy generation systems operation Results of chosen steam turbine of 200 MW power measurements are applied as an example showing way of neural model creation. They serve as training and testing data of such neural model. Relatively simple...
-
Analysis of the Influence of Fuel Sulphur Content on Diesel Engine Particulate Emissions
Publikacja -
Neural-Network-Based Parameter Estimations of Induction Motors
Publikacja -
Neural Network - Based Parameters Estimations Of Induction Motors
PublikacjaW artykule przedstwaiono algorytmy estymacji rezystancji wirnika i indukcyjności wzajemnej w zamkniętym układzie sterowania prędkości silnika indukcyjnego klatkowego. Do wyznaczenia rezystancji wykorzystano algorytm oparty na porównaniu modelu napięciowego i prądowego silnika. Do wyznaczania indukcyjności wykorzystano, znaną z literatury, zależność modelu multiskalarnego. Wyznaczane w stanie ustalonym parametry zapisywane są w...
-
Automatic Image and Speech Recognition Based on Neural Network
Publikacja -
Cellular neural network application to moire pattern filtering
Publikacja -
Neural network breast cancer relapse time prognosis
PublikacjaPrzedstawiono architekturę i wyniki testowania sztucznej sieci neuronowej w prognozowaniu czasu nawrotu choroby u kobiet chorych na raka piersi. Sieć neuronowa uczona była na danych zgromadzonych przez 20 lat. Dane opisują grupę 439 pacjentów za pomocą 40 parametrów. Spośród tych parametrów wybrano 6 najistotniejszych: liczbę przerzutowych węzłów chłonnych, wielkość guza, wiek, skalę według Blooma oraz stan receptorów estrogenowych...
-
Measurement of engine and vehicle parameters using onboard CAN network
PublikacjaWspółczesne samochody wyposażane są w dużą liczbę układów elektronicznych, które wymagają wzajemnej wymiany informacji. Techniczne problemy niezależnego łączenia ze sobą dużej liczby sterowników doprowadziły do powstania pokładowych sieci wymiany danych. Do najpopularniejszych z nich zalicza się obecnie system CAN. W pracy przedstawiono metodę rozpoznawania ramek wiadomości transmitowanych w pokładowej sieci CAN pojazdu przez sterowniki....
-
Optimization of quadrilateral mesh for ship hull modelling
PublikacjaArtykuł przedstawia metodę poprawy jakości czworokątnej siatki elementów skończonych, które najlepiej nadają się do modelowania kadłuba statku dla potrzeb analizy MES. W metodzie zakłada się poprawną topologię siatki i stosuje gradient funkcji celu do poszukiwania optymalnego rozwiązania. Funkcja celu może być dowolną funkcją, opisująca jakość elementu (metryka), odpowiednią dla wymagań metody elementów skończonych. W artykule...
-
Traffic Speed Deflectometer for Network-Level Pavement Management in Tennessee
Publikacja -
The use of fast molecular descriptors and artificial neural networks approach in organochlorine compounds electron ionization mass spectra classification
PublikacjaDeveloping of theoretical tools can be very helpful for supporting new pollutant detection. Nowadays, a combination of mass spectrometry and chromatographic techniques are the most basic environmental monitoring methods. In this paper, two organochlorine compound mass spectra classification systems were proposed. The classification models were developed within the framework of artificial neural networks (ANNs) and fast 1D and...
-
Analysis of electrical patterns activity in artificial multi-stable neural networks
Publikacja -
Artificial Neural Networks for Prediction of Antibacterial Activity in Series of Imidazole Derivatives
Publikacja -
Processing of musical data employing rough sets and artificial neural networks
PublikacjaArtykuł opisuje założenia systemu automatycznej identyfikacji muzyki i dźwięków muzycznych. Dokonano przeglądu standardu MPEG-7, ze szczególnym naciskiem na parametry opisowe dźwięku. Przedyskutowano problemy analizy danych audio, związane z zastosowaniami wykorzystującymi MPEG-7. W oparciu o eksperymenty przedstawiono efektywność deskryptorów niskiego poziomu w automatycznym rozpoznawaniu dźwięków instrumentów muzycznych. Przedyskutowano...
-
The concept of application of artificial neural networks for cultivation controlof cartilages in bioreactors.
PublikacjaNowym elementem niniejszej pracy jest omówienie problemów związanych z możliwością sterowania parametrami hydrodynamicznymi hodowanej w bioreaktorze chrząstki stawowej przy wykorzystaniu sztucznych sieci neuronowych. Przedstawiona została architektura strategii sterowania hodowlą tkanki z zastosowaniem tych sieci.
-
Processing of musical data employing rough sets and artificial neural networks
PublikacjaArtykuł opisuje założenia systemu automatycznej identyfikacji muzyki i dźwięków muzycznych. Dokonano przeglądu standardu MPEG-7, ze szczególnym naciskiem na parametry opisowe dźwięku. Przedyskutowano problemy analizy danych audio, związane z zastosowaniami wykorzystującymi MPEG-7. W oparciu o eksperymenty przedstawiono efektywność deskryptorów niskiego poziomu w automatycznym rozpoznawaniu dźwięków instrumentów muzycznych. Przedyskutowano...
-
Creating neural models using an adaptive algorithm for optimal size of neural network and training set.
PublikacjaZaprezentowano adaptacyjny algorytm generujący modele neuronowe liniowych układów mikrofalowych, zdolny do oszacowania optymalnego rozmiaru zbiory uczącego i sieci neuronowej. Stworzono kilka modeli nieciągłości falowodowych i mokropaskowych, a następnie zweryfikowano ich poprawność porównując wyniki analiz metodą dopasowania rodzajów i metodą momentów filtrów pasmowo-przepustowych.
-
The effect of a low ambient temperature on the cold-start emissions and fuel consumption of passenger cars
Publikacja -
Failure model of main elements of the ship engine crankshaft-piston assembly
PublikacjaThe paper presents a failure model of main elements of the crankshaft-piston assembly, based on failures ofcrankshaft-piston assembly and timing gear system of the Sulzer RD engines, retrieved from the equipment reliabilitydata of selected ships.
-
Zdzisław Kowalczuk prof. dr hab. inż.
OsobyW 1978 ukończył studia w zakresie automatyki i informatyki na Wydziale Elektroniki Politechniki Gdańskiej, następnie rozpoczął pracę na macierzystej uczelni. W 1986 obronił pracę doktorską, w 1993 habilitował się na Politechnice Śląskiej na podstawie pracy Dyskretne modele w projektowaniu układów sterowania. W 1996 mianowany profesorem nadzwyczajnym, w 2003 otrzymał tytuł profesora nauk technicznych. W 2006 założył i od tego czasu...
-
Neural Network-Based Sequential Global Sensitivity Analysis Algorithm
PublikacjaPerforming global sensitivity analysis (GSA) can be challenging due to the combined effect of the high computational cost, but it is also essential for engineering decision making. To reduce this cost, surrogate modeling such as neural networks (NNs) are used to replace the expensive simulation model in the GSA process, which introduces the additional challenge of finding the minimum number of training data samples required to...
-
Energy-Efficient Neural Network Inference with Microcavity Exciton Polaritons
Publikacja -
Neural network approach to 2D Kalman filtering in image processing
Publikacja -
The fuzzy neural network: application for trends in river pollution prediction
PublikacjaPraca przedstawia zastosowanie rozmytych sieci neuronowych do przygotowywania prognoz zmian w stężeniu zanieczyszczeń w rzekach. Opisane są pokrótce inne narzędzia stosowane w tym celu.