Filtry
wszystkich: 4348
-
Katalog
- Publikacje 3508 wyników po odfiltrowaniu
- Czasopisma 186 wyników po odfiltrowaniu
- Konferencje 31 wyników po odfiltrowaniu
- Osoby 84 wyników po odfiltrowaniu
- Projekty 11 wyników po odfiltrowaniu
- Kursy Online 83 wyników po odfiltrowaniu
- Wydarzenia 9 wyników po odfiltrowaniu
- Dane Badawcze 436 wyników po odfiltrowaniu
wyświetlamy 1000 najlepszych wyników Pomoc
Wyniki wyszukiwania dla: ACTIVE LEARNING ALGORITHM
-
Active learning na wykładach
WydarzeniaZapraszamy na szkolenie - Active learning na wykładach
-
Active Learning in Higher Education
Czasopisma -
Active Learning Based on Crowdsourced Data
PublikacjaThe paper proposes a crowdsourcing-based approach for annotated data acquisition and means to support Active Learning training approach. In the proposed solution, aimed at data engineers, the knowledge of the crowd serves as an oracle that is able to judge whether the given sample is informative or not. The proposed solution reduces the amount of work needed to annotate large sets of data. Furthermore, it allows a perpetual increase...
-
Robust algorithm for active feedback control of narrowband noise
PublikacjaThe problem of active control of narrowband acoustic noise is considered. It is shown that the proposed earlier feedback control algorithm called SONIC (self-optimizing narrowband interference canceller), based on minimization of the L2-norm performance measure, can be re-derived using the L1 approach. The resulting robust SONIC algorithm is more robust to heavy-tailed measurement noise, such as the αlpha-stable noise, than the...
-
Data Reduction Algorithm for Machine Learning and Data Mining
Publikacja -
Agent-Based Population Learning Algorithm for RBF Network Tuning
Publikacja -
Active Learning on Ensemble Machine-Learning Model to Retrofit Buildings Under Seismic Mainshock-Aftershock Sequence
PublikacjaThis research presents an efficient computational method for retrofitting of buildings by employing an active learning-based ensemble machine learning (AL-Ensemble ML) approach developed in OpenSees, Python and MATLAB. The results of the study shows that the AL-Ensemble ML model provides the most accurate estimations of interstory drift (ID) and residual interstory drift (RID) for steel structures using a dataset of 2-, to 9-story...
-
A Note on Knowledge Management Education: Towards Implementing Active Learning Methods
PublikacjaKnowledge Management as an area of education is still a big challenge for teachers and practitioners. Nevertheless, there are several useful teaching methods in active education, especially oriented towards courses where innovation and delivering dynamic knowledge are critical. The goal of the paper is to present and discuss criteria relevant in the selection of active educational methods supporting knowledge management courses....
-
Learning from Imbalanced Data Using Over-Sampling and the Firefly Algorithm
Publikacja -
Designing RBF Networks Using the Agent-Based Population Learning Algorithm
Publikacja -
Active learning on stacked machine learning techniques for predicting compressive strength of alkali-activated ultra-high-performance concrete
PublikacjaConventional ultra-high performance concrete (UHPC) has excellent development potential. However, a significant quantity of CO2 is produced throughout the cement-making process, which is in contrary to the current worldwide trend of lowering emissions and conserving energy, thus restricting the further advancement of UHPC. Considering climate change and sustainability concerns, cementless, eco-friendly, alkali-activated UHPC (AA-UHPC)...
-
Reinforcement Learning Algorithm and FDTD-based Simulation Applied to Schroeder Diffuser Design Optimization
PublikacjaThe aim of this paper is to propose a novel approach to the algorithmic design of Schroeder acoustic diffusers employing a deep learning optimization algorithm and a fitness function based on a computer simulation of the propagation of acoustic waves. The deep learning method employed for the research is a deep policy gradient algorithm. It is used as a tool for carrying out a sequential optimization process the goal of which is...
-
Experimental Evaluation of the Agent-Based Population Learning Algorithm for the Cluster-Based Instance Selection
Publikacja -
Edu Inspiracje WZiE: Active Learning, czyli o mocy aktywnego przetwarzania informacji
Publikacja -
Unsupervised machine-learning classification of electrophysiologically active electrodes during human cognitive task performance
PublikacjaIdentification of active electrodes that record task-relevant neurophysiological activity is needed for clinical and industrial applications as well as for investigating brain functions. We developed an unsupervised, fully automated approach to classify active electrodes showing event-related intracranial EEG (iEEG) responses from 115 patients performing a free recall verbal memory task. Our approach employed new interpretable...
-
Iterative learning approach to active noise control of highly autocorrelated signals with applications to machinery noise
PublikacjaThis paper discusses the design and application of iterative learning control (ILC) and repetitive control (RC) for high modal density systems. Typical examples of these systems are structural and acoustical systems considered in active structural acoustic control (ASAC) and active noise control (ANC) applications. The application of traditional ILC and RC design techniques, which are based on a parametric system model, on systems...
-
SELECTING A REPRESENTATIVE DATA SET OF THE REQUIRED SIZE USING THE AGENT-BASED POPULATION LEARNING ALGORITHM
Publikacja -
Satellite Image Classification Using a Hierarchical Ensemble Learning and Correlation Coefficient-Based Gravitational Search Algorithm
PublikacjaSatellite image classification is widely used in various real-time applications, such as the military, geospatial surveys, surveillance and environmental monitoring. Therefore, the effective classification of satellite images is required to improve classification accuracy. In this paper, the combination of Hierarchical Framework and Ensemble Learning (HFEL) and optimal feature selection is proposed for the precise identification...
-
An algorithm for selecting a machine learning method for predicting nitrous oxide emissions in municipal wastewater treatment plants
PublikacjaThis study presents an advanced algorithm for selecting machine learning (ML) models for nitrous oxide (N2O) emission prediction in wastewater treatment plants (WWTPs) employing the activated sludge process. The examined ML models comprised multivariate adaptive regression spline (MARS), support vector machines (SVM), and extreme gradient boosting (XGboost). The study explores the concept that involves new criteria to select the...
-
Active Annotation in Evaluating the Credibility of Web-Based Medical Information: Guidelines for Creating Training Data Sets for Machine Learning
PublikacjaMethods Results Discussion References Abbreviations Copyright Abstract Background: The spread of false medical information on the web is rapidly accelerating. Establishing the credibility of web-based medical information has become a pressing necessity. Machine learning offers a solution that, when properly deployed, can be an effective tool in fighting medical misinformation on the web. Objective: The aim of this study is to...
-
Machine Learning Algorithm-Based Tool and Digital Framework for Substituting Daylight Simulations In Early- Stage Architectural Design Evaluation
PublikacjaThe aim of this paper is to examine the new method of obtaining the simulation-based results using backpropagation of errors artificial neural networks. The primary motivation to conduct the research was to determine an alternative, more efficient and less timeconsuming method which would serve to achieve the results of daylight simulations. Three daylight metrics: Daylight Factor, Daylight Autonomy and Daylight Glare Probability have...
-
Determinants of anxiety levels among young males in a threat of experiencing military conflict–Applying a machine-learning algorithm in a psychosociological study
Publikacja -
Robust-adaptive dynamic programming-based time-delay control of autonomous ships under stochastic disturbances using an actor-critic learning algorithm
PublikacjaThis paper proposes a hybrid robust-adaptive learning-based control scheme based on Approximate Dynamic Programming (ADP) for the tracking control of autonomous ship maneuvering. We adopt a Time-Delay Control (TDC) approach, which is known as a simple, practical, model free and roughly robust strategy, combined with an Actor-Critic Approximate Dynamic Programming (ACADP) algorithm as an adaptive part in the proposed hybrid control...
-
Exploration of the Solubility Hyperspace of Selected Active Pharmaceutical Ingredients in Choline- and Betaine-Based Deep Eutectic Solvents: Machine Learning Modeling and Experimental Validation
PublikacjaDeep eutectic solvents (DESs) are popular green media used for various industrial, pharmaceutical, and biomedical applications. However, the possible compositions of eutectic systems are so numerous that it is impossible to study all of them experimentally. To remedy this limitation, the solubility landscape of selected active pharmaceutical ingredients (APIs) in choline chloride- and betaine-based deep eutectic solvents was...
-
„Active learning w praktyce” - 17. Szkolenie certyfikowane 13.12.2022 r.
Kursy Online -
„Active learning w praktyce” - 4. Szkolenie certyfikowane 21.10.2022 r.
Kursy Online -
Active Control of Highly Autocorrelated Machinery Noise in Multivariate Nonminimum Phase Systems
PublikacjaIn this paper, a novel multivariate active noise control scheme, designed to attenuate disturbances with high autocorrelation characteristics and preserve background signals, is proposed. The algorithm belongs to the class of feedback controllers and, unlike the popular feedforward FX-LMS approach, does not require availability of a reference signal. The proposed approach draws its inspiration from the iterative learning control...
-
СИЛОВОЙ ПРЕОБРАЗОВАТЕЛЬ С АКТИВНЫМ ПОДАВЛЕНИЕМ ВЫСШИХ ГАРМОНИК ДЛЯ СИСТЕМ ЭЛЕКТРОСНАБЖЕНИЯ ЛЕТАТЕЛЬНЫХ АППАРАТОВ (Power converter with active suppression of higher harmonics for aircraft power supply systems)
PublikacjaПредставлены два алгоритма активной фильтрации для силового преобразователя с активным подавлением высших гармоник. Первый алгоритм основан на дискретном преобразовании Фурье: посредством синтезированной системы управления инвертированные измеренные высшие гармоники напряжения поступают на вход инвертора. Второй метод управления основан на алгоритме с использованием принципов самообучения, что значительно снижает потребность в...
-
Active Kriging-based conjugate first-order reliability method for highly efficient structural reliability analysis using resample strategy
PublikacjaEfficient structural reliability analysis method is crucial to solving reliability analysis of complex structural problems. High-computational cost and low-failure probability problems greatly limit the efficiency in structural reliability analysis problems, causing the safety and reliability of the structure to be questioned. In this work, a highly efficient structural reliability analysis method coupling active Kriging algorithm...
-
Bi-GRU-APSO: Bi-Directional Gated Recurrent Unit with Adaptive Particle Swarm Optimization Algorithm for Sales Forecasting in Multi-Channel Retail
PublikacjaIn the present scenario, retail sales forecasting has a great significance in E-commerce companies. The precise retail sales forecasting enhances the business decision making, storage management, and product sales. Inaccurate retail sales forecasting can decrease customer satisfaction, inventory shortages, product backlog, and unsatisfied customer demands. In order to obtain a better retail sales forecasting, deep learning models...
-
Optymalizacja zasobów chmury obliczeniowej z wykorzystaniem inteligentnych agentów w zdalnym nauczaniu
PublikacjaRozprawa dotyczy optymalizacji zasobów chmury obliczeniowej, w której zastosowano inteligentne agenty w zdalnym nauczaniu. Zagadnienie jest istotne w edukacji, gdzie wykorzystuje się nowoczesne technologie, takie jak Internet Rzeczy, rozszerzoną i wirtualną rzeczywistość oraz deep learning w środowisku chmury obliczeniowej. Zagadnienie jest istotne również w sytuacji, gdy pandemia wymusza stosowanie zdalnego nauczania na dużą skalę...
-
Przegląd metod szybkiego prototypowania algorytmów uczenia maszynowego w FPGA
PublikacjaW artykule opisano możliwe do wykorzystania otwarte narzędzia wspomagające szybkie prototypowanie algorytmów uczenia maszynowego (ML) i sztucznej inteligencji (AI) przy użyciu współczesnych platform FPGA. Przedstawiono przykład szybkiej ścieżki przy realizacji toru wideo wraz z implementacją przykładowego algorytmu prze-twarzania w trybie na żywo.
-
Diagnostyka łożysk silnika indukcyjnego na podstawie prądu zasilającego przy użyciu sztucznych sieci neuronowych
PublikacjaW artykule zawarto wyniki badań dotyczące diagnostyki łożysk silnika indukcyjnego na podstawie pomiarów prądu zasilającego z wyko-rzystaniem sztucznych sieci neuronowych. Zaprezentowano wyniki uczenia sieci oraz rezultaty testów przeprowadzonych na danych spoza zbioru uczącego. Badania wykonane zostały na obiektach z celowo wprowadzonymi uszkodzeniami łożysk. Przedstawiona nowa koncepcja zakłada użycie zestawu sieci neuronowych...
-
Justyna Szostak dr inż.
OsobyI Gdańsk University of Technology: Chair of the Rector’s Internationalization Committee (October 2020 - Present) Erasmus + Coordinator for students and staff members, Faculty of Applied Physics and Mathematics (Mar 2017 - Present) Dean's Proxy for Internationalization, Faculty of Applied Physics and Mathematics (October 2020 - Present) Coordinator of the International Relations Office of the Faculty of Applied Physics and...
-
Poprawa jakości klasyfikacji głębokich sieci neuronowych poprzez optymalizację ich struktury i dwuetapowy proces uczenia
PublikacjaW pracy doktorskiej podjęto problem realizacji algorytmów głębokiego uczenia w warunkach deficytu danych uczących. Głównym celem było opracowanie podejścia optymalizującego strukturę sieci neuronowej oraz zastosowanie uczeniu dwuetapowym, w celu uzyskania mniejszych struktur, zachowując przy tym dokładności. Proponowane rozwiązania poddano testom na zadaniu klasyfikacji znamion skórnych na znamiona złośliwe i łagodne. W pierwszym...
-
Diagnostyka łożysk silnika indukcyjnego na podstawie prądu zasilającego przy użyciu sztucznych sieci neuronowych
PublikacjaW artykule zawarto wyniki badań dotyczące diagnostyki łożysk silnika indukcyjnego na podstawie pomiarów prądu zasilającego z wykorzystaniem sztucznych sieci neuronowych. Zaprezentowano wyniki uczenia sieci oraz rezultaty testów przeprowadzonych na danych spoza zbioru uczącego. Badania wykonane zostały na obiektach z celowo wprowadzonymi uszkodzeniami łożysk. Przedstawiona nowa koncepcja zakłada użycie zestawu sieci neuronowych...
-
Akustyczna analiza parametrów ruchu drogowego z wykorzystaniem informacji o hałasie oraz uczenia maszynowego
PublikacjaCelem rozprawy było opracowanie akustycznej metody analizy parametrów ruchu drogowego. Zasada działania akustycznej analizy ruchu drogowego zapewnia pasywną metodę monitorowania natężenia ruchu. W pracy przedstawiono wybrane metody uczenia maszynowego w kontekście analizy dźwięku (ang.Machine Hearing). Przedstawiono metodologię klasyfikacji zdarzeń w ruchu drogowym z wykorzystaniem uczenia maszynowego. Przybliżono podstawowe...
-
Predykcyjne sterowanie równoległym filtrem aktywnym ze sprzężeniem od prądu zasilającego
PublikacjaArtykuł przedstawia nowatorską strategię predykcyjnego sterowania równoległym energetycznym filtrem aktywnym (EFA). Proponowane sterowanie zawiera sprzężenie zwrotne od prądu zasilającego i wiąże zalety sterowania w układzie otwartym oraz zamkniętym – szybkość reakcji na zmianę prądu odbioru i bardzo wysoką skuteczność kompensacji. Wysoka jakość prądu kompensacyjnego wynika również z zastosowania w sterowaniu algorytmów predykcyjnych,...
-
TF-IDF weighted bag-of-words preprocessed text documents from Simple English Wikipedia
Dane BadawczeThe SimpleWiki2K-scores dataset contains TF-IDF weighted bag-of-words preprocessed text documents (raw strings are not available) [feature matrix] and their multi-label assignments [label-matrix]. Label scores for each document are also provided for an enhanced multi-label KNN [1] and LEML [2] classifiers. The aim of the dataset is to establish a benchmark...
-
Techniki nauczania na odległość_2022 [Moduł III obowiązkowy, grupy A i B]
Kursy OnlineKurs 10 godzin (1-15 kwietnia, godz. 9:30-13:30) Program kursu: Podstawy neurobiologiczne procesów uczenia się. Small teaching czyli pierwsze i ostatnie 5 minut zajęć. Active learning. Projektowanie interakcji podczas zajęć zdalnych. Przegląd i warsztatowa praca z aplikacjami wspomagającymi utrzymanie zaangażowania podczas zajęć zdalny Grywalizacja w procesach uczenia się. Realizacja kursu: Kurs realizowany jest w...
-
Model-free and Model-based Reinforcement Learning, the Intersection of Learning and Planning
PublikacjaMy doctoral dissertation is intended as the compound of four publications considering: structure and randomness in planning and reinforcement learning, continuous control with ensemble deep deterministic policy gradients, toddler-inspired active representation learning, and large-scale deep reinforcement learning costs.
-
E-learning courses
Kursy OnlineStrona zawiera zbiór kursów prowadzonych metodą e-learning. Kursy te są skierowane do studentów I stopnia kierunku informatyka na VII semestrze profilu Bazy danych, do studentów na kierunku informatyka na II semestrze studiów II stopnia na specjalności ZAD i ISI.
-
Machine learning for PhD students
Kursy OnlineAn introductory course in machine learning for PhD students from Department of Geotechnical and Hydraulic Engineering
-
Deep Learning Basics 2023/24
Kursy OnlineA course about the basics of deep learning intended for students of Computer Science. It includes an introduction to supervised machine learning, the architecture of basic artificial neural networks and their training algorithms, as well as more advanced architectures (convolutional networks, recurrent networks, transformers) and regularization and optimization techniques.
-
e-Learning - user's guide for students
Kursy Onlinee-Learning - user's guide for students
-
Adversarial attack algorithm for traffic sign recognition
PublikacjaDeep learning suffers from the threat of adversarial attacks, and its defense methods have become a research hotspot. In all applications of deep learning, intelligent driving is an important and promising one, facing serious threat of adversarial attack in the meanwhile. To address the adversarial attack, this paper takes the traffic sign recognition as a typical object, for it is the core function of intelligent driving. Considering...
-
Adaptive Algorithm for Interactive Question-based Search
PublikacjaPopular web search engines tend to improve the relevanceof their result pages, but the search is still keyword-oriented and far from "understanding" the queries' meaning. In the article we propose an interactive question-based search algorithm that might come up helpful for identifying users' intents. We describe the algorithm implemented in a form of a questions game. The stress is put mainly on the most critical aspect of this...
-
Lifelong Learning Idea in Architectural Education
PublikacjaThe recent advances in IT and technology are forcing changes in the approach to educating society. In the 20th century, life-long learning was understood as educating adults in order to improve their occupational qualifications. Life-long learning allows the needs of the present-day world to be addressed through providing the individual with education at every stage of his/her life various forms. The search for a new model...
-
Machine Learning in Multi-Agent Systems using Associative Arrays
PublikacjaIn this paper, a new machine learning algorithm for multi-agent systems is introduced. The algorithm is based on associative arrays, thus it becomes less complex and more efficient substitute of artificial neural networks and Bayesian networks, which is confirmed by performance measurements. Implementation of machine learning algorithm in multi-agent system for aided design of selected control systems allowed to improve the performance...
-
Deep Learning
PublikacjaDeep learning (DL) is a rising star of machine learning (ML) and artificial intelligence (AI) domains. Until 2006, many researchers had attempted to build deep neural networks (DNN), but most of them failed. In 2006, it was proven that deep neural networks are one of the most crucial inventions for the 21st century. Nowadays, DNN are being used as a key technology for many different domains: self-driven vehicles, smart cities,...