Wyniki wyszukiwania dla: WAVE EQUATIONS
-
Scalar- and vector-source wave equations
PublikacjaW analizie zjawisk akustyki liniowej i obliczeniach pola, powszechnie stosowane są równania falowe skalarne dotyczące ciśnienia akustycznego lub potencjału prędkości, natomiast rzadko są choćby tylko wspominane równania wektorowe operujące prędkością cząstek. Jest to przejaw asymetrii w traktowaniu skalarnych i wektorowych wielkości akustycznych. Artykuł przypomina dwa zestawy dualnych równań falowych, jednorodnych i niejednorodnych,...
-
Search for the fundamental solution to the vector acoustic wave equations
PublikacjaCzasowo-przestrzenna funkcja Greena pola swobodnego jest dobrze znanym rozwiązaniem podsta-wowym skalarnego niejednorodnego równania falowego. Wyraża ona odpowiedź ośrodka płynnego na punktowe zaburzenie o symetrii sferycznej. Odpowiedź ośrodka na zaburzenie wektorowe nie jest tak oczywista. Artykuł przedstawia oryginalne podejście do problemu, polegające na systematycznej, szcze-gółowej weryfikacji hipotetycznych rozwiązań skalarnych...
-
Waves Along Fractal Coastlines: From Fractal Arithmetic to Wave Equations
PublikacjaBeginning with addition and multiplication intrinsic to a Koch-type curve, we formulate and solve wave equation describing wave propagation along a fractal coastline. As opposed to examples known from the literature, we do not replace the fractal by the continuum in which it is embedded. This seems to be the first example of a truly intrinsic description of wave propagation along a fractal curve. The theory is relativistically...
-
Application of Pierson-Moskowitz wave spectrum to solution differential equations of multihull vessel
PublikacjaMotion of a dynamic system can be generated by different external or internal factors. At mathematical modelling external excitation factors of the most significant effect on the system, are selected. Such external factors are usually called excitations. Response of the system to given excitations is mathematically characterized by a definite transformation called operator of a system. For a broad class of dynamic systems the...
-
Piecewise continuous distribution function method: Fluid equations and wave disturbances at stratified gas
PublikacjaUkład równań typu hydrodynamicznego dla warstwowych gazów w polu grawitacyjnym pochodzi od równania BGK metodą częściowej ciągłej funkcji dystrybucji. Otrzymany system równań uogólnia układ Naviera-Stokesa w dowolnych liczbach Knudsena. Rozwiązania WBK dla ultradźwięku wprowadza się w przypadku stratyfikacji exponecjalnej.
-
Action-reaction based synthesis of acoustic wavefield equations
PublikacjaThe analysis of acoustic fields is usually based on the well-known mathematics of second order partial differential equations called wave equations. The author explores the duality and symmetry of linear fluid mechanics and develops two distinct equations of acoustics on the basis of a causal approach to local small-scale phenomena. Wavefields that are solutions of these equations have different composition, the spherical pressure...
-
Inverse Flood Routing Using Simplified Flow Equations
PublikacjaThe paper considers the problem of inverse flood routing in reservoir operation strategy. The aim of the work is to investigate the possibility of determining the hydrograph at the upstream end based on the hydrograph required at the downstream end using simplified open channel flow models. To accomplish this, the linear kinematic wave equation, the diffusive wave equation and the linear Muskingum equation are considered. To achieve...
-
Importance of sign conventions on analytical solutions to the wave-induced cyclic response of a poro-elastic seabed
PublikacjaThis paper discusses the influence of different sign conventions for strains and stresses, i.e. the solid mechanics sign convention and the soil mechanics sign convention, on the form of governing partial differential equations (the static equilibrium equations and the continuity equation) used to describe the wave-induced cyclic response of a poro-elastic seabed due to propagation of a sinusoidal surface water-wave. Some selected...
-
Fundamental properties of solutions to fractional-order Maxwell's equations
PublikacjaIn this paper, fundamental properties of solutions to fractional-order (FO) Maxwell's equations are analysed. As a starting point, FO Maxwell's equations are introduced in both time and frequency domains. Then, we introduce and prove the fundamental properties of electromagnetic field in FO electromagnetics, i.e. energy conservation, uniqueness of solutions, and reciprocity. Furthermore, the algorithm of the plane wave simulation...
-
Multimode systems of nonlinear equations: derivation, integrability, and numerical solutions
PublikacjaWe consider the propagation of electromagnetic pulses in isotropic media taking a third-order nonlinearityinto account. We develop a method for transforming Maxwell's equations based on a complete set ofprojection operators corresponding to wave-dispersion branches (in a waveguide or in matter) with thepropagation direction taken into account. The most important result of applying the method is a systemof equations describing the...
-
Balance errors generated by numerical diffusion in the solution of non-linear open channel flow equations
PublikacjaThe paper concerns the untypical aspect of application of the dissipative numerical methods to solve nonlinear hyperbolic partial differential equations used in open channel hydraulics. It is shown that in some cases the numerical diffusion generated by the applied method of solution produces not only inaccurate solution but as well as a balance error. This error may occur even for an equation written in the conservative form not...
-
Nonlinear Interaction of Modes in a Planar Flow of a Gas with Viscous and Thermal Attenuation
PublikacjaThe nonlinear interaction of wave and non-wave modes in a gas planar flow are considered. Attention is mainly paid to the case when one sound mode is dominant and excites the counter-propagating sound mode and the entropy mode. The modes are determined by links between perturbations of pressure, density, and fluid velocity. This definition follows from the linear conservation equations in the differential form and thermodynamic...
-
Simulations of flows in the coastal zone of the Baltic Sea
Dane BadawczeThe study area is located in the Southern Baltic, within Polish Marine Areas, adjacent to the coastline in the vicinity of Lubiatowo village, where The Coastal Research Station (CRS) – a field laboratory of the Institute of Hydro-Engineering of the Polish Academy of Sciences (IBW PAN) –is situated. The numerical reconstruction of the coastal flow was...
-
Simulation of Wave Propagation in Media Described by Fractional-Order Models
PublikacjaIn this paper, algorithms for simulation of the wave propagation in electromagnetic media described by fractional-order (FO) models (FOMs) are presented. Initially, fractional calculus and FO Maxwell's equations are introduced. The problem of the wave propagation is formulated for media described by FOMs. Then, algorithms for simulation of the non-monochromatic wave propagation are presented which employ computations in the time...
-
The description of non-linear interactions of wave and non-wave modes in a non-adiabatic plasma flow
PublikacjaThe method of derivation of non-linear equations for interacting modes is explained and applied to a plasma's flow affected by a magnetic field. It is based on the linear projecting of the total perturbation field into specific variations of variables in individual modes of a flow. The method may be applied in many examples of fluid flows with different mechanisms of non-adiabaticity. It is of special importance in complex flows...
-
An Efficient PEEC-Based Method for Full-Wave Analysis of Microstrip Structures
PublikacjaThis article introduces an efficient method for the equivalent circuit characterization and full-wave analysis of microstrip structures, leveraging the full-wave partial element equivalent circuit (PEEC). In particular, the multilayered Green's function is evaluated using the discrete complex-image method (DCIM) and employed to establish the mixed potential integral equations. The proposed strategy considers time delays for the...
-
Absorbing Boundary Conditions Derived Based on Pauli Matrices Algebra
PublikacjaIn this letter, we demonstrate that a set of absorbing boundary conditions (ABCs) for numerical simulations of waves, proposed originally by Engquist and Majda and later generalized by Trefethen and Halpern, can alternatively be derived with the use of Pauli matrices algebra. Hence a novel approach to the derivation of one-way wave equations in electromagnetics is proposed. That is, the classical wave equation can be factorized...
-
Computationally Effcient Solution of a 2D Diffusive Wave Equation Used for Flood Inundation Problems
PublikacjaThis paper presents a study dealing with increasing the computational efficiency in modeling floodplain inundation using a two-dimensional diffusive wave equation. To this end, the domain decomposition technique was used. The resulting one-dimensional diffusion equations were approximated in space with the modified finite element scheme, whereas time integration was carried out using the implicit two-level scheme. The proposed...
-
Analysis of Floodplain Inundation Using 2D Nonlinear Diffusive Wave Equation Solved with Splitting Technique
PublikacjaIn the paper a solution of two-dimensional (2D) nonlinear diffusive wave equation in a partially dry and wet domain is considered. The splitting technique which allows to reduce 2D problem into the sequence of one-dimensional (1D) problems is applied. The obtained 1D equations with regard to x and y are spatially discretized using the modified finite element method with the linear shape functions. The applied modification referring...
-
Reduced order models in computational electromagnetics (in memory of Ruediger Vahldieck)
PublikacjaThis paper reviews research of Ruediger Vahldieck's group and the group at the Gdansk University of Technology in the area of model order reduction techniques for accelerating full-wave simulations. The applications of reduced order models to filter design as well as of local and nested(multilevel) macromodels for solving 3D wave equations and wave-guiding problems using finite difference and finite element methods are discussed.
-
Solution of the dike-break problem using finite volume method and splitting technique
PublikacjaIn the paper the finite volume method (FVM) is presented for the solution of two-dimensional shallow water equations. These equations are frequently used to simulate the dam-break and dike-break induced flows. The applied numerical algorithm of FVM is based on the wave-propagation algorithm which ensures a stable solution and simultaneously minimizes the numerical errors. The dimensional decomposition according to the coordinate...
-
Signal propagation in electromagnetic media described by fractional-order models
PublikacjaIn this paper, signal propagation is analysed in electromagnetic media described by fractional-order (FO) models (FOMs). Maxwell’s equations with FO constitutive relations are introduced in the time domain. Then, their phasor representation is derived for one-dimensional case of the plane wave propagation. With the use of the Fourier transformation, the algorithm for simulation of the non-monochromatic wave propagation is introduced....
-
Modelling of FloodWave Propagation with Wet-dry Front by One-dimensional Diffusive Wave Equation
PublikacjaA full dynamic model in the form of the shallow water equations (SWE) is often useful for reproducing the unsteady flow in open channels, as well as over a floodplain. However, most of the numerical algorithms applied to the solution of the SWE fail when flood wave propagation over an initially dry area is simulated. The main problems are related to the very small or negative values of water depths occurring in the vicinity of...
-
Approximate solution for Euler equations of stratified water via numerical solution of coupled KdV system
PublikacjaWe consider Euler equations with stratified background state that is valid for internal water waves. The solution of the initial-boundary problem for Boussinesq approximation in the waveguide mode is presented in terms of the stream function. The orthogonal eigenfunctions describe a vertical shape of the internal wave modes and satisfy a Sturm-Liouville problem. The horizontal profile is defined by a coupled KdV system which is...
-
A high-accuracy method of computation of x-ray waves propagation through an optical system consisting of many lenses
PublikacjaThe propagation of X-ray waves through an optical system consisting of many X-ray refractive lenses is considered. Two differential equations are contemplated for solving the problem for electromagnetic wave propagation: first – an equation for the electric field, second – an equation derived for a complex phase of an electric field. Both equations are solved by the use of a finite-difference method. The simulation error is estimated...
-
Acoustic Heating Produced in the Thermoviscous Flow of a Shear-Thinning Fluid
PublikacjaThis study is devoted to the instantaneous acoustic heating of a shear-thinningfluid. Apparent viscosity of a shear-thinning fluid depends on the shear rate. Thatfeature distinguishes it from a viscous Newtonian fluid. The special linear combi-nation of conservation equations in the differential form makes it possible to derivedynamic equations governing both the sound and non-wave entropy mode inducedin the field of sound. These...
-
Instantaneous Heating and Cooling Caused by Periodic or Aperiodic Sound of Any Characteristic Duration in a Gas with Vibrational Relaxation
PublikacjaThermodynamic relaxation of internal degrees of a molecule's freedom in a gas occurs with some characteristic time. This makes wave processes in a gas behave differently depending on the ratio of characteristic duration of perturbations and the relaxation time. In particular, generation of the secondary non-wave modes by intense sound in a nonlinear flow dependens on frequency. These kinds of interaction are considered in this...
-
Identification of Parameters Influencing the Accuracy of the Solution of the Nonlinear Muskingum Equation
PublikacjaTwo nonlinear versions of the Muskingum equation are considered. The difference between both equations relates to the exponent parameter. In the first version, commonly used in hydrology, this parameter is considered as free, while in the second version, it takes a value resulting from the kinematic wave theory. Consequently, the first version of the equation is dimensionally inconsistent, whereas the proposed second one is consistent. It...
-
The impact of methods the stochastic analysis on swimming safety of multihull floating units (Part1)
PublikacjaThe presented article concerns the application of the methods of the stochastic analysis to solve differential equations for multihull catamaran-type floating unit. There was described the continuous process of Markov and the method of equations of Focker-Planck-Kolmogorov. The analysis of dynamics of the multihull unit was carried out with the assumption that the system model is the linear model with six degrees of freedom, on...
-
Surface and interfacial anti-plane waves in micropolar solids with surface energy
PublikacjaIn this work, the propagation behaviour of a surface wave in a micropolar elastic half-space with surface strain and kinetic energies localized at the surface and the propagation behaviour of an interfacial anti-plane wave between two micropolar elastic half-spaces with interfacial strain and kinetic energies localized at the interface have been studied. The Gurtin–Murdoch model has been adopted for surface and interfacial elasticity....
-
Directed electromagnetic pulse dynamics: projecting operators method
PublikacjaIn this article, we consider a one-dimensional model of electromagnetic pulse propagation in isotropic media, takinginto account a nonlinearity of the third order. We introduce a method for Maxwell's equation transformation on thebasis of a complete set of projecting operators. The operators correspond to wave dispersion branches including thedirection of propagation. As the simplest result of applying the method, we derive a system...
-
Kinedynamics of Spherical Wavefields in Fluid and Dielectric Continua
PublikacjaDistubances induced by physical sources in fluids or dielectrics maintain their primary character while propagating throughout either of these bi-dynamic continua. The paper defines and illustrates four sets of bi-fields based on four specific fundamental kinedynamic solutions to inhomogeneous wave equations related to quasi-point acoustic and electromagnetic sources.
-
The finite difference methods of computation of X-rays propagation through a system of many lenses
PublikacjaThe propagation of X-ray waves through an optical system consisting of many beryllium X-ray refrac- tive lenses is considered. In order to calculate the propagation of electromagnetic in the optical sys- tem, two differential equations are considered. First equation for an electric field of a monochromatic wave and the second equation derived for complex phase of the same electric The propagation of X-ray waves through an optical system...
-
One-Dimensional Modeling of Flows in Open Channels
PublikacjaIn this chapter, modeling of the unsteady open channel flow using one-dimensional approach is considered. As this question belongs to the well-known and standard problems of open channel hydraulic engineering, comprehensively presented and described in many books and publications, our attention is focused on some selected aspects only. As far as the numerical solution of the governing equations is considered, one can find out that...
-
The nonlinear effects of sound in a liquid with relaxation losses
PublikacjaThe nonlinear effects of sound in electrolyte with a chemical reaction are examined. The dynamic equations that govern non-wave modes in the field of intense sound are derived, and acoustic forces of vortex, entropy, and relaxation modes are determined in the cases of low-frequency sound and high-frequency sound. The difference in the nonlinear effects of sound in electrolyte and in a gas with excited vibrational degrees of molecules,...
-
MAGNETOACOUSTIC HEATING AND STREAMING IN A PLASMA WITH FINITE ELECTRICAL CONDUCTIVITY
PublikacjaNonlinear effects of planar and quasi-planar magnetosound perturbations are discussed. Plasma is assumed to be an ideal gas with a finite electrical conductivity permeated by a magnetic filed orthogonal to the trajectories of gas particles. the excitation of non-wave modes in the filed of intense magnetoacoustic perturbations, i.e., magnetoaciustic heating and streaming, is discussed. The analysis includes a derivation if instantaneous...
-
Discussion of “Development of an Accurate Time integration Technique for the Assessment of Q-Based versus h-Based Formulations of the Diffusion Wave Equation for Flow Routing” by K. Hasanvand, M.R. Hashemi and M.J. Abedini
PublikacjaThe discusser read the original with great interest. It seems, however, that some aspects of the original paper need additional comments. The authors of the original paper discuss the accuracy of a numerical solution of the diffusion wave equation formulated with respect to different state variables. The analysis focuses on nonlinear equations in the form of a single transport equation with the discharge Q (volumetric flow rate)...
-
Modelling and simulations in time-fractional electrodynamics based on control engineering methods
PublikacjaIn this paper, control engineering methods are presented with regard to modelling and simulations of signal propagation in time-fractional (TF) electrodynamics. That is, signal propagation is simulated in electromagnetic media described by Maxwell’s equations with fractional-order constitutive relations in the time domain. We demonstrate that such equations in TF electrodynamics can be considered as a continuous-time system of...
-
Efficiency of acoustic heating in the Maxwell fluid
PublikacjaThe nonlinear effects of sound in a fluid describing by the Maxwell model of the viscous stress tensor is the subject of investigation. Among other, viscoelastic biological media belong to this non-newtonian type of fluids. Generation of heating of the medium caused by nonlinear transfer of acoustic energy, is discussed in details. The governing equation of acoustic heating is derived by means of the special linear combination...
-
Efficiency of acoustic heating in the Maxwell fluid
PublikacjaThe nonlinear effects of sound in a fluid describing by the Maxwell model of the viscous stress tensor is the subject of investigation. Among other, viscoelastic biological media belong to this non-newtonian type of fluids. Generation of heating of the medium caused by nonlinear transfer of acoustic energy, is discussed in details. The governing equation of acoustic heating is derived by means of the special linear combination...
-
NON-STATIONARY THERMAL SELF-ACTION OF ACOUSTIC BEAMS CONTAINING SHOCK FRONTS IN THERMOCONDUCTING FLUID
PublikacjaNon-stationary thermal self-action of a periodic or impulse acoustic beam containing shock fronts in a thermoconducting Newtonian fluid is studied. Self-focusing of a saw-tooth periodic and impulse sound is considered, as well as that of a solitary shock wave which propagates with the linear sound speed. The governing equations of the beam radius are derived. Numerical simulations reveal that the thermal conductivity weakens the...
-
The Doppler effect in a bistatic system for determining the position of moving targets
PublikacjaThe article presents the theoretical analysis and the results of numerical calculations of the Doppler effect it occurs in a system designed to determine the position and speed of a moving target. The transmitter is the source of the signal and it emits a sinusoidal, acoustic and continuous wave. Signal reflected off a moving target is received by four hydrophones. Based on the signals, four Doppler shifts are determined and inserted...
-
Formulation of Time-Fractional Electrodynamics Based on Riemann-Silberstein Vector
PublikacjaIn this paper, the formulation of time-fractional (TF) electrodynamics is derived based on the Riemann-Silberstein (RS) vector. With the use of this vector and fractional-order derivatives, one can write TF Maxwell’s equations in a compact form, which allows for modelling of energy dissipation and dynamics of electromagnetic systems with memory. Therefore, we formulate TF Maxwell’s equations using the RS vector and analyse their...
-
Continuum orbitals in low energy scattering of electrons from Ar, Kr, Xe, Rn and Og atoms
Dane BadawczeThe dataset includes relativistic continuum electron wave functions (continuum orbitals, continuum spinors) for elastic scattering of electrons from Argon (Ar), Krypton (Kr), Xenon (Xe), Radon (Rn) and Oganesson (Og) atoms, calculated using the Multiconfiguration Dirac-Hartree-Fock method (MCDHF), at very low electron energies (0.0001 - 0.001 eV). Only...
-
Magnetoacoustic heating in a quasi-isentropic magnetic gas
PublikacjaThe nonlinear heating of a plasma which associates with the transfer of energy of magnetoacoustic waves into that of the entropy mode, is analytically studied. A plasma is uniform and motionless at equilibrium. Perturbations in a plasma are described by a system of ideal magnetohydrodynamic equations. The equilibrium straight magnetic strength and the wave vector form a constant angle which varies from 0 to π/2. There exist four...
-
Database of the illustrative simulations of the nonstandard approximation of the generalized Burgers–Huxley equation
Dane BadawczeThe presented dataset is a result of numerical analysis of a generalized Burgers–Huxley partial differential equation. An analyzed diffusive partial differential equation consist with nonlinear advection and reaction. The reaction term is a generalized form of the reaction law of the Hodgkin–Huxley model, while the advection is a generalized form of...
-
Simulation of unsteady flow over floodplain using the diffusive wave equation and the modified finite element method
PublikacjaWe consider solution of 2D nonlinear diffusive wave equation in a domain temporarily covered by a layer of water. A modified finite element method with triangular elements and linear shape functions is used for spatial discretization. The proposed modification refers to the procedure of spatial integration and leads to a more general algorithm involving a weighting parameter. The standard finite element method and the finite difference...
-
Deflated Preconditioned Solvers for Parametrized Local Model Order Reduction
PublikacjaOne of steps in the design of microwave filters is numerical tuning using full-wave simulators. Typically, it is a time-consuming process as it uses advanced computational methods, e.g. the finite-element method (FEM) and it usually requires multiple optimization steps before the specification goals are met. FEM involves solving a large sparse system of equations at many frequency points and therefore its computational cost is...
-
Crank–Nicolson FDTD Method in Media Described by Time-Fractional Constitutive Relations
PublikacjaIn this contribution, we present the Crank-Nicolson finite-difference time-domain (CN-FDTD) method, implemented for simulations of wave propagation in media described by time-fractional (TF) constitutive relations. That is, the considered constitutive relations involve fractional-order (FO) derivatives based on the Grünwald-Letnikov definition, allowing for description of hereditary properties and memory effects of media and processes....
-
SPECTRAL RESPONSE OF STATIONARY JACK-UP PLATFORMS LOADED BY SEA WAVES AND WIND USING PERTURBATION METHOD
PublikacjaThe paper addresses non-linear vibrations of offshore jack-up drilling platforms loaded by sea waves and wind in their stationary condition using the perturbation method. Non-linearity of dynamic equations of motion for fixed offshore platforms yields from two factors. The first is load excitation generating non-linear velocity coupling in a dynamic system. This coupling is inherent in the modified Morison equation, involving the...