Filtry
wszystkich: 1111
-
Katalog
wyświetlamy 1000 najlepszych wyników Pomoc
Wyniki wyszukiwania dla: deep eutectic solvent
-
Benchmarking Deep Neural Network Training Using Multi- and Many-Core Processors
PublikacjaIn the paper we provide thorough benchmarking of deep neural network (DNN) training on modern multi- and many-core Intel processors in order to assess performance differences for various deep learning as well as parallel computing parameters. We present performance of DNN training for Alexnet, Googlenet, Googlenet_v2 as well as Resnet_50 for various engines used by the deep learning framework, for various batch sizes. Furthermore,...
-
SYNTHETIZED MEMBRANES FOR ULTRASOUND-ASSISTED SOLVENT EXTRACTION OF POROUS MEMBRANE PACKED SOLID SAMPLES.
PublikacjaMembranes are becoming more and more popular in analytical chemistry, which is why they are used, among others, in extraction processes. Therefore, this work focuses on the process of synthesis PVDF membranes and its optimization. The obtained membranes were used as bags for the phthalate extraction in disposable diapers for babies. Extraction was accomplished by method ultrasound-assisted solvent extraction of porous PVDF membrane...
-
Data augmentation for improving deep learning in image classification problem
PublikacjaThese days deep learning is the fastest-growing field in the field of Machine Learning (ML) and Deep Neural Networks (DNN). Among many of DNN structures, the Convolutional Neural Networks (CNN) are currently the main tool used for the image analysis and classification purposes. Although great achievements and perspectives, deep neural networks and accompanying learning algorithms have some relevant challenges to tackle. In this...
-
The impact of the AC922 Architecture on Performance of Deep Neural Network Training
PublikacjaPractical deep learning applications require more and more computing power. New computing architectures emerge, specifically designed for the artificial intelligence applications, including the IBM Power System AC922. In this paper we confront an AC922 (8335-GTG) server equipped with 4 NVIDIA Volta V100 GPUs with selected deep neural network training applications, including four convolutional and one recurrent model. We report...
-
Classifying Emotions in Film Music - A Deep Learning Approach
PublikacjaThe paper presents an application for automatically classifying emotions in film music. A model of emotions is proposed, which is also associated with colors. The model created has nine emotional states, to which colors are assigned according to the color theory in film. Subjective tests are carried out to check the correctness of the assumptions behind the adopted emotion model. For that purpose, a statistical analysis of the...
-
Selected Technical Issues of Deep Neural Networks for Image Classification Purposes
PublikacjaIn recent years, deep learning and especially Deep Neural Networks (DNN) have obtained amazing performance on a variety of problems, in particular in classification or pattern recognition. Among many kinds of DNNs, the Convolutional Neural Networks (CNN) are most commonly used. However, due to their complexity, there are many problems related but not limited to optimizing network parameters, avoiding overfitting and ensuring good...
-
Outlier detection method by using deep neural networks
PublikacjaDetecting outliers in the data set is quite important for building effective predictive models. Consistent prediction can not be made through models created with data sets containing outliers, or robust models can not be created. In such cases, it may be possible to exclude observations that are determined to be outlier from the data set, or to assign less weight to these points of observation than to other points of observation....
-
Nutrients, oxygen and suspended matter - Gdansk Deep (2001-2005)
Dane BadawczeThe results show short-term changes in the concentration of nutrients (nitrates, nitrites, ammonium ions, phosphates and total forms of nitrogen and phosphorus), dissolved oxygen and suspended particulate matter - SPM and its main components (organic carbon - POC, nitrogen - PON, phosphorus - TPP) in the water column of the Gdańsk Deep (Gdańsk Bay).
-
Radiative lifetime of a BODIPY dye as calculated by TDDFT and EOM-CCSD methods: solvent and vibronic effects
PublikacjaThe radiative emission lifetime and associated S1 excited state properties of a BODIPY dye are investigated with TDDFT and EOM-CCSD calculations. The effects of a solvent are described with the polarizable continuum model using the linear response (LR) approach as well as state-specific methods. The Franck–Condon (FC), Herzberg–Teller (HT) and Duschinsky vibronic effects are evaluated for the absorption and emission spectra, and...
-
Deep learning techniques for biometric security: A systematic review of presentation attack detection systems
PublikacjaBiometric technology, including finger vein, fingerprint, iris, and face recognition, is widely used to enhance security in various devices. In the past decade, significant progress has been made in improving biometric sys- tems, thanks to advancements in deep convolutional neural networks (DCNN) and computer vision (CV), along with large-scale training datasets. However, these systems have become targets of various attacks, with...
-
Deep Learning-Based LOS and NLOS Identification in Wireless Body Area Networks
PublikacjaIn this article, the usage of deep learning (DL) in ultra-wideband (UWB) Wireless Body Area Networks (WBANs) is presented. The developed approach, using channel impulse response, allows higher efficiency in identifying the direct visibility conditions between nodes in off-body communication with comparison to the methods described in the literature. The effectiveness of the proposed deep feedforward neural network was checked on...
-
Force transfer and stress distribution in short cantilever deep beams loaded throughout the depth with a various reinforcement
PublikacjaDeep beams used as the main reinforced concrete structural elements which taking over the load and stiffening construction are often found in high-rise buildings. The architecture of these buildings is sometimes sophisticated and varied, arouse the admiration of the majority of recipients, and thus causing an engineering challenge to correctly design the structural system and force transfer. In such structures is important to shape...
-
Statistical evaluation of the changes in cellulose properties caused by the stepwise solvent exchange and esterification
PublikacjaThe objective of the research was to empirically confirm the changes in cellulose reactivity caused by the pre-treatment with solvents of different polarity. Therefore, 5 solvents varying in their polar component of surface tension from 0 to 4.6 mN/m were chosen. Their impact on the biopolymer properties was carefully analysed concerning chemical structure, crystallinity and surface characteristics. It was revealed that the length...
-
Application of multicriteria decision analysis in solvent type optimization for chlorophenols determination with a dispersive liquid–liquid microextraction
PublikacjaThis study presents a novel support tool for the optimization and development of analytical methods. The tool is based on multi-criteria decision analysis (MCDA), namely the Technique for Order of Preference by Similarity to the Ideal Solution (TOPSIS), that allows users to rank possible solutions according to their requirements. In this study, we performed rankings of pairs of eight extraction and three dispersive solvents used...
-
Deep neural networks for data analysis 27/28
Kursy Online -
Deep neural networks for data analysis 25/26
Kursy Online -
Deep neural networks for data analysis 26/27
Kursy Online -
Deep Learning-Based, Multiclass Approach to Cancer Classification on Liquid Biopsy Data
PublikacjaThe field of cancer diagnostics has been revolutionized by liquid biopsies, which offer a bridge between laboratory research and clinical settings. These tests are less invasive than traditional biopsies and more convenient than routine imaging methods. Liquid biopsies allow studying of tumor-derived markers in bodily fluids, enabling the development of more precise cancer diagnostic tests for screening, disease monitoring, and...
-
Finding the Right Solvent: A Novel Screening Protocol for Identifying Environmentally Friendly and Cost-Effective Options for Benzenesulfonamide
PublikacjaThis study investigated the solubility of benzenesulfonamide (BSA) as a model compound using experimental and computational methods. New experimental solubility data were collected in the solvents DMSO, DMF, 4FM, and their binary mixtures with water. The predictive model was constructed based on the best-performing regression models trained on available experimental data, and their hyperparameters were optimized using a newly...
-
Solventless and solvent-minimized sample preparation techniques for determining currently used pesticides in water samples: A review
PublikacjaThe intensification of agriculture means that increasing amounts of toxic organic and inorganic compounds are entering the environment. The pesticides generally applied nowadays are regarded as some of the most dangerous contaminants of the environment. Their presence in the environment, especially in water, is hazardous because they cause human beings to become more susceptible to disease. For these reasons, it is essential to...
-
SYNTHESIZING MEDICAL TERMS – QUALITY AND NATURALNESS OF THE DEEP TEXT-TO-SPEECH ALGORITHM
PublikacjaThe main purpose of this study is to develop a deep text-to-speech (TTS) algorithm designated for an embedded system device. First, a critical literature review of state-of-the-art speech synthesis deep models is provided. The algorithm implementation covers both hardware and algorithmic solutions. The algorithm is designed for use with the Raspberry Pi 4 board. 80 synthesized sentences were prepared based on medical and everyday...
-
Deep neural network architecture search using network morphism
PublikacjaThe paper presents the results of the research on neural architecture search (NAS) algorithm. We utilized the hill climbing algorithm to search for well-performing structures of deep convolutional neural network. Moreover, we used the function preserving transformations which enabled the effective operation of the algorithm in a short period of time. The network obtained with the advantage of NAS was validated on skin lesion classification...
-
Deep learning based thermal image segmentation for laboratory animals tracking
PublikacjaAutomated systems for behaviour classification of laboratory animals are an attractive alternative to manual scoring. However, the proper animals separation and tracking, especially when they are in close contact, is the bottleneck of the behaviour analysis systems. In this paper, we propose a method for the segmentation of thermal images of laboratory rats that are in close contact during social behaviour tests. For this, we are...
-
Deep CNN based decision support system for detection and assessing the stage of diabetic retinopathy
PublikacjaThe diabetic retinopathy is a disease caused by long-standing diabetes. Lack of effective treatment can lead to vision impairment and even irreversible blindness. The disease can be diagnosed by examining digital color fundus photographs of retina. In this paper we propose deep learning approach to automated diabetic retinopathy screening. Deep convolutional neural networks (CNN) - the most popular kind of deep learning algorithms...
-
Microbiological condition of sediments and bottom water in the area of Gdańsk Deep in Gulf of Gdańsk
Dane BadawczeThis dataset contains the results of microbiological analysis of bottom water and bottom sediments in the area of Gdańsk Deep in Gulf of Gdańsk. The tested samples were collected at 5 sites on 15th of December 2007. 5 samples of bottom water and 10 samples of sediments were collected for microbiological testing. Each of these samples were analysed for...
-
Decision making process using deep learning
PublikacjaEndüstri 4.0, dördüncü endüstri devrimi veya Endüstriyel Nesnelerin İnterneti (IIoT) olarak adlandırılan sanayi akımı, işletmelere, daha verimli, daha büyük bir esneklikle, daha güvenli ve daha çevre dostu bir şekilde üretim yapma imkanı sunmaktadır. Nesnelerin İnterneti ile bağlantılı yeni teknoloji ve hizmetler birçok endüstriyel uygulamada devrim niteliği taşımaktadır. Fabrikalardaki otomasyon, tahminleyici bakım (PdM – Predictive...
-
Deep Instance Segmentation of Laboratory Animals in Thermal Images
PublikacjaIn this paper we focus on the role of deep instance segmentation of laboratory rodents in thermal images. Thermal imaging is very suitable to observe the behaviour of laboratory animals, especially in low light conditions. It is an non-intrusive method allowing to monitor the activity of animals and potentially observe some physiological changes expressed in dynamic thermal patterns. The analysis of the recorded sequence of thermal...
-
Interpretable Deep Learning Model for the Detection and Reconstruction of Dysarthric Speech
PublikacjaWe present a novel deep learning model for the detection and reconstruction of dysarthric speech. We train the model with a multi-task learning technique to jointly solve dysarthria detection and speech reconstruction tasks. The model key feature is a low-dimensional latent space that is meant to encode the properties of dysarthric speech. It is commonly believed that neural networks are black boxes that solve problems but do not...
-
An Intelligent Approach to Short-Term Wind Power Prediction Using Deep Neural Networks
PublikacjaIn this paper, an intelligent approach to the Short-Term Wind Power Prediction (STWPP) problem is considered, with the use of various types of Deep Neural Networks (DNNs). The impact of the prediction time horizon length on accuracy, and the influence of temperature on prediction effectiveness have been analyzed. Three types of DNNs have been implemented and tested, including: CNN (Convolutional Neural Networks), GRU (Gated Recurrent...
-
The solvent-free thermal dehydration of hexitols on zeolites
PublikacjaPodczas termicznej dehydratacji heksytoli w obecności zeolitów otrzymano szereg produktów zachodzących zarówno z inwersją lub retencją konfiguracji przy asymetrycznych atomach węgla. Produkty rozdzielano i identyfikowano przy pomocy chromatografii i spektroskopii NMR. 1,4:3,6-dianhydroiditol scharakteryzowano przy pomocy rentgenowskiej analizy strukturalnej.
-
Organic Acids and Polyphenols Determination in Polish Wines by Ultrasound-Assisted Solvent Extraction of Porous Membrane-Packed Liquid Samples
PublikacjaIn the near future, Poland is going to have more and more favorable conditions for viticulture. Organic acids and polyphenols are among the most commonly analyzed compounds due to their beneficial properties for human health and their importance in the winemaking process. In this work, a new technique involving ultrasound-assisted solvent extraction of porous membrane-packed liquid samples (UASE-PMLS) was for the first time described...
-
Deep Learning Optimization for Edge Devices: Analysis of Training Quantization Parameters
PublikacjaThis paper focuses on convolution neural network quantization problem. The quantization has a distinct stage of data conversion from floating-point into integer-point numbers. In general, the process of quantization is associated with the reduction of the matrix dimension via limited precision of the numbers. However, the training and inference stages of deep learning neural network are limited by the space of the memory and a...
-
The impact of the shape of deep drilled well screen openings on the filtration process in full saturation conditions
PublikacjaThe authors propose a supplementary method of modelling seepage flow around the deep drilled well screen. The study applies 3D numerical modelling (FEM) in order to provide an in-depth analysis of the seepage process. The analysis of filtration parameters (flow distribution q(x,t) and pressure distribution p) was conducted using the ZSoil.PC software system. The analysis indicates that the shape of perforation is of secondary importance...
-
Suspended matter, composition and fluxes, Gdansk Deep, late spring 2001
Dane BadawczeParticulate organic carbon (POC) and nitrogen (PON) concentrations and fluxes were measured in the Gdańsk Deep (Gulf of Gdansk) from 30.05 to 06.06.2001. The vertical profiles of POC and PON were characterised by the highest values in the euphotic layer, a gradual decrease with depth, and an increase below the halocline. The hydrophysical conditions...
-
Convenient and efficient N-methylation of secondary amines under solvent-free ball milling conditions
PublikacjaIn the present work, we report the development of a rapid, efcient, and solvent-free procedure for the N-methylation of secondary amines under mechanochemical conditions. After optimization of the milling parameters, a vibrational ball mill was used to synthesize 26 tertiary N-methylated amine derivatives in a short time of 20 min (30 Hz frequency) and high yields ranging from 78 to 95%. An exception was compounds having a hydroxyl...
-
Mechanical and physical assessment of epoxy, mineral, solvent-based, and water-soluble coating materials
PublikacjaThis paper assesses the behavior of mineral, epoxy (EP), solvent, and water-soluble coatings when exposed to salt and regular water for 28 days. Also, it evaluates the pull-off adhesion strength of the same coating materials applied to concrete slabs saturated with oil and water and dried with two different processes: air-dried for 28 days and air-dried for 14 days plus 14 days in the oven at 70 °C. Properties such as carbonation,...
-
Channel State Estimation in LTE-Based Heterogenous Networks Using Deep Learning
PublikacjaFollowing the continuous development of the information technology, the concept of dense urban networks has evolved as well. The powerful tools, like machine learning, break new ground in smart network and interface design. In this paper the concept of using deep learning for estimating the radio channel parameters of the LTE (Long Term Evolution) radio interface is presented. It was proved that the deep learning approach provides...
-
Evaluation of Facial Pulse Signals Using Deep Neural Net Models
PublikacjaThe reliable measurement of the pulse rate using remote photoplethysmography (PPG) is very important for many medical applications. In this paper we present how deep neural networks (DNNs) models can be used in the problem of PPG signal classification and pulse rate estimation. In particular, we show that the DNN-based classification results correspond to parameters describing the PPG signals (e.g. peak energy in the frequency...
-
Tool Wear Monitoring Using Improved Dragonfly Optimization Algorithm and Deep Belief Network
PublikacjaIn recent decades, tool wear monitoring has played a crucial role in the improvement of industrial production quality and efficiency. In the machining process, it is important to predict both tool cost and life, and to reduce the equipment downtime. The conventional methods need enormous quantities of human resources and expert skills to achieve precise tool wear information. To automatically identify the tool wear types, deep...
-
Solvent Selection as a Key Factor in the Performance of Semitransparent Heterojunctions Composed of Hydrogenated Nanotubes and Bismuth Sulfides
PublikacjaResearch on titanium nanotubes modified with metal sulfides, particularly bismuth sulfide (Bi2S3), aims to create heterostructures that efficiently absorb sunlight and then separate photogenerated charge carriers, thereby enhancing the energy conversion efficiency. This study shows a key role of solvent used for sulfide and bismuth salt solutions used during successive ionic layer adsorption and reaction (SILAR) onto the morphology,...
-
BIG DATA SIGNIFICANCE IN REMOTE MEDICAL DIAGNOSTICS BASED ON DEEP LEARNING TECHNIQUES
PublikacjaIn this paper we discuss the evaluation of neural networks in accordance with medical image classification and analysis. We also summarize the existing databases with images which could be used for training deep models that can be later utilized in remote home-based health care systems. In particular, we propose methods for remote video-based estimation of patient vital signs and other health-related parameters. Additionally, potential...
-
Position Estimation in Mixed Indoor-Outdoor Environment Using Signals of Opportunity and Deep Learning Approach
PublikacjaTo improve the user's localization estimation in indoor and outdoor environment a novel radiolocalization system using deep learning dedicated to work both in indoor and outdoor environment is proposed. It is based on the radio signatures using radio signals of opportunity from LTE an WiFi networks. The measurements of channel state estimators from LTE network and from WiFi network are taken by using the developed application....
-
Analysis of 2D Feature Spaces for Deep Learning-based Speech Recognition
Publikacjaconvolutional neural network (CNN) which is a class of deep, feed-forward artificial neural network. We decided to analyze audio signal feature maps, namely spectrograms, linear and Mel-scale cepstrograms, and chromagrams. The choice was made upon the fact that CNN performs well in 2D data-oriented processing contexts. Feature maps were employed in the Lithuanian word recognition task. The spectral analysis led to the highest word...
-
Deep neural networks approach to skin lesions classification — A comparative analysis
PublikacjaThe paper presents the results of research on the use of Deep Neural Networks (DNN) for automatic classification of the skin lesions. The authors have focused on the most effective kind of DNNs for image processing, namely Convolutional Neural Networks (CNN). In particular, three kinds of CNN were analyzed: VGG19, Residual Networks (ResNet) and the hybrid of VGG19 CNN with the Support Vector Machine (SVM). The research was carried...
-
Big Data from Sensor Network via Internet of Things to Edge Deep Learning for Smart City
PublikacjaData from a physical world is sampled by sensor networks, and then streams of Big Data are sent to cloud hosts to support decision making by deep learning software. In a smart city, some tasks may be assigned to smart devices of the Internet of Things for performing edge computing. Besides, a part of workload of calculations can be transferred to the cloud hosts. This paper proposes benchmarks for division tasks between an edge...
-
Deep slot effect in the squirrel-cage induction motors with scalar (V/F) control
PublikacjaQualitative characteristics of the electrical drive considerably depend on identification accuracy of math model parameters. In particular, it is depend on detection accuracy of stator active resistance r1 that is used in calculation of flux linkages, rotary speed in sensorless control systems. Paper provides analysis of influence of stator deep slot effect to stator active resistance value
-
Data, Information, Knowledge, Wisdom Pyramid Concept Revisited in the Context of Deep Learning
PublikacjaIn this paper, the data, information, knowledge, and wisdom (DIKW) pyramid is revisited in the context of deep learning applied to machine learningbased audio signal processing. A discussion on the DIKW schema is carried out, resulting in a proposal that may supplement the original concept. Parallels between DIWK pertaining to audio processing are presented based on examples of the case studies performed by the author and her collaborators....
-
The structure of Al-Cu and Al-Si eutectic melts
PublikacjaStrukturę ciekłych stopów eutektycznych Al_{83}Cu_{17} i Al_{88}Si_{12} zbadano metodami dyfrakcyjnymi i RMC. Przeanalizowano uzyskane całkowite i cząstkowe funkcje korelacyjne i parametry strukturalne.
-
Deep Learning Approaches in Histopathology
Publikacja -
Thermal Images Analysis Methods using Deep Learning Techniques for the Needs of Remote Medical Diagnostics
PublikacjaRemote medical diagnostic solutions have recently gained more importance due to global demographic shifts and play a key role in evaluation of health status during epidemic. Contactless estimation of vital signs with image processing techniques is especially important since it allows for obtaining health status without the use of additional sensors. Thermography enables us to reveal additional details, imperceptible in images acquired...