Filtry
wszystkich: 759
Wyniki wyszukiwania dla: NEURAL NETWORK
-
Comparison of single best artificial neural network and neural network ensemble in modeling of palladium microextraction
Publikacja -
Resource constrained neural network training
PublikacjaModern applications of neural-network-based AI solutions tend to move from datacenter backends to low-power edge devices. Environmental, computational, and power constraints are inevitable consequences of such a shift. Limiting the bit count of neural network parameters proved to be a valid technique for speeding up and increasing efficiency of the inference process. Hence, it is understandable that a similar approach is gaining...
-
Artificial Neural Network for Multiprocessor Tasks Scheduling
Publikacja -
Approximation task decomposition for artificial neural network.
PublikacjaW pracy przedstawiono wpływ dekompozycji zadania na czasochłonność projektowania oraz dokładność i szybkość obliczeń sztucznej sieci neuronowej wykorzystanej do rozwiązania rzeczywistego problemu technicznego, którego matematyczny model był znany. Celem obliczeń prowadzonych przez sieć neuronową było określenie wartości współczynnika przepływu m na podstawie znajomości wartości: przewodności dźwiękowej C i średnicy przewodu d (a...
-
Deep neural network architecture search using network morphism
PublikacjaThe paper presents the results of the research on neural architecture search (NAS) algorithm. We utilized the hill climbing algorithm to search for well-performing structures of deep convolutional neural network. Moreover, we used the function preserving transformations which enabled the effective operation of the algorithm in a short period of time. The network obtained with the advantage of NAS was validated on skin lesion classification...
-
Neural network training with limited precision and asymmetric exponent
PublikacjaAlong with an extremely increasing number of mobile devices, sensors and other smart utilities, an unprecedented growth of data can be observed in today’s world. In order to address multiple challenges facing the big data domain, machine learning techniques are often leveraged for data analysis, filtering and classification. Wide usage of artificial intelligence with large amounts of data creates growing demand not only for storage...
-
Intelligent turbogenerator controller based on artifical neural network
PublikacjaThe paper presents a desing of an intelligent controller based on neural network (ICNN). The ICNN ensures at the same time two fundamental functions : the maintaining of generator voltage at the desired value and the damping of the electromechanical oscillations. Its performance is evaluted on a single machine infinite bus power system through computer simulations. The dynamic and transient operation of the proposed controller...
-
Neural Network Subgraphs Correlation with Trained Model Accuracy
PublikacjaNeural Architecture Search (NAS) is a computationally demanding process of finding optimal neural network architecture for a given task. Conceptually, NAS comprises applying a search strategy on a predefined search space accompanied by a performance evaluation method. The design of search space alone is expected to substantially impact NAS efficiency. We consider neural networks as graphs and find a correlation between the presence...
-
Neural network agents trained by declarative programming tutors
PublikacjaThis paper presents an experimental study on the development of a neural network-based agent, trained using data generated using declarative programming. The focus of the study is the application of various agents to solve the classic logic task – The Wumpus World. The paper evaluates the effectiveness of neural-based agents across different map configurations, offering a comparative analysis to underline the strengths and limitations...
-
Controlling computer by lip gestures employing neural network
PublikacjaResults of experiments regarding lip gesture recognition with an artificial neural network are discussed. The neural network module forms the core element of a multimodal human-computer interface called LipMouse. This solution allows a user to work on a computer using lip movements and gestures. A user face is detected in a video stream from a standard web camera using a cascade of boosted classifiers working with Haar-like features....
-
A Simple Neural Network for Collision Detection of Collaborative Robots
PublikacjaDue to the epidemic threat, more and more companies decide to automate their production lines. Given the lack of adequate security or space, in most cases, such companies cannot use classic production robots. The solution to this problem is the use of collaborative robots (cobots). However, the required equipment (force sensors) or alternative methods of detecting a threat to humans are usually quite expensive. The article presents...
-
Digits Recognition with Quadrant Photodiode and Convolutional Neural Network
PublikacjaIn this paper we have investigated the capabilities of a quadrant photodiode based gesture sensor in the recognition of digits drawn in the air. The sensor consisting of 4 active elements, 4 LEDs and a pinhole was considered as input interface for both discrete and continuous gestures. Index finger and a round pointer were used as navigating mediums for the sensor. Experiments performed with 5 volunteers...
-
Neural-Network-Based Parameter Estimations of Induction Motors
Publikacja -
Neural Network - Based Parameters Estimations Of Induction Motors
PublikacjaW artykule przedstwaiono algorytmy estymacji rezystancji wirnika i indukcyjności wzajemnej w zamkniętym układzie sterowania prędkości silnika indukcyjnego klatkowego. Do wyznaczenia rezystancji wykorzystano algorytm oparty na porównaniu modelu napięciowego i prądowego silnika. Do wyznaczania indukcyjności wykorzystano, znaną z literatury, zależność modelu multiskalarnego. Wyznaczane w stanie ustalonym parametry zapisywane są w...
-
Automatic Image and Speech Recognition Based on Neural Network
Publikacja -
Cellular neural network application to moire pattern filtering
Publikacja -
Neural network breast cancer relapse time prognosis
PublikacjaPrzedstawiono architekturę i wyniki testowania sztucznej sieci neuronowej w prognozowaniu czasu nawrotu choroby u kobiet chorych na raka piersi. Sieć neuronowa uczona była na danych zgromadzonych przez 20 lat. Dane opisują grupę 439 pacjentów za pomocą 40 parametrów. Spośród tych parametrów wybrano 6 najistotniejszych: liczbę przerzutowych węzłów chłonnych, wielkość guza, wiek, skalę według Blooma oraz stan receptorów estrogenowych...
-
Comparative study of methods for artificial neural network training.
PublikacjaPrzedstawiono wyniki badań porównawczych następujących metod uczenia sieci neuronowych: propagacji wstecznej błędów, rekursywnej metody najmniejszych kwadratów, metody Zangwill'a i algorytmów ewolucyjnych. Badania dotyczyły projektowania adaptacyjnego regulatora neuronowego napięcia generatora synchronicznego.
-
Global Surrogate Modeling by Neural Network-Based Model Uncertainty
PublikacjaThis work proposes a novel adaptive global surrogate modeling algorithm which uses two neural networks, one for prediction and the other for the model uncertainty. Specifically, the algorithm proceeds in cycles and adaptively enhances the neural network-based surrogate model by selecting the next sampling points guided by an auxiliary neural network approximation of the spatial error. The proposed algorithm is tested numerically...
-
A Bayesian regularization-backpropagation neural network model for peeling computations
PublikacjaA Bayesian regularization-backpropagation neural network (BRBPNN) model is employed to predict some aspects of the gecko spatula peeling, viz. the variation of the maximum normal and tangential pull-off forces and the resultant force angle at detachment with the peeling angle. K-fold cross validation is used to improve the effectiveness of the model. The input data is taken from finite element (FE) peeling results. The neural network...
-
Electromagnetic Modeling of Microstrip Elements Aided with Artificial Neural Network
PublikacjaThe electromagnetic modeling principle aided withartificial neural network to designing the microwave widebandelements/networks prepared in microstrip technology is proposedin the paper. It is assumed that the complete information is knownfor the prototype design which is prepared on certain substratewith certain thickness and electric permittivity. The longitudinaland transversal dimensions of new design...
-
Categorization of emotions in dog behavior based on the deep neural network
PublikacjaThe aim of this article is to present a neural system based on stock architecture for recognizing emotional behavior in dogs. Our considerations are inspired by the original work of Franzoni et al. on recognizing dog emotions. An appropriate set of photographic data has been compiled taking into account five classes of emotional behavior in dogs of one breed, including joy, anger, licking, yawning, and sleeping. Focusing on a particular...
-
The impact of the AC922 Architecture on Performance of Deep Neural Network Training
PublikacjaPractical deep learning applications require more and more computing power. New computing architectures emerge, specifically designed for the artificial intelligence applications, including the IBM Power System AC922. In this paper we confront an AC922 (8335-GTG) server equipped with 4 NVIDIA Volta V100 GPUs with selected deep neural network training applications, including four convolutional and one recurrent model. We report...
-
Deep convolutional neural network for predicting kidney tumour malignancy
PublikacjaPurpose: According to the statistics, up to 15-20% of removed solid kidney tumors turn out to be benign in postoperative histopathological examination, despite having been identified as malignant by a radiologist. The aim of the research was to limit the number of unnecessary nephrectomies of benign tumors. Methods or Background: We propose a machine-aided diagnostic system for kidney...
-
Neural Network-Based Sequential Global Sensitivity Analysis Algorithm
PublikacjaPerforming global sensitivity analysis (GSA) can be challenging due to the combined effect of the high computational cost, but it is also essential for engineering decision making. To reduce this cost, surrogate modeling such as neural networks (NNs) are used to replace the expensive simulation model in the GSA process, which introduces the additional challenge of finding the minimum number of training data samples required to...
-
NIRCa: An artificial neural network-based insulin resistance calculator
Publikacja -
Energy-Efficient Neural Network Inference with Microcavity Exciton Polaritons
Publikacja -
Neural network approach to 2D Kalman filtering in image processing
Publikacja -
The fuzzy neural network: application for trends in river pollution prediction
PublikacjaPraca przedstawia zastosowanie rozmytych sieci neuronowych do przygotowywania prognoz zmian w stężeniu zanieczyszczeń w rzekach. Opisane są pokrótce inne narzędzia stosowane w tym celu.
-
Application of a fuzzy neural network for river water quality prediction
PublikacjaMonitoring i modelowanie zmian w jakości wód powierzchniowych stanowią jeden z kluczowych elementów monitoringu i zarządzania ochroną środowiska na skalę globalną. Kontrolowanie tak złożonych i nieliniowych w swojej charakterystyce obiektów, jakimi są rzeki, jest trudnym zadaniem. Zazwyczaj do tego celu wykorzystuje się modele matematyczne, jednak czasem wymagają one bardzo dużej ilości danych, lub czas oczekiwania na odpowiedź...
-
Artificial neural network based sensorless control ofinduction motor.
PublikacjaW artykule przedstawiono bezczujnikowy układ sterowania silnikiem indukcyjnym wykorzystujący sztuczne sieci neuronowe (ANN). Sieć neuronową wykorzystano w regulatorze prędkości silnika. Zaprezentowano wyniki badań symulacyjnych.
-
Neural network modelling of the influence of channelopathies on reflex visual attention
Publikacja -
Neural Network World
Czasopisma -
From Linear Classifier to Convolutional Neural Network for Hand Pose Recognition
PublikacjaRecently gathered image datasets and the new capabilities of high-performance computing systems have allowed developing new artificial neural network models and training algorithms. Using the new machine learning models, computer vision tasks can be accomplished based on the raw values of image pixels instead of specific features. The principle of operation of deep neural networks resembles more and more what we believe to be happening...
-
Neural network model of ship magnetic signature for different measurement depths
PublikacjaThis paper presents the development of a model of a corvette-type ship’s magnetic signature using an artificial neural network (ANN). The capabilities of ANNs to learn complex relationships between the vessel’s characteristics and the magnetic field at different depths are proposed as an alternative to a multi-dipole model. A training dataset, consisting of signatures prepared in finite element method (FEM) environment Simulia...
-
An Improved Convolutional Neural Network for Steganalysis in the Scenario of Reuse of the Stego-Key
PublikacjaThe topic of this paper is the use of deep learning techniques, more specifically convolutional neural networks, for steganalysis of digital images. The steganalysis scenario of the repeated use of the stego-key is considered. Firstly, a study of the influence of the depth and width of the convolution layers on the effectiveness of classification was conducted. Next, a study on the influence of depth and width of fully connected...
-
Emotion Recognition from Physiological Channels Using Graph Neural Network
PublikacjaIn recent years, a number of new research papers have emerged on the application of neural networks in affective computing. One of the newest trends observed is the utilization of graph neural networks (GNNs) to recognize emotions. The study presented in the paper follows this trend. Within the work, GraphSleepNet (a GNN for classifying the stages of sleep) was adjusted for emotion recognition and validated for this purpose. The...
-
ReFlexeNN - the Wearable EMG Interface with Neural Network Based Gesture Classification
PublikacjaThe electromyographic activity of muscles was measured using a wireless biofeedback device. The aim of the study was to examine the possibility of creating an automatic muscle tension classifier. Several measurement series were conducted and the participant performed simple physical exercises - forcing the muscle to increase its activity accordingly to the selected scale. A small wireless device was attached to the electrodes placed...
-
Comparison of the Ability of Neural Network Model and Humans to Detect a Cloned Voice
PublikacjaThe vulnerability of the speaker identity verification system to attacks using voice cloning was examined. The research project assumed creating a model for verifying the speaker’s identity based on voice biometrics and then testing its resistance to potential attacks using voice cloning. The Deep Speaker Neural Speaker Embedding System was trained, and the Real-Time Voice Cloning system was employed based on the SV2TTS, Tacotron,...
-
Iterative Global Sensitivity Analysis Algorithm with Neural Network Surrogate Modeling
PublikacjaGlobal sensitivity analysis (GSA) is a method to quantify the effect of the input parameters on outputs of physics-based systems. Performing GSA can be challenging due to the combined effect of the high computational cost of each individual physics-based model, a large number of input parameters, and the need to perform repetitive model evaluations. To reduce this cost, neural networks (NNs) are used to replace the expensive physics-based...
-
Artificial-Neural-Network-Based Sensorless Nonlinear Control of Induction Motors
Publikacja -
Diagnostic potential for a serum miRNA neural network for detection of ovarian cancer
Publikacja -
An application of the TCRBF neural network in multi-node fault diagnosis method
PublikacjaPrzedstawiono nową metodę samo-testowania części analogowej w systemach elektronicznych sterowanych mikrokontrolerami. Układ badany pobudzany jest przebiegiem sinusoidalnym przez generator zamontowany w systemie, a jego odpowiedź jest próbkowana w wybranych węzłach przez wewnętrzny przetwornik A/C mikrokontrolera. Detekcja i lokalizacja uszkodzenia jest dokontwana przez sieć neuronową typu TCRBF. Procedurę diagnostyczną zaimplementowano...
-
Ultracapacitor modeling and control with discrete fractional order artificial neural network
Publikacja -
Artificial Neural Network-Based Sensorless Nonlinear Control Of Induction Motors
PublikacjaW niniejszym artykule przedstawiono strukturę sztucznej sieci neuronowej służącej do korygowania działania układu estymacji prędkości kątowej wirnika. Odtworzona prędkość kątowa wirnika zostały wykorzystane w bezczujnikowym układzie sterowania silnikiem indukcyjnym pracującym w zamkniętej pętli sprzężenia prędkościowego.Przedstawiono wyniki badań eksperymentalnych z silnikiem o mocy 1,1kW.
-
A neural network based system for soft fault diagnosis in electronic circuits
PublikacjaW artykule przedstawiono system do diagnostyki uszkodzeń parametrycznych w układach elektronicznych. W systemie zaimplementowano słownikową metodę lokalizacji uszkodzeń, bazującą na pomiarach w dziedzinie częstotliwości przeprowadzanych za pomocą analizatora transmitancji HP4192A. Rozważono główne etapy projektowania systemu: definiowanie modelu uszkodzeń, wybór optymalnych częstotliwosci pomiarowych, ekstrakcję cech diagnostycznych,...
-
Artificial neural network controller for underwater ship hull operation robot.
PublikacjaZaproponowano model matematyczny pojazdu podwodnego, który w uproszczonej wersji spełnia warunki dynamiki odpowiadające głowicy roboczej podwodnego robota. Uwzględniono niektóre czynniki oddziałujące na ruch podwodnej głowicy roboczej, jak np. gęstość wody oraz siły odśrodkowe i wypornościowe. Przedstawiono układ sterowania, w którym zastosowano regulator oparty na bazie sieci neuronowych, za pomocą którego można sterować...
-
On thermal and Flow Expert Systems Based on Artificial Neural Network (ANN)
PublikacjaZaprezentowano możliwość realizacji jednego z zadań systemów eksperckich, polegającego na określaniu rozmiaru eksploatacyjnej degradacji parametrów geometrycznych układów łopatkowych turbin. Dyskusję przeprowadzono w oparciu o zastosowanie wybranego typu sztucznej sieci neuronowej (SSN). Badano jakość i dokładność polegającą na dobrej identyfikacji rozmiaru degradacji przez tę wybraną SSN wykrywającą rozmiar degradacji geometrycznej....
-
Neural Network Application for Recognition of Geometry Degradation of Power Cycle Components
PublikacjaPrzedyskutowano problem rozpoznawania degradacji geometrycznej. Skuteczne zastosowanie wybranego typu sieci neuronowej (SSN) jest prezentowane w referacie. SSN wykrywająca typy degradacji geometrycznej wykazała wysoką jakość. Pokazano pewną możliwość ekstrapolacji takich SSN. Pokazano możliwość wykrywania typów degradacji geometrycznej nawet w przypadku pozyskiwania niepełnych danych pomiarowych.
-
Creating neural models using an adaptive algorithm for optimal size of neural network and training set.
PublikacjaZaprezentowano adaptacyjny algorytm generujący modele neuronowe liniowych układów mikrofalowych, zdolny do oszacowania optymalnego rozmiaru zbiory uczącego i sieci neuronowej. Stworzono kilka modeli nieciągłości falowodowych i mokropaskowych, a następnie zweryfikowano ich poprawność porównując wyniki analiz metodą dopasowania rodzajów i metodą momentów filtrów pasmowo-przepustowych.