Wyniki wyszukiwania dla: HOMOTOPY
-
On the homotopy equivalence of the spaces of proper and local maps
Publikacja -
Classification of homotopy classes of equivariant gradient maps
PublikacjaNiech V będzie ortogonalną reprezentacją zwartej grupy Liego Gi niech S(V),D(V) oznaczają sferę jednostkową i kulę jednostkową V.Jeżeli F jest G-niezmienniczą funkcją rzeczywistą klasy C^1 na Vto mówimy, że grad F (gradient F) jest dopuszczalny, jeżeli(grad F)(x) jest różny od zera dla x należących do S(V). Pracapoświęcona jest homotopijnej klasyfikacji dopuszczalnychG-niezmienniczych odwzorowań gradientowych.
-
On homotopy Conley index for multivalued flows in Hilbert spaces
PublikacjaPodano aproksymacyjną definicję indeksu homotopijnego, otrzymując naturalne związki z podobnymi niezmiennikami. Zbadano własności tego niezmiennika i zastosowano do badania gradientowych potoków wykazując pewne geometryczne własności zbiorów niezmienniczych
-
On relations between gradient and classical equivariant homotopy groups of spheres
PublikacjaWe investigate relations between stable equivariant homotopy groups of spheres in classical and gradient categories. To this end, the auxiliary category of orthogonal equivariant maps, a natural enlargement of the category of gradient maps, is used. Our result allows for describing stable equivariant homotopy groups of spheres in the category of orthogonal maps in terms of classical stable equivariant groups of spheres with shifted...
-
Fault diagnosis of analog piecewise linear circuits based on homotopy
PublikacjaArtykuł opisuje weryfikację metodą diagnostyki analogowych układów odcinkowo-liniowych opartą na podejściu homotopijnym. Homotopia przekształca jedną funkcję f(x) w inną funkcję g(x) poprzez zmianę parametru homotopii tî[0,1]. Ścieżka homotopijna pokazuje drogę od punktu x0 z dziedziny funkcji f(x) do odpowiadającego mu punktu x* funkcji g(x). Idea metody zakłada wykorzystanie funkcji f(x) do opisu diagnozowanego układu w stanie...
-
The homotopy type of the space of gradient vector fields on the two-dimensional disc
PublikacjaWe prove that the inclusion of the space of gradient vector fields into the space of all vector fields on D^2 non-vanishing in S^1 is a homotopy equivalence
-
Homotopy invariance of the Conley index and local Morse homology in Hilbert spaces
PublikacjaIn this paper we introduce a new compactness condition — Property-(C) — for flows in (not necessary locally compact) metric spaces. For such flows a Conley type theory can be developed. For example (regular) index pairs always exist for Property-(C) flows and a Conley index can be defined. An important class of flows satisfying the this compactness condition are LS-flows. We apply E-cohomology to index pairs of LS-flows and obtain...
-
Journal of Homotopy and Related Structures
Czasopisma -
Reducing the number of periodic points in the smooth homotopy class of a self-map of a simply-connected manifold with periodic sequence of Lefschetz numbers
PublikacjaLet f be a smooth self-map of an m-dimensional (m >3) closed connected and simply-connected manifold such that the sequence of the Lefschetz num- bers of its iterations is periodic. For a fixed natural r we wish to minimize, in the smooth homotopy class, the number of periodic points with periods less than or equal to r. The resulting number is given by a topological invariant J[f] which is defned in combinatorial terms and is...
-
Homology Homotopy and Applications
Czasopisma -
Gradient versus proper gradient homotopies
PublikacjaWe compare the sets of homotopy classes of gradient and proper gradient vector fields in the plane. Namely, we show that gradient and proper gradient homotopy classi cations are essentially different. We provide a complete description of the sets of homotopy classes of gradient maps from R^n to R^n and proper gradient maps from R^2 to R^2 with the Brouwer degree greater or equal to zero.
-
Minimal number of periodic points with the periods less or equal to r in the smooth homotopy class of simply-connected manifolds of dimension 4 and homology groups with the sum of ranks less or equal to10
Dane BadawczeAn important problem in periodic point theory is minimization of the number of periodic points with periods <= r in a given class of self-maps of a space. A closed smooth and simply-connected manifolds of dimension 4 and its self-maps f with periodic sequence of Lefschetz numbers are considered. The topological invariant Jr[f] is equal to the minimal...
-
Minimal number of periodic points with the periods less or equal to r in the smooth homotopy class of simply-connected manifolds of dimension 6 and homology groups with the sum of ranks less or equal to10
Dane BadawczeAn important problem in periodic point theory is minimization of the number of periodic points with periods <= r in a given class of self-maps of a space. A closed smooth and simply-connected manifolds of dimension 6 and its self-maps f with periodic sequence of Lefschetz numbers are considered. The topological invariant Jr[f] is equal to the minimal...
-
Minimal number of periodic points with the periods less or equal to r in the smooth homotopy class of simply-connected manifolds of dimension 5 and homology groups with the sum of ranks less or equal to10
Dane BadawczeAn important problem in periodic point theory is minimization of the number of periodic points with periods <= r in a given class of self-maps of a space. A closed smooth and simply-connected manifolds of dimension 5 and its self-maps f with periodic sequence of Lefschetz numbers are considered. The topological invariant Jr[f] is equal to the minimal...
-
Minimal number of periodic points with the periods less or equal to r in the smooth homotopy class of simply-connected manifolds of dimension 8 and homology groups with the sum of ranks less or equal to 10
Dane BadawczeAn important problem in periodic point theory is minimization of the number of periodic points with periods <= r in a given class of self-maps of a space. A closed smooth and simply-connected manifolds of dimension 8 and its self-maps f with periodic sequence of Lefschetz numbers are considered. The topological invariant Jr[f] is equal to the minimal...
-
Minimal number of periodic points with the periods less or equal to r in the smooth homotopy class of simply-connected manifolds of dimension 7 and homology groups with the sum of ranks less or equal to10
Dane BadawczeAn important problem in periodic point theory is minimization of the number of periodic points with periods <= r in a given class of self-maps of a space. A closed smooth and simply-connected manifolds of dimension 7 and its self-maps f with periodic sequence of Lefschetz numbers are considered. The topological invariant Jr[f] is equal to the minimal...
-
Minimization of the number of periodic points for smooth self-maps of simply-connected manifolds with periodic sequence of Lefschetz numbers
PublikacjaLet f be a smooth self-map of m-dimensional, m ≥ 4, smooth closed connected and simply-connected manifold, r a fixed natural number. For the class of maps with periodic sequence of Lefschetz numbers of iterations the authors introduced in [Graff G., Kaczkowska A., Reducing the number of periodic points in smooth homotopy class of self-maps of simply-connected manifolds with periodic sequence of Lefschetz numbers, Ann. Polon. Math....
-
On homotopies of morphisms and admissible mappings
PublikacjaThe notion of homotopy in the category of morphisms introduced by G´orniewicz and Granas is proved to be equivalence relation which was not clear for years. Some simple properties are proved and a coincidence point index is described.
-
Topological invariants for equivariant flows: Conley index and degree
PublikacjaAbout forty years have passed since Charles Conley defined the homotopy index. Thereby, he generalized the ideas that go back to the calculus of variations work of Marston Morse. Within this long time the Conley index has proved to be a valuable tool in nonlinear analysis and dynamical systems. A significant development of applied methods has been observed. Later, the index theory has evolved to cover such areas as discrete dynamical...
-
On a comparison principle and the uniqueness of spectral flow
PublikacjaThe spectral flow is a well-known quantity in spectral theory that measures the variation of spectra about 0 along paths of selfadjoint Fredholm operators. The aim of this work is twofold. Firstly, we consider homotopy invariance properties of the spectral flow and establish a simple formula which comprises its classical homotopy invariance and yields a comparison theorem for the spectral flow under compact perturbations. We apply...
-
Minimization of the number of periodic points for smooth self-maps of closed simply-connected 4-manifolds
PublikacjaLet M be a smooth closed simply-connected 4-dimensional manifold, f be a smooth self-map of M with fast grow of Lefschetz numbers and r be a product of different primes. The authors calculate the invariant equal to the minimal number of r-periodic points in the smooth homotopy class of f.
-
Seiberg-Witten invariants the topological degree and wall crossing formula
PublikacjaFollowing S. Bauer and M. Furuta we investigate finite dimensional approximations of a monopole map in the case b 1 = 0. We define a certain topological degree which is exactly equal to the Seiberg-Witten invariant. Using homotopy invariance of the topological degree a simple proof of the wall crossing formula is derived.
-
Minimal number of periodic points of smooth boundary-preserving self-maps of simply-connected manifolds
PublikacjaLet M be a smooth compact and simply-connected manifold with simply-connected boundary ∂M, r be a fixed odd natural number. We consider f, a C1 self-map of M, preserving ∂M . Under the assumption that the dimension of M is at least 4, we define an invariant Dr(f;M,∂M) that is equal to the minimal number of r-periodic points for all maps preserving ∂M and C1-homotopic to f. As an application, we give necessary and sufficient...
-
The cohomological span of LS-Conley index
PublikacjaIn this paper we introduce a new homotopy invariant – the cohomological span of LS-Conley index. We prove the theorems on the existence of critical points for a class of strongly indefinite functionals with the gradient of the form Lx+K(x), where L is bounded linear and K is completely continuous. We give examples of Hamiltonian systems for which our methods give better results than the Morse inequalities. We also give a formula...
-
An algorithmic approach to estimating the minimal number of periodic points for smooth self-maps of simply-connected manifolds
PublikacjaFor a given self-map f of M, a closed smooth connected and simply-connected manifold of dimension m 4, we provide an algorithm for estimating the values of the topological invariant D^m_r [f], which equals the minimal number of r-periodic points in the smooth homotopy class of f. Our results are based on the combinatorial scheme for computing D^m_r [f] introduced by G. Graff and J. Jezierski [J. Fixed Point Theory Appl. 13 (2013),...
-
Estimation of the minimal number of periodic points for smooth self-maps of odd dimensional real projective spaces
PublikacjaLet f be a smooth self-map of a closed connected manifold of dimension m⩾3. The authors introduced in [G. Graff, J. Jezierski, Minimizing the number of periodic points for smooth maps. Non-simply connected case, Topology Appl. 158 (3) (2011) 276-290] the topological invariant NJD_r[f], where r is a fixed natural number, which is equal to the minimal number of r-periodic points in the smooth homotopy class of f. In this paper smooth...
-
Combinatorial scheme of finding minimal number of periodic points for smooth self-maps of simply connected manifolds
PublikacjaLet M be a closed smooth connected and simply connected manifold of dimension m at least 3, and let r be a fixed natural number. The topological invariant D^m_r [f], defined by the authors in [Forum Math. 21 (2009), 491-509], is equal to the minimal number of r-periodic points in the smooth homotopy class of f, a given self-map of M. In this paper, we present a general combinatorial scheme of computing D^m_r [f] for arbitrary dimension...
-
Algebraic periods and minimal number of periodic points for smooth self-maps of 1-connected 4-manifolds with definite intersection forms
PublikacjaLet M be a closed 1-connected smooth 4-manifolds, and let r be a non-negative integer. We study the problem of finding minimal number of r-periodic points in the smooth homotopy class of a given map f: M-->M. This task is related to determining a topological invariant D^4_r[f], defined in Graff and Jezierski (Forum Math 21(3):491–509, 2009), expressed in terms of Lefschetz numbers of iterations and local fixed point indices of...
-
Minimal number of periodic points for smooth self-maps of simply-connected manifolds
Dane BadawczeThe problem of finding the minimal number of periodic points in a given class of self-maps of a space is one of the central questions in periodic point theory. We consider a closed smooth connected and simply-connected manifold of dimension at least 4 and its self-map f. The topological invariant D_r[f] is equal to the minimal number of r-periodic points...
-
On time-dependent nonlinear dynamic response of micro-elastic solids
PublikacjaA new approach to the mechanical response of micro-mechanic problems is presented using the modified couple stress theory. This model captured micro-turns due to micro-particles' rotations which could be essential for microstructural materials and/or at small scales. In a micro media based on the small rotations, sub-particles can also turn except the whole domain rotation. However, this framework is competent for a static medium....
-
Estimates for minimal number of periodic points for smooth self-maps of simply-connected manifolds
Dane BadawczeWe consider a closed smooth connected and simply-connected manifold of dimension at least 4 and its self-map f. The topological invariant Dr[f] is equal to the minimal number of r-periodic points in the smooth homotopy class of f. We assume that r is odd and all coefficients b(k) of so-called periodic expansion of Lefschetz numbers of iterations are...
-
Database of algebraic periods of quasi-unipotent orientation-preserving homeomorphisms of orientable surfaces
Dane BadawczeThe set of algebraic periods of a map contains important information about periodic points and, in addition, is a homotopy invariant of the map. It is determined by indices of nonzero Dold coefficients which are computed purely algebraically from maps induced on homology groups of a considered space. In this dataset, we include for a given g=1,2,...,30,...
-
Path components of the space of gradient vector fields on the two dimensional disc
PublikacjaWe present a short proof that if two gradient maps on the twodimensional disc have the same degree, then they are gradient homotopic.