Wyniki wyszukiwania dla: machine design
-
Speed Observer Structure of Induction Machine Based on Sliding Super-Twisting and Backstepping Techniques
PublikacjaThis paper presents an analysis of the two speed observer structures which are based on the backstepping and sliding super twisting approach. The observer stabilizing functions result from the Lyapunov theorem. To obtain the observer tuning gains the observer structure is linearized near the equilibrium point. The rotor angular speed is obtained from non-adaptive dependence. In the sensorless control system structure the classical...
-
Road traffic can be predicted by machine learning equally effectively as by complex microscopic model
PublikacjaSince high-quality real data acquired from selected road sections are not always available, a traffic control solution can use data from software traffic simulators working offline. The results show that in contrast to microscopic traffic simulation, the algorithms employing neural networks can work in real-time, so they can be used, among others, to determine the speed displayed on variable message road signs. This paper describes...
-
Multi-criteria Differential Evolution for Optimization of Virtual Machine Resources in Smart City Cloud
PublikacjaIn a smart city, artificial intelligence tools support citizens and urban services. From the user point of view, smart applications should bring computing to the edge of the cloud, closer to citizens with short latency. However, from the cloud designer point of view, the trade-off between cost, energy and time criteria requires the Pareto solutions. Therefore, the proposed multi-criteria differential evolution can optimize virtual...
-
Decisional DNA (DDNA) Based Machine Monitoring and Total Productive Maintenance in Industry 4.0 Framework
PublikacjaThe entire manufacturing spectrum is transforming with the advent of Industry 4.0. The features of Set of Experience Knowledge Structure (SOEKS) and Decisional DNA (DDNA) were utilized for developing Virtual Engineering Objects (VEO), Virtual Engineering Process (VEP) and Virtual Engineering Factory (VEF), which in turn facilitate the creation of smart factories. In this study, DDNA based Machine Monitoring for Total Maintenance...
-
Machine Learning and Text Analysis in an Artificial Intelligent System for the Training of Air Traffic Controllers
PublikacjaThis chapter presents the application of new information technology in education for the training of air traffic controllers (ATCs). Machine learning, multi-criteria decision analysis, and text analysis as the methods of artificial intelligence for ATCs training have been described. The authors have made an analysis of the International Civil Aviation Organization documents for modern principles of ATCs education. The prototype...
-
Polymeric Bearings as a new base isolation system suitable for mitigating machine-induced vibrations
PublikacjaThe present paper summarizes the preliminary results of the experimental shaking table investigation conducted in order to verify the effectiveness of a new base isolation system consisting of Polymeric Bearings in reducing strong horizontal machine-induced vibrations. Polymeric Bearing considered in the present study is a prototype base isolation system, which was constructed with the use of a specially prepared flexible polymer...
-
A machine learning approach to classifying New York Heart Association (NYHA) heart failure
PublikacjaAccording to the European Society of Cardiology, globally the number of patients with heart failure nearly doubled from 33.5 million in 1990 to 64.3 million in 2017, and is further projected to increase dramatically in this decade, still remaining a leading cause of morbidity and mortality. One of the most frequently applied heart failure classification systems that physicians use is the New York Heart Association (NYHA) Functional...
-
Integrating Experience-Based Knowledge Representation and Machine Learning for Efficient Virtual Engineering Object Performance
PublikacjaMachine learning and Artificial Intelligence have grown significant attention from industry and academia during the past decade. The key reason behind interest is such technologies capabilities to revolutionize human life since they seamlessly integrate classical networks, networked objects and people to create more efficient environments. In this paper, the Knowledge Representation technique of Set of Experience...
-
Optical method supported by machine learning for urinary tract infection detection and urosepsis risk assessment
PublikacjaThe study presents an optical method supported by machine learning for discriminating urinary tract infections from an infection capable of causing urosepsis. The method comprises spectra of spectroscopy measurement of artificial urine samples with bacteria from solid cultures of clinical E. coli strains. To provide a reliable classification of results assistance of 27 algorithms was tested. We proved that is possible to obtain...
-
Sperm segmentation and abnormalities detection during the ICSI procedure using machine learning algorithms
Publikacja(1) About 15-20% of couples struggle with the problem of infertility. 30 to 40% of these cases are caused by abnormalities in the structure and motility of sperm. Sometimes the only possibility for such people is to use the procedure of artificial insemination. CASA systems are used to increase the efficiency of this procedure by selecting the appropriate sperm cell. (2) This paper presents an approach to the sperm classification...
-
Machine Learning and Deep Learning Methods for Fast and Accurate Assessment of Transthoracic Echocardiogram Image Quality
PublikacjaHigh-quality echocardiogram images are the cornerstone of accurate and reliable measurements of the heart. Therefore, this study aimed to develop, validate and compare machine learning and deep learning algorithms for accurate and automated assessment of transthoracic echocardiogram image quality. In total, 4090 single-frame two-dimensional transthoracic echocardiogram...
-
Detection of circulating tumor cells by means of machine learning using Smart-Seq2 sequencing
PublikacjaCirculating tumor cells (CTCs) are tumor cells that separate from the solid tumor and enter the bloodstream, which can cause metastasis. Detection and enumeration of CTCs show promising potential as a predictor for prognosis in cancer patients. Furthermore, single-cells sequencing is a technique that provides genetic information from individual cells and allows to classify them precisely and reliably. Sequencing data typically...
-
Game theory-based virtual machine migration for energy sustainability in cloud data centers
PublikacjaAs the demand for cloud computing services increases, optimizing resource allocation and energy consumption has become a key factor in achieving sustainability in cloud environments. This paper presents a novel approach to address these challenges through an optimized virtual machine (VM) migration strategy that employs a game-theoretic approach based on particle swarm optimization (PSO) (PSO-GTA). The proposed approach leverages...
-
From Data to Decision: Interpretable Machine Learning for Predicting Flood Susceptibility in Gdańsk, Poland
PublikacjaFlood susceptibility prediction is complex due to the multifaceted interactions among hydrological, meteorological, and urbanisation factors, further exacerbated by climate change. This study addresses these complexities by investigating flood susceptibility in rapidly urbanising regions prone to extreme weather events, focusing on Gdańsk, Poland. Three popular ML techniques, Support Vector Machine (SVM), Random Forest (RF), and...
-
Performance Analysis of Machine Learning Methods with Class Imbalance Problem in Android Malware Detection
PublikacjaDue to the exponential rise of mobile technology, a slew of new mobile security concerns has surfaced recently. To address the hazards connected with malware, many approaches have been developed. Signature-based detection is the most widely used approach for detecting Android malware. This approach has the disadvantage of being unable to identify unknown malware. As a result of this issue, machine learning (ML) for detecting malware...
-
Machine-learning methods for estimating compressive strength of high-performance alkali-activated concrete
PublikacjaHigh-performance alkali-activated concrete (HP-AAC) is acknowledged as a cementless and environmentally friendly material. It has recently received a substantial amount of interest not only due to the potential it has for being used instead of ordinary concrete but also owing to the concerns associated with climate change, sustainability, reduction of CO2 emissions, and energy consumption. The characteristics and amounts of the...
-
Driver’s Condition Detection System Using Multimodal Imaging and Machine Learning Algorithms
PublikacjaTo this day, driver fatigue remains one of the most significant causes of road accidents. In this paper, a novel way of detecting and monitoring a driver’s physical state has been proposed. The goal of the system was to make use of multimodal imaging from RGB and thermal cameras working simultaneously to monitor the driver’s current condition. A custom dataset was created consisting of thermal and RGB video samples. Acquired data...
-
Overcoming “Big Data” Barriers in Machine Learning Techniques for the Real-Life Applications
Publikacja -
Machine learning techniques combined with dose profiles indicate radiation response biomarkers
Publikacja -
From the Dynamic Lattice Liquid Algorithm to the Dedicated Parallel Computer – mDLL Machine
Publikacja -
Machine Learning and data mining tools applied for databases of low number of records
Publikacja -
Multivariate Features Extraction and Effective Decision Making Using Machine Learning Approaches
Publikacja -
Influence of frame sawing machine´s kinematics on saw blade tooth wear.
PublikacjaW pracy przedstawiono wpływ kinematyki pilarki ramowej na zużycie ostrzy piłtrakowych.
-
Improving operating efficiency of a gas turboset via cooperation with an absorption refrigerating machine
PublikacjaThe analysis of increase of ambient air temperature entering the compressor on reduction in power output from the turbine and increase fuel use was conduced. For medium size gas turbine operates in winter and summer conditions elementary power and economical values was calculated. Conditions of the determination of turbine inlet air cooling solution (using thermal storage for reduce equipment size) are presented
-
Analyzing the Effectiveness of the Brain–Computer Interface for Task Discerning Based on Machine Learning
PublikacjaThe aim of the study is to compare electroencephalographic (EEG) signal feature extraction methods in the context of the effectiveness of the classification of brain activities. For classification, electroencephalographic signals were obtained using an EEG device from 17 subjects in three mental states (relaxation, excitation, and solving logical task). Blind source separation employing independent component analysis (ICA) was...
-
Sensorless Multiscalar Control of Five-Phase Induction Machine with Inverter Output Filter
PublikacjaThe paper presents a complete solution for speed sensorless control system for five-phase induction motor with voltage inverter, LC filter and nonlinear control of combined fundamental and third harmonic flux distribution. The control principle, also known as multiscalar control, nonlinear control or natural variables control, is based on a use of properly selected scalar variables in control feedback to linearize controlled system....
-
Analytical model of torsional vibrations of typical sawing machine main drive system
PublikacjaPrzedstawiono model fizyczny i matematyczny drgań skrętnych napędu głównego typowej pilarki tarczowej. Model tworzą elementy sztywne SES połączone między sobą za pośrednictwem elementów sprężysto - tłumiących EST w układzie szeregowym. W modelu matematycznym uwzględniono: właściwości dynamiczne silnika napędowego, wymiary piły tarczowej, cechy materiału obrabianego (wymiary, rodzaj drewna, wilgotność drewna) oraz właściwości dynamiczne...
-
Conception and design of a hybrid exciter for brushless synchronous generator. Application for autonomous electrical power systems = Koncepcja i projekt hybrydowej wzbudnicy bezszczotkowego generatora synchronicznego. Zastosowanie w autonomicznych systemach elektroenergetycznych.
PublikacjaThis paper covers a subject of a hybrid excitation system for a brushless synchronous generator working with variable speed in an autonomous energy generation system (e.g. airplane power grid). A hybrid excitation system (hybrid exciter) means a synchronous machine with wound-field and permanent magnet excitation. The hybrid exciter supply a dc field current to the synchronous generator field winding through a rotating rectifier....
-
Rapid Multi-Criterial Antenna Optimization by Means of Pareto Front Triangulation and Interpolative Design Predictors
PublikacjaModern antenna systems are designed to meet stringent performance requirements pertinent to both their electrical and field properties. The objectives typically stay in conflict with each other. As the simultaneous improvement of all performance parameters is rarely possible, compromise solutions have to be sought. The most comprehensive information about available design trade-offs can be obtained through multi-objective optimization...
-
A novel hybrid adaptive framework for support vector machine-based reliability analysis: A comparative study
PublikacjaThis study presents an innovative hybrid Adaptive Support Vector Machine - Monte Carlo Simulation (ASVM-MCS) framework for reliability analysis in complex engineering structures. These structures often involve highly nonlinear implicit functions, making traditional gradient-based first or second order reliability algorithms and Monte Carlo Simulation (MCS) time-consuming. The application of surrogate models has proven effective...
-
Assessment Of the Relevance of Best Practices in The Development of Medical R&D Projects Based on Machine Learning
PublikacjaMachine learning has emerged as a fundamental tool for numerous endeavors within health informatics, bioinformatics, and medicine. However, novices among biomedical researchers and IT developers frequently lack the requisite experience to effectively execute a machine learning project, thereby increasing the likelihood of adopting erroneous practices that may result in common pitfalls or overly optimistic predictions. The paper...
-
A novel dual-band rectifier circuit with enhanced bandwidth for RF energy harvesting applications
PublikacjaIn recent years, a rapid development of low-power sensor networks, enabling machine-to-machine communication in applications such as environmental monitoring, has been observed. Contemporary sensors are normally supplied by an external power source, typically in a form of a battery, which limits their lifespan and increases the maintenance costs. This problem can be addressed by harvesting and converting ambient RF energy into...
-
Speed estimation of a car at impact with a W-beam guardrail using numerical simulations and machine learning
PublikacjaThis paper aimed at developing a new method of estimating the impact speed of a passenger car at the moment of a crash into a W-beam road safety barrier. The determination of such a speed based on the accident outcomes is demanding, because often there is no access to full accident data. However, accurate determination of the impact speed is one of the key elements in the reconstruction of road accidents. A machine learning algorithm...
-
Machining process sequencing and machine assignment in generative feature-based CAPP for mill-turn parts
PublikacjaProcess selection and sequencing, as one of the most complex issues when evaluated from a mathematical point of view and crucial in CAPP, still attract research attention. For the current trend of intelligent manufacturing, machining features (MFs) are the information carriers for workpiece geometry and topology representation. They are basically derived from CAD models and are used by downstream engineering applications. A feature-based...
-
Solubility of dapsone in deep eutectic solvents: Experimental analysis, molecular insights and machine learning predictions
PublikacjaBackground. Dapsone (DAP) is an anti-inflammatory and antimicrobial active pharmaceutical ingredient used to treat, e.g., AIDS-related diseases. However, low solubility is a feature hampering its efficient use. Objectives. First, deep eutectic solvents...
-
Oleksii Nosko dr hab. inż.
Osoby -
Occupational Health and Safety Ergonomics - L-15/Ć-0/L-0/P-0, FMEST, ENERGY TECHNOLOGIES, I degree, se 01, stationary, (PG_00041987), winter semester 2022/2023
Kursy OnlineDefinitions of ergonomics, its subject, purpose and application. Description of the human-machine system environment. The concept of sustainable development. Environmental management systems. Human model and its characteristics. Human possibilities and industrial processes. Human work environment - material conditions. Principles of human work environment design. Safety and reliability of the human - machine - environment system....
-
Occupational Health and Safety Ergonomics - L-15/C-0/L-0/P-0, ENERGY TECHNOLOGIES, se 01, (PG_00041987), winter semester, 2024/2025
Kursy OnlineDefinitions of ergonomics, its subject, purpose and application. Description of the human-machine system environment. The concept of sustainable development. Environmental management systems. Human model and its characteristics. Human possibilities and industrial processes. Human work environment - material conditions. Principles of human work environment design. Safety and reliability of the human - machine - environment system....
-
Occupational Health and Safety Ergonomics - L-15/C-0/L-0/P-0, ENERGY TECHNOLOGIES, se 01, (PG_00041987), winter semester, 2023/2024
Kursy OnlineDefinitions of ergonomics, its subject, purpose and application. Description of the human-machine system environment. The concept of sustainable development. Environmental management systems. Human model and its characteristics. Human possibilities and industrial processes. Human work environment - material conditions. Principles of human work environment design. Safety and reliability of the human - machine - environment system....
-
Control Strategy of a Five-Phase Induction Machine Supplied by the Current Source Inverter With the Third Harmonic Injection
PublikacjaIn the five-phase induction machine (IM), it is possible to better use the electromagnetic circuit than in the three-phase IM. This requires the use of an adequate converter system which will be supplied by an induction machine. The electric drive system described, in this article, includes the five-phase induction machine supplied by the current source inverter (CSI). The proposed novelty—not presented previously—is the control...
-
Unsupervised machine-learning classification of electrophysiologically active electrodes during human cognitive task performance
PublikacjaIdentification of active electrodes that record task-relevant neurophysiological activity is needed for clinical and industrial applications as well as for investigating brain functions. We developed an unsupervised, fully automated approach to classify active electrodes showing event-related intracranial EEG (iEEG) responses from 115 patients performing a free recall verbal memory task. Our approach employed new interpretable...
-
Exploring the Solubility Limits of Edaravone in Neat Solvents and Binary Mixtures: Experimental and Machine Learning Study
PublikacjaThis study explores the edaravone solubility space encompassing both neat and binary dissolution media. Efforts were made to reveal the inherent concentration limits of common pure and mixed solvents. For this purpose, the published solubility data of the title drug were scrupulously inspected and cured, which made the dataset consistent and coherent. However, the lack of some important types of solvents in the collection called...
-
Jerzy Ejsmont prof. dr hab. inż.
Osoby -
Introduction to the ONDM 2022 special issue
PublikacjaThis JOCN special issue contains extended versions of selected papers presented at the 26th International Conference on Optical Network Design and Modeling (ONDM 2022), which took place 16–19 May 2022 at Warsaw University of Technology, Warsaw, Poland. The topics covered by the papers represent trends in optical networking research: application of machine learning to network management, cross-layer network performance optimization,...
-
Wojciech Owczarzak dr inż.
Osoby -
Predicting seismic response of SMRFs founded on different soil types using machine learning techniques
PublikacjaPredicting the Maximum Interstory Drift Ratio (M-IDR) of Steel Moment-Resisting Frames (SMRFs) is a useful tool for designers to approximately evaluate the vulnerability of SMRFs. This study aims to explore supervised Machine Learning (ML) algorithms to build a surrogate prediction model for SMRFs to reduce the need for complex modeling. For this purpose, twenty well-known ML algorithms implemented in Python software are trained...
-
A Data Driven Model for Predicting RNA-Protein Interactions based on Gradient Boosting Machine
Publikacja -
Machine Learning for Control Systems Security of Industrial Robots: a Post-covid-19 Overview
Publikacja -
Likelihood of Transformation to Green Infrastructure Using Ensemble Machine Learning Techniques in Jinan, China
Publikacja -
Machine Learning Methods in Damage Prediction of Masonry Development Exposed to the Industrial Environment of Mines
Publikacja