wyświetlamy 1000 najlepszych wyników Pomoc
Wyniki wyszukiwania dla: COUPLED SCHRÖDINGER EQUATIONS
-
Coupled nonlinear Schrödinger equations in optic fibers theory
PublikacjaIn this paper a detailed derivation and numerical solutions of CoupledNonlinear Schr¨odinger Equations for pulses of polarized electromagnetic wavesin cylindrical fibers has been reviewed. Our recent work has been compared withsome previous ones and the advantage of our new approach over other methods hasbeen assessed. The novelty of our approach lies is an attempt to proceed withoutloss of information within the frame of basic...
-
Very accurate time propagation of coupled Schrödinger equations for femto- and attosecond physics and chemistry, with C++ source code
PublikacjaIn this article, I present a very fast and high-precision (up to 33 decimal places) C++ implementation of the semi-global time propagation algorithm for a system of coupled Schrödinger equations with a time-dependent Hamiltonian. It can be used to describe time-dependent processes in molecular systems after excitation by femto- and attosecond laser pulses. It also works with an arbitrary user supplied Hamiltonian and can be used...
-
On convergence and stability of a numerical scheme of Coupled Nonlinear Schrödinger Equations
PublikacjaRozważamy rozwiązania numeryczne układu sprężynowych równań nieliniowych Schrödingera. Udowodniliśmy stabilność i zbieżność. Testujemy za pomocą rozwiązań solitonowych.
-
Variational principles for bound states of Schrödinger and Dirac equations allowing the use of discontinuous trial functions
PublikacjaWe present systematic constructions of variational principles for energies of bound states of the Schroedinger and Dirac equations. The principles allow the use of discontinuous trial functions. The method employed is based on a generalized Lagrange procedure. Relationships between our variational principles and those available in the literature are established.
-
Existence of solutions for a coupled system of difference equations with cousal operators
PublikacjaPraca dotyczy układów równań różnicowych. Podano warunki dostateczne na istnienie rozwiązań takich problemów. Badano również nierówności różnicowe.
-
Solution of coupled integral equations for quantum scattering in the presence of complex potentials
PublikacjaIn this paper, we present a method to compute solutions of coupled integral equations for quantum scattering problems in the presence of a complex potential. We show how the elastic and absorption cross sections can be obtained from the numerical solution of these equations in the asymptotic region at large radial distances.
-
Approximate solution for Euler equations of stratified water via numerical solution of coupled KdV system
PublikacjaWe consider Euler equations with stratified background state that is valid for internal water waves. The solution of the initial-boundary problem for Boussinesq approximation in the waveguide mode is presented in terms of the stream function. The orthogonal eigenfunctions describe a vertical shape of the internal wave modes and satisfy a Sturm-Liouville problem. The horizontal profile is defined by a coupled KdV system which is...
-
Multimode systems of nonlinear equations: derivation, integrability, and numerical solutions
PublikacjaWe consider the propagation of electromagnetic pulses in isotropic media taking a third-order nonlinearityinto account. We develop a method for transforming Maxwell's equations based on a complete set ofprojection operators corresponding to wave-dispersion branches (in a waveguide or in matter) with thepropagation direction taken into account. The most important result of applying the method is a systemof equations describing the...
-
Formulation of Time-Fractional Electrodynamics Based on Riemann-Silberstein Vector
PublikacjaIn this paper, the formulation of time-fractional (TF) electrodynamics is derived based on the Riemann-Silberstein (RS) vector. With the use of this vector and fractional-order derivatives, one can write TF Maxwell’s equations in a compact form, which allows for modelling of energy dissipation and dynamics of electromagnetic systems with memory. Therefore, we formulate TF Maxwell’s equations using the RS vector and analyse their...
-
Systems, environments, and soliton rate equations: A non-Kolmogorovian framework for population dynamics
PublikacjaSoliton rate equations are based on non-Kolmogorovian models of probability and naturally include autocatalytic processes. The formalism is not widely known but has great unexplored potential for applications to systems interacting with environments. Beginning with links of contextuality to non- Kolmogorovity we introduce the general formalism of soliton rate equations and work out explicit examples of subsystems interacting with...
-
Multi-headed chimera states in coupled pendula
PublikacjaWe discuss the occurrence of the chimera states in the network of coupled, excited by the clock’s mechanisms pendula. We find the patterns of multi-headed chimera states in which pendula clustered in different heads behave differently (oscillate with different frequencies) and create different types of synchronous states (complete or phase synchronization). The mathematical model of the network shows that the observed chimera states...
-
Monotone iterative method to second order differential equations with deviating arguments involving Stieltjes integral boundary conditions
PublikacjaWe use a monotone iterative method for second order differential equations with deviating arguments and boundary conditions involving Stieltjes integrals. We establish sufficient conditions which guarantee that such problems have extremal solutions in the corresponding region bounded by lower and upper solutions. We also discuss the situation when problems have coupled quasi-solutions. We illustrate our results by three examples.
-
The equations for interactions of polarization modes in optical fibres including the kerr effect
PublikacjaWe have derived coupled nonlinear Schro¨ dinger equations (CNLSE) for arbitrary polarized light propagation in a single-mode fibre employing electromagnetic field complete description. We used a basis of transverse eigenmodes with appropriate projecting; hence, the nonlinear constants depend on the waveguide geometry. Accounting for a weak nonlinearity, which is connected to the Kerr effect, we have given explicit expressions for...
-
A DISCRETE-CONTINUOUS METHOD OF MECHANICAL SYSTEM MODELLING
PublikacjaThe paper describes a discrete-continuous method of dynamic system modelling. The presented approach is hybrid in its nature, as it combines the advantages of spatial discretization methods with those of continuous system modelling methods. In the proposed method, a three-dimensional system is discretised in two directions only, with the third direction remaining continuous. The thus obtained discrete-continuous model is described...
-
Application of the distributed transfer function method and the rigid finite element method for modelling of 2-D and 3-D systems
PublikacjaIn the paper application of the Distributed Transfer Function Method and the Rigid Finite Element Method for modelling of 2-D and 3-D systems is presented. In this method an elastic body is divided into 1-D distributed parameter elements (strips or prisms). The whole body (divided into strips or prism) is described by a set of coupled partial differential equations. Solving this equations in the state space form it is possible...
-
Significant Production of Thermal Energy in Partially Ionized Hyperbolic Tangent Material Based on Ternary Hybrid Nanomaterials
PublikacjaNanoparticles are frequently used to enhance the thermal performance of numerous materials. This study has many practical applications for activities that have to minimize losses of energy due to several impacts. This study investigates the inclusion of ternary hybrid nanoparticles in a partially ionized hyperbolic tangent liquid passed over a stretched melting surface. The fluid motion equation is presented by considering the...
-
Differential Quadrature Method for Dynamic Buckling of Graphene Sheet Coupled by a Viscoelastic Medium Using Neperian Frequency Based on Nonlocal Elasticity Theory
PublikacjaIn the present study, the dynamic buckling of the graphene sheet coupled by a viscoelastic matrix was studied. In light of the simplicity of Eringen's non-local continuum theory to considering the nanoscale influences, this theory was employed. Equations of motion and boundary conditions were obtained using Mindlin plate theory by taking nonlinear strains of von Kármán and Hamilton's principle into account. On the other hand, a...
-
Asymptotic Expansion Method with Respect to Small Parameter for Ternary Diffusion Models
PublikacjaTernary diffusion models lead to strongly coupled systems of PDEs. We choose the smallest diffusion coefficient as a small parameter in a power series expansion whose components fulfill relatively simple equations. Although this series is divergent, one can use its finite sums to derive feasible numerical approximations, e.g. finite difference methods (FDMs).
-
Simulations of flows in the coastal zone of the Baltic Sea
Dane BadawczeThe study area is located in the Southern Baltic, within Polish Marine Areas, adjacent to the coastline in the vicinity of Lubiatowo village, where The Coastal Research Station (CRS) – a field laboratory of the Institute of Hydro-Engineering of the Polish Academy of Sciences (IBW PAN) –is situated. The numerical reconstruction of the coastal flow was...
-
Estimation of a Stochastic Burgers' Equation Using an Ensemble Kalman Filter
PublikacjaIn this work, we consider a difficult problem of state estimation of nonlinear stochastic partial differential equations (SPDE) based on uncertain measurements. The presented solution uses the method of lines (MoL), which allows us to discretize a stochastic partial differential equation in a spatial dimension and represent it as a system of coupled continuous-time ordinary stochastic differential equations (SDE). For such a system...
-
Bending analysis of functionally graded nanoplates based on a higher-order shear deformation theory using dynamic relaxation method
PublikacjaIn this paper, bending analysis of rectangular functionally graded (FG) nanoplates under a uniform transverse load has been considered based on the modified couple stress theory. Using Hamilton’s principle, governing equations are derived based on a higher-order shear deformation theory (HSDT). The set of coupled equations are solved using the dynamic relaxation (DR) method combined with finite difference (FD) discretization technique...
-
Coupled Urban Areas Inundation Model with Interaction Between Storm Water System and Surface Flow - Case Study of Sea Level Impact on Seaside Areas Flooding
PublikacjaInundations are becoming more frequent than ever. What is connected with increasing area of impervious surface in cities. This makes predicting urban flooding and its scale especially important. At the seaside we observe additional conditions such as sea level that makes accurate numerical modelling of issue even harder. With complex approach to the matter which is simultaneous calculation of storm water conduit flow and overland...
-
Nonlinear planar modeling of massive taut strings travelled by a force-driven point-mass
PublikacjaThe planar response of horizontal massive taut strings, travelled by a heavy point-mass, either driven by an assigned force, or moving with an assigned law, is studied. A kinematically exact model is derived for the free boundary problem via a variational approach, accounting for the singularity in the slope of the deflected string. Reactive forces exchanged between the point-mass and the string are taken into account via Lagrange...
-
On Nonlinear Bending Study of a Piezo-Flexomagnetic Nanobeam Based on an Analytical-Numerical Solution
PublikacjaAmong various magneto-elastic phenomena, flexomagnetic (FM) coupling can be defined as a dependence between strain gradient and magnetic polarization and, contrariwise, elastic strain and magnetic field gradient. This feature is a higher-order one than piezomagnetic, which is the magnetic response to strain. At the nanoscale, where large strain gradients are expected, the FM effect is significant and could be even dominant. In...
-
Vibrational excitation of acetylene by positron impact
PublikacjaVibrationally inelastic quantum calculations are carried out at low collision energies for the scattering of a beam of positrons off acetylene gaseous molecules. The normal mode analysis is assumed to be valid and the relative fluxes into the C–C and C–H symmetric vibrational modes are computed within a Body-Fixed (BF) formulation of the dynamics by solving the relevant vibrational Coupled Channels (VCC) equations. The clear dominance...
-
Path integrals formulations leading to propagator evaluation for coupled linear physics in large geometric models
PublikacjaReformulating linear physics using second kind Fredholm equations is very standard practice. One of the straightforward consequences is that the resulting integrals can be expanded (when the Neumann expansion converges) and probabilized, leading to path statistics and Monte Carlo estimations. An essential feature of these algorithms is that they also allow to estimate propagators for all types of sources, including initial conditions....
-
Assessment of dynamic characteristics of thin cylindrical sandwich panels with magnetorheological core
PublikacjaBased on the equivalent single-layer linear theory for laminated shells, free and forced vibrations of thin cylindrical sandwich panels with magnetorheological core are studied. Five variants of available magnetorheological elastomers differing in their composition and physical properties are considered for smart viscoelastic core. Coupled differential equations in terms of displacements based on the generalized kinematic hypotheses...
-
A chemo-mechano-thermodynamical contact theory for adhesion, friction, and (de)bonding reactions
PublikacjaThis work presents a self-contained continuum formulation for coupled chemical, mechanical, and thermal contact interactions. The formulation is very general and, hence, admits arbitrary geometry, deformation, and material behavior. All model equations are derived rigorously from the balance laws of mass, momentum, energy, and entropy in the framework of irreversible thermodynamics, thus exposing all the coupling present in the...
-
Effects of subfilter velocity modelling on dispersed phase in LES of heated channel flow
PublikacjaA non-isothermal turbulent flow with the dispersed phase is modelled using the Large Eddy Simulation (LES) approach for fluid, one-way coupled with the equations of point-particle evolution. The channel is heated at both walls and isoflux boundary conditions are applied for fluid. Particle velocity and thermal statistics are computed. Of particular interest are the r.m.s. profiles and the probability density function of particle...
-
Generalized Chebyshev Bandpass Filters With Frequency-Dependent Couplings Based on Stubs
PublikacjaThis paper presents an accurate synthesis method for inline and cross-coupled generalized Chebyshev bandpass filters with frequency-dependent couplings implemented via open and short stubs. The technique involves the synthesis of a lumped-element prototy pe in the form of a coupling matrix with a frequency-dependent term and the conversion of this prototype to a distributed-element mode l composed of sections of TEM lines. This...
-
Nonreciprocal cavities and the time-bandwidth limit: comment
PublikacjaIn their paper in Optica 6, 104 (2019), Mann et al. claim that linear, time-invariant nonreciprocal structures cannot overcome the time-bandwidth limit and do not exhibit an advantage over their reciprocal counterparts, specifically with regard to their time-bandwidth performance. In this Comment, we argue that these conclusions are unfounded. On the basis of both rigorous full-wave simulations and insightful physical justifications,...
-
Novel analysis methods of dynamic properties for vehicle pantographs
PublikacjaTransmission of electrical energy from a catenary system to traction units must be safe and reliable especially for high speed trains. Modern pantographs have to meet these requirements. Pantographs are subjected to several forces acting on their structural elements. These forces come from pantograph drive, inertia forces, aerodynamic effects, vibration of traction units etc. Modern approach to static and dynamic analysis should...
-
Buckling and shape control of prestressable trusses using optimum number of actuators
PublikacjaThis paper describes a method to control the nodal displacement of prestressable truss structures within the desired domains. At the same time, the stress in all members is unleashed to take any value between the allowable tensile stress and critical buckling stress. The shape and stresses are controlled by actuating the most active members. The technique considers the members’ initial crookedness, residual stresses, and slenderness...
-
Modeling and simulation of blood flow under the influence of radioactive materials having slip with MHD and nonlinear mixed convection
PublikacjaRadioactive materials are widely in industry, nuclear plants and medical treatments. Scientists and workers in these fields are mostly exposed to such materials, and adverse effects on blood and temperature profiles are observed. In this regard, objective of the current study is to model and simulate blood based nanofluid with three very important radioactive materials, named as Uranium dioxide (UO2), Thorium dioxide (ThO2) and...
-
Numerical Methods for Partial Differential Equations
Kursy OnlineCourse description: This course focuses on modern numerical techniques for linear and nonlinear elliptic, parabolic and hyperbolic partial differential equations (PDEs), and integral equations fundamental to a large variety of applications in science and engineering. Topics include: formulations of problems in terms of initial and boundary value problems; finite difference and finite element discretizations; boundary element approach;...
-
Thermomagnetic behavior of a semiconductor material heated by pulsed excitation based on the fourth-order MGT photothermal model
PublikacjaThis article proposes a photothermal model to reveal the thermo-magneto-mechanical properties of semiconductor materials, including coupled diffusion equations for thermal conductivity, elasticity, and excess carrier density. The proposed model is developed to account for the optical heating that occurs through the semiconductor medium. The Moore–Gibson–Thompson (MGT) equation of the fourth-order serves as the theoretical framework...
-
Windowing of the Discrete Green's Function for Accurate FDTD Computations
PublikacjaThe paper presents systematic evaluation of the applicability of parametric and nonparametric window functions for truncation of the discrete Green's function (DGF). This function is directly derived from the FDTD update equations, thus the FDTD method and its integral discrete formulation can be perfectly coupled using DGF. Unfortunately, the DGF computations require processor time, hence DGF has to be truncated with appropriate...
-
Thermal visualization of Ostwald-de Waele liquid in wavy trapezoidal cavity: Effect of undulation and amplitude
PublikacjaThe present study is concerned with the numerical simulations of Ostwald-de Waele fluid flow in a wavy trapezoidal cavity in the presence of a heated cylinder situated at the center of the cavity. The work consists in characterizing the mixed convection as a function of the intensity of heat flow. The flow behaviour and temperature distribution in a cavity are the main focus of this study. The lower wall of the cavity is fixed...
-
The use of thermal imaging camera to estimate velocity profiles based on temperature distribution in a free convection boundary layer
PublikacjaThis work describes an attempt to assess whether the temperature field from a thermal imaging camera can be converted into a velocity field with an accuracy sufficient for qualitative conducting or describing the phenomenon, i.e. when the Navier-Stokes, Fourier-Kirchhoff and continuity equations are mutually coupled. The consequence of this link between temperature fields and velocity is the possibility to formulate the hypothesis...
-
Equations with Separated Variables on Time Scales
PublikacjaWe show that the well-known theory for classical ordinary differential equations with separated variables is not valid in case of equations on time scales. Namely, the uniqueness of solutions does not depend on the convergence of appropriate integrals.
-
Fractional differential equations with causal operators
PublikacjaWe study fractional differential equations with causal operators. The existence of solutions is obtained by applying the successive approximate method. Some applications are discussed including also the case when causal operator Q is a linear operator. Examples illustrate some results.
-
On the Peano Theorem for Some Functional Differential Equations on Time Scale
PublikacjaThe Peano Theorem for some functional differential equations on time scale is proved. Assumptions are of Caratheodory type. Two counter examples for false Peano theorems in the literature are presented.
-
Yade-open DEM: an open-source software using a discrete element methodto simulate granular material
PublikacjaPurpose - YADE-OPEN DEM is an open source software based on the Discrete Element Method which uses object oriented programming techniques. The paper describes the softwarearchitecture.Design/methodology/approach - The DEM chosen uses position, orientation, velocity and angular velocity as independent variables of simulated particles which are subject to explicit leapfrog time-integration scheme (Lagrangian method). The three-dimensional...
-
Coupled Systems Mechanics
Czasopisma -
Parabolic Equations with Functional Dependence
PublikacjaWe consider the Cauchy problem for nonlinear parabolic equations with functional dependence and prove theorems on the existence of solutions to parabolic differential-functional equations.
-
Convergence of expansions in Schrödinger and Dirac eigenfunctions, with an application to the R-matrix theory
PublikacjaW pracy zbadano właściwości rozwinięć w szeregi funkcji własnych dla zagadnień Schrödingera i Diraca. Potwierdzono obserwacje poczynione wcześniej przez Rosenthala oraz przez Szmytkowskiego i Hinze, że szereg funkcyjny występujący w teorii R-macierzy dla cząstek Diraca w ogólności nie zbiega do funkcji ciągłej.
-
Równania całkowe (Integral equations) 2022/2023
Kursy OnlineWFTIMS, studia II stopnia, kierunek: Matematyka, specjalność: Geometria i grafika komputerowa, sem. 3
-
GENERAL DYNAMIC PROJECTING OF MAXWELL EQUATIONS
PublikacjaA complete – system of Maxwell equations is splitting into independent subsystems by means of a special dynamic projecting technique. The technique relies upon a direct link between field components that determine correspondent subspaces. The explicit form of links and corresponding subspace evolution equations are obtained in conditions of certain symmetry, it is illustrated by examples of spherical and quasi-one-dimensional waves.
-
Systems of Nonlinear Fractional Differential Equations
PublikacjaUsing the iterative method, this paper investigates the existence of a unique solution to systems of nonlinear fractional differential equations, which involve the right-handed Riemann-Liouville fractional derivatives D(T)(q)x and D(T)(q)y. Systems of linear fractional differential equations are also discussed. Two examples are added to illustrate the results.
-
Functional delay fractional equations
PublikacjaIn this paper, we discuss functional delay fractional equations. A Banach fixed point theorem is applied to obtain the existence (uniqueness) theorem. We also discuss such problems when a delay argument has a form α(t) = αt, 0 < α < 1, by Rusing the method of successive approximations. Some existence results are also formulated in this case. An example illustrates the main result.