Wyniki wyszukiwania dla: IMAGE SEGMENTATION
-
Image Segmentation of MRI image for Brain Tumor Detection
Publikacjathis research work presents a new technique for brain tumor detection by the combination of Watershed algorithm with Fuzzy K-means and Fuzzy C-means (KIFCM) clustering. The MATLAB based proposed simulation model is used to improve the computational simplicity, noise sensitivities, and accuracy rate of segmentation, detection and extraction from MR...
-
DentalSegmentator: robust deep learning-based CBCT image segmentation
Publikacja -
Deep learning based thermal image segmentation for laboratory animals tracking
PublikacjaAutomated systems for behaviour classification of laboratory animals are an attractive alternative to manual scoring. However, the proper animals separation and tracking, especially when they are in close contact, is the bottleneck of the behaviour analysis systems. In this paper, we propose a method for the segmentation of thermal images of laboratory rats that are in close contact during social behaviour tests. For this, we are...
-
Application of colour image segmentation for localization and extraction text from images
PublikacjaW otaczającym nas świecie informacja tekstowa odgrywa wielką rolę. W postaci tekstowej podawane są: nazwy ulic, nazwy sklepów i instytucji, opisy przedmiotów np. tytuły książek, opakowań itp. Jednocześnie współczesne programy komputerowe służące do rozpoznawania tekstu (OCR) ''nie radzą sobie'' z analizą obrazów otrzymanaych za pomocą kamer. Segmentacja obrazu z następującą kontekstową analizą parametrów segmentów może dostarczyć...
-
Comparison of Deep Neural Network Learning Algorithms for Mars Terrain Image Segmentation
PublikacjaThis paper is dedicated to the topic of terrain recognition on Mars using advanced techniques based on the convolutional neural networks (CNN). The work on the project was conducted based on the set of 18K images collected by the Curiosity, Opportunity and Spirit rovers. The data were later processed by the model operating in a Python environment, utilizing Keras and Tensorflow repositories. The model benefits from the pretrained...
-
DentalSegmentator: Robust open source deep learning-based CT and CBCT image segmentation
Publikacja -
Fast and accurate vision-based pattern detection and identification using color and grey image segmentation
PublikacjaPraca opisuje niewymagającą obliczeniowo metodę wykrywania i identyfikacji robotów mobilnych, która może być wykorzystywana w zawodach gry robotów w piłkę nożną. Wykrywanie robotów opiera się na przetwarzaniu obrazu otrzymanego z kamery. Zasadniczym elementem przetwarzania obrazu jest jego segmentacja opierająca się na rozpoznaniu koloru w systemie HSI.
-
MSIS sonar image segmentation method based on underwater viewshed analysis and high-density seabed model
PublikacjaHigh resolution images of Mechanically Scanned Imaging Sonars can bring detailed representation of underwater area if favorable conditions for acoustic signal to propagate are provided. However to properly asses underwater situation based solely on such data can be challenging for less than proficient interpreter. In this paper we propose a method to enhance interpretative potential of MSIS image by dividing it in to subareas depending...
-
Medical Image Segmentation Using Deep Semantic-based Methods: A Review of Techniques, Applications and Emerging Trends
PublikacjaSemantic-based segmentation (Semseg) methods play an essential part in medical imaging analysis to improve the diagnostic process. In Semseg technique, every pixel of an image is classified into an instance, where each class is corresponded by an instance. In particular, the semantic segmentation can be used by many medical experts in the domain of radiology, ophthalmologists, dermatologist, and image-guided radiotherapy. The authors...
-
What are the true volumes of SEGA tumors? Reliability of planimetric and popular semi-automated image segmentation methods
Publikacja -
Comparison of image pre-processing methods in liver segmentation task
PublikacjaAutomatic liver segmentation of Computed Tomography (CT) images is becoming increasingly important. Although there are many publications in this field there is little explanation why certain pre-processing methods were utilised. This paper presents a comparison of the commonly used approach of Hounsfield Units (HU) windowing, histogram equalisation, and a combination of these methods to try to ascertain what are the differences...
-
Segmentation Quality Refinement in Large-Scale Medical Image Dataset with Crowd-Sourced Annotations
PublikacjaDeployment of different techniques of deep learning including Convolutional Neural Networks (CNN) in image classification systems has accomplished outstanding results. However, the advantages and potential impact of such a system can be completely negated if it does not reach a target accuracy. To achieve high classification accuracy with low variance in medical image classification system, there is needed the large size of the...
-
MEAN SHIFT BASED SEGMENTATION FOR BLEEDING REGIONS IN ENDOSCOPIC VIDEOS
PublikacjaWith a set of 38 manually marked bleeding regions form endoscopic videos, the authors attempted to find an optimal image segmentation method for reproducing doctor’s markup. Mean shift segmentation combined with HSV histogram segmentation were used as a segmentation method, which was then optimized by tuning the parameters of the method using global optimization algorithm. A target function for measuring the quality of segmentation was...
-
Smart Karyotyping Image Selection Based on Commonsense Knowledge Reasoning
PublikacjaKaryotyping requires chromosome instances to be segmented and classified from the metaphase images. One of the difficulties in chromosome segmentation is that the chromosomes are randomly positioned in the image, and there is a great chance for chromosomes to be touched or overlap with others. It is always much easier for operators and automatic programs to tackle images without overlapping chromosomes than ones with largely overlapped...
-
The influence of image masks definition onsegmentation results of histopathological imagesusing convolutional neural network
PublikacjaAbstract—In the era of collecting large amounts of tissue materials, assisting the work of histopathologists with various electronic and information IT tools is an undeniable fact. The traditional interaction between a human pathologist and the glass slide is changing to interaction between an AI pathologist with a whole slide images. One of the important tasks is the segmentation of objects (e.g. cells) in such images. In this...
-
Instance segmentation of stack composed of unknown objects
PublikacjaThe article reviews neural network architectures designed for the segmentation task. It focuses mainly on instance segmentation of stacked objects. The main assumption is that segmentation is based on a color image with an additional depth layer. The paper also introduces the Stacked Bricks Dataset based on three cameras: RealSense L515, ZED2, and a synthetic one. Selected architectures: DeepLab, Mask RCNN, DEtection TRansformer,...
-
SegSperm - a dataset of sperm images for blurry and small object segmentation
Dane BadawczeMany deep learning applications require figure-ground segmentation. The performance of segmentation models varies across modalities and acquisition settings.
-
Deep Instance Segmentation of Laboratory Animals in Thermal Images
PublikacjaIn this paper we focus on the role of deep instance segmentation of laboratory rodents in thermal images. Thermal imaging is very suitable to observe the behaviour of laboratory animals, especially in low light conditions. It is an non-intrusive method allowing to monitor the activity of animals and potentially observe some physiological changes expressed in dynamic thermal patterns. The analysis of the recorded sequence of thermal...
-
Review of Segmentation Methods for Coastline Detection in SAR Images
PublikacjaSynthetic aperture radar (SAR) images acquired by airborne sensors or remote sensing satellites contain the necessary information that can be used to investigate various objects of interest on the surface of the Earth, including coastlines. The coastal zone is of great economic importance and is also very densely populated. The intensive and increasing use of coasts and changes of coastlines motivate researchers to try to assess...
-
Segmentation-Based BI-RADS ensemble classification of breast tumours in ultrasound images
PublikacjaBackground: The development of computer-aided diagnosis systems in breast cancer imaging is exponential. Since 2016, 81 papers have described the automated segmentation of breast lesions in ultrasound images using arti- ficial intelligence. However, only two papers have dealt with complex BI-RADS classifications. Purpose: This study addresses the automatic classification of breast lesions into binary classes (benign vs. ma- lignant)...
-
Ensembling noisy segmentation masks of blurred sperm images
PublikacjaBackground: Sperm tail morphology and motility have been demonstrated to be important factors in determining sperm quality for in vitro fertilization. However, many existing computer-aided sperm analysis systems leave the sperm tail out of the analysis, as detecting a few tail pixels is challenging. Moreover, some publicly available datasets for classifying morphological defects contain images limited only to the sperm head. This...
-
Examining Quality of Hand Segmentation Based on Gaussian Mixture Models
PublikacjaResults of examination of various implementations of Gaussian mix-ture models are presented in the paper. Two of the implementations belonged to the Intel’s OpenCV 2.4.3 library and utilized Background Subtractor MOG and Background Subtractor MOG2 classes. The third implementation presented in the paper was created by the authors and extended Background Subtractor MOG2 with the possibility of operating on the scaled version of...
-
Assessment of particular abdominal aorta section extraction from contrast-enhanced computed tomography angiography
PublikacjaThe aim of this work is to improve the accuracy of extraction of a particular abdominal aorta section and to reduce the distortion in three-dimensional Computed Tomography Angiography (CTA) images. Imaging modality and quality plays crucial role in the medical diagnostic process, thus ensuring high quality of images is essential at every stage of acquisition and processing.Noise is defined as a disturbance of the image quality...
-
An Overview of Image Analysis Techniques in Endoscopic Bleeding Detection
PublikacjaAuthors review the existing bleeding detection methods focusing their attention on the image processing techniques utilised in the algorithms. In the article, 18 methods were analysed and their functional components were identified. The authors proposed six different groups, to which algorithms’ components were assigned: colour techniques, reflecting features of pixels as individual values, texture techniques, considering spatial...
-
Comparison of Selected Neural Network Models Used for Automatic Liver Tumor Segmentation
PublikacjaAutomatic and accurate segmentation of liver tumors is crucial for the diagnosis and treatment of hepatocellular carcinoma or metastases. However, the task remains challenging due to imprecise boundaries and significant variations in the shape, size, and location of tumors. The present study focuses on tumor segmentation as a more critical aspect from a medical perspective, compared to liver parenchyma segmentation, which is the...
-
Semantic segmentation training using imperfect annotations and loss masking
PublikacjaOne of the most significant factors affecting supervised neural network training is the precision of the annotations. Also, in a case of expert group, the problem of inconsistent data annotations is an integral part of real-world supervised learning processes, well-known to researchers. One practical example is a weak ground truth delineation for medical image segmentation. In this paper, we have developed a new method of accurate...
-
Autonomous pick-and-place system based on multiple 3Dsensors and deep learning
PublikacjaGrasping objects and manipulating them is the main way the robot interacts with its environment. However, for robots to operate in a dynamic environment, a system for determining the gripping position for objects in the scene is also required. For this purpose, neural networks segmenting the point cloud are usually applied. However, training such networks is very complex and their results are unsatisfactory. Therefore, we propose...
-
Autonomous Perception and Grasp Generation Based on Multiple 3D Sensors and Deep Learning
PublikacjaGrasping objects and manipulating them is the main way the robot interacts with its environment. However, for robots to operate in a dynamic environment, a system for determining the gripping position for objects in the scene is also required. For this purpose, neural networks segmenting the point cloud are usually applied. However, training such networks is very complex and their results are unsatisfactory. Therefore, we propose...
-
KEMR-Net: A Knowledge-Enhanced Mask Refinement Network for Chromosome Instance Segmentation
PublikacjaThis article proposes a mask refinement method for chromosome instance segmentation. The proposed method exploits the knowledge representation capability of Neural Knowledge DNA (NK-DNA) to capture the semantics of the chromosome’s shape, texture, and key points, and then it uses the captured knowledge to improve the accuracy and smoothness of the masks. We validate the method’s effectiveness on our latest high-resolution chromosome...
-
Deep Learning-Based Cellular Nuclei Segmentation Using Transformer Model
PublikacjaAccurate segmentation of cellular nuclei is imperative for various biological and medical applications, such as cancer diagnosis and drug discovery. Histopathology, a discipline employing microscopic examination of bodily tissues, serves as a cornerstone for cancer diagnosis. Nonetheless, the conventional histopathological diagnosis process is frequently marred by time constraints and potential inaccuracies. Consequently, there...
-
Smart Approach for Glioma Segmentation in Magnetic Resonance Imaging using Modified Convolutional Network Architecture (U-NET)
PublikacjaSegmentation of a brain tumor from magnetic resonance multimodal images is a challenging task in the field of medical imaging. The vast diversity in potential target regions, appearance and multifarious intensity threshold levels of various tumor types are few of the major factors that affect segmentation results. An accurate diagnosis and its treatment demand strict delineation of the tumor affected tissues. Herein, we focus on...
-
Learning sperm cells part segmentation with class-specific data augmentation
PublikacjaInfertility affects around 15% of couples worldwide. Male fertility problems include poor sperm quality and low sperm count. The advanced fertility treatment methods like ICSI are nowadays supported by vision systems to assist embryologists in selecting good quality sperm. Computer-Assisted Semen Analysis (CASA) provides quantitative and qualitative sperm analysis concerning concentration, motility, morphology, vitality, and fragmentation....
-
Closer Look at the Uncertainty Estimation in Semantic Segmentation under Distributional Shift
PublikacjaWhile recent computer vision algorithms achieve impressive performance on many benchmarks, they lack robustness - presented with an image from a different distribution, (e.g. weather or lighting conditions not considered during training), they may produce an erroneous prediction. Therefore, it is desired that such a model will be able to reliably predict its confidence measure. In this work, uncertainty estimation for the task...
-
Vident-lab: a dataset for multi-task video processing of phantom dental scenes
Dane BadawczeWe introduce a new, asymmetrically annotated dataset of natural teeth in phantom scenes for multi-task video processing: restoration, teeth segmentation, and inter-frame homography estimation. Pairs of frames were acquired with a beam splitter. The dataset constitutes a low-quality frame, its high-quality counterpart, a teeth segmentation mask, and...
-
Shape-Based Pose Estimation of Robotic Surgical Instruments
PublikacjaWe describe a detector of robotic instrument parts in image-guided surgery. The detector consists of a huge ensemble of scale-variant and pose-dedicated, rigid appearance templates. The templates, which are equipped with pose-related keypoints and segmentation masks, allow for explicit pose estimation and segmentation of multiple end-effectors as well as fine-grained non-maximum suppression. We train the templates by grouping examples...
-
Human-Computer Interface Based on Visual Lip Movement and Gesture Recognition
PublikacjaThe multimodal human-computer interface (HCI) called LipMouse is presented, allowing a user to work on a computer using movements and gestures made with his/her mouth only. Algorithms for lip movement tracking and lip gesture recognition are presented in details. User face images are captured with a standard webcam. Face detection is based on a cascade of boosted classifiers using Haar-like features. A mouth region is located in...
-
Identification of Emotional States Using Phantom Miro M310 Camera
PublikacjaThe purpose of this paper is to present the possibilities associated with the use of remote sensing methods in identifying human emotional states, and to present the results of the research conducted by the authors in this field. The studies presented involved the use of advanced image analysis to identify areas on the human face that change their activity along with emotional expression. Most of the research carried out in laboratories...
-
Three-dimensional modeling and automatic analysis of the human nasal cavity and paranasal sinuses using the computational fluid dynamics method
PublikacjaPurpose The goal of this study was to develop a complete workflow allowing for conducting computational fluid dynam- ics (CFD) simulation of airflow through the upper airways based on computed tomography (CT) and cone-beam computed tomography (CBCT) studies of individual adult patients. Methods This study is based on CT images of 16 patients. Image processing and model generation of the human nasal cavity and paranasal sinuses...
-
Hazard Control in Industrial Environments: A Knowledge-Vision-Based Approach
PublikacjaThis paper proposes the integration of image processing techniques (such as image segmentation, feature extraction and selection) and a knowledge representation approach in a framework for the development of an automatic system able to identify, in real time, unsafe activities in industrial environments. In this framework, the visual information (feature extraction) acquired from video-camera images and other context based gathered...
-
Marta Kuc-Czarnecka dr
OsobyMarta Kuc-Czarnecka jest zastępczynią kierownika Katedry Statystyki i Ekonomii na Wydziale Zarządzania i Ekonomii Politechniki Gdańskiej. Pełni również funkcję pełnomocniczki Dziekana ds. akredytacji AMBA. Jest współzałożycielką Rethinking Economics Gdańsk oraz członkinią Fundacji im. Edwarda Lipińskiego na rzecz promocji pluralizmu w naukach ekonomicznych. W latach 2018-2022 była ekspertką Europejskiej Fundacji na Rzecz Poprawy...
-
Controlling computer by lip gestures employing neural network
PublikacjaResults of experiments regarding lip gesture recognition with an artificial neural network are discussed. The neural network module forms the core element of a multimodal human-computer interface called LipMouse. This solution allows a user to work on a computer using lip movements and gestures. A user face is detected in a video stream from a standard web camera using a cascade of boosted classifiers working with Haar-like features....
-
Essential thrombocythemia - Female, 68 - Tissue image [11290630017295411]
Dane BadawczeThis is the histopathological image of HEMATOPOIETIC AND RETICULOENDOTHELIAL SYSTEMS tissue sample obtained in Medical University Gdańsk and deposited in ZMDL-GUMED. The sample image was taken using: Pannoramic 250 3DHistech slide scanner (20x magnification) and saved to DICOM format.
-
Essential thrombocythemia - Female, 68 - Tissue image [11290630017291241]
Dane BadawczeThis is the histopathological image of HEMATOPOIETIC AND RETICULOENDOTHELIAL SYSTEMS tissue sample obtained in Medical University Gdańsk and deposited in ZMDL-GUMED. The sample image was taken using: Pannoramic 250 3DHistech slide scanner (20x magnification) and saved to DICOM format.
-
Essential thrombocythemia - Female, 68 - Tissue image [11290630017294601]
Dane BadawczeThis is the histopathological image of HEMATOPOIETIC AND RETICULOENDOTHELIAL SYSTEMS tissue sample obtained in Medical University Gdańsk and deposited in ZMDL-GUMED. The sample image was taken using: Pannoramic 250 3DHistech slide scanner (20x magnification) and saved to DICOM format.
-
Detection of Alzheimer's disease using Otsu thresholding with tunicate swarm algorithm and deep belief network
PublikacjaIntroduction: Alzheimer’s Disease (AD) is a degenerative brain disorder characterized by cognitive and memory dysfunctions. The early detection of AD is necessary to reduce the mortality rate through slowing down its progression. The prevention and detection of AD is the emerging research topic for many researchers. The structural Magnetic Resonance Imaging (sMRI) is an extensively used imaging technique in detection of AD, because...
-
Melanoma skin cancer detection using mask-RCNN with modified GRU model
PublikacjaIntroduction: Melanoma Skin Cancer (MSC) is a type of cancer in the human body; therefore, early disease diagnosis is essential for reducing the mortality rate. However, dermoscopic image analysis poses challenges due to factors such as color illumination, light reflections, and the varying sizes and shapes of lesions. To overcome these challenges, an automated framework is proposed in this manuscript. Methods: Initially, dermoscopic...
-
Video content analysis in the urban area telemonitoring system
PublikacjaThe task of constant monitoring of video streams from a large number of cameras and reviewing the recordings in order to find a specified event requires a considerable amount of time and effort from the system operators and it is prone to errors. A solution to this problem is an automatic system for constant analysis of camera images being able to raise an alarm if a predefined event is detected. The chapter presents various aspects...
-
CMGNet: Context-aware middle-layer guidance network for salient object detection
PublikacjaSalient object detection (SOD) is a critical task in computer vision that involves accurately identifying and segmenting visually significant objects in an image. To address the challenges of gridding issues and feature...
-
SkinDepth - synthetic 3D skin lesion database
Dane BadawczeSkinDepth is the first synthetic 3D skin lesion database. The release of SkinDepth dataset intends to contribute to the development of algorithms for:
-
Vident-real: an intra-oral video dataset for multi-task learning
Dane BadawczeWe introduce Vident-real, a large dataset of 100 video sequences of intra-oral scenes from real conservative dental treatments performed at the Medical University of Gdańsk, Poland. The dataset can be used for multi-task learning methods including: