Wyniki wyszukiwania dla: linear-scaling density functional theory
-
The ONETEP linear-scaling density functional theory program
PublikacjaWe present an overview of the ONETEP program for linear-scaling density functional theory (DFT) calculations with large basis set (planewave) accuracy on parallel computers. The DFT energy is computed from the density matrix, which is constructed from spatially localized orbitals we call Non-orthogonal Generalized Wannier Functions (NGWFs), expressed in terms of periodic sinc (psinc) functions. During the calculation, both the...
-
The potential of imogolite nanotubes as (co-)photocatalysts: a linear-scaling density functional theory study
PublikacjaWe report a linear-scaling density functional theory (DFT) study of the structure, wall-polarization absolute band-alignment and optical absorption of several, recently synthesized, open-ended imogolite (Imo) nanotubes (NTs), namely single-walled (SW) aluminosilicate (AlSi), SW aluminogermanate (AlGe), SW methylated aluminosilicate (AlSi-Me), and double-walled (DW) AlGe NTs. Simulations with three different semi-local and dispersion-corrected...
-
Electrostatic interactions in finite systems treated with periodic boundary conditions: Application to linear-scaling density functional theory
PublikacjaWe present a comparison of methods for treating the electrostatic interactions of finite, isolated systems within periodic boundary conditions (PBCs), within density functional theory (DFT), with particular emphasis on linear-scaling (LS) DFT. Often, PBCs are not physically realistic but are an unavoidable consequence of the choice of basis set and the efficacy of using Fourier transforms to compute the Hartree potential. In such...
-
Practical Approach to Large-Scale Electronic Structure Calculations in Electrolyte Solutions via Continuum-Embedded Linear-Scaling Density Functional Theory
PublikacjaWe present the implementation of a hybrid continuum-atomistic model for including the effects of a surrounding electrolyte in large-scale density functional theory (DFT) calculations within the Order-N Electronic Total Energy Package (ONETEP) linear-scaling DFT code, which allows the simulation of large complex systems such as electrochemical interfaces. The model represents the electrolyte ions as a scalar field and the solvent...
-
Performance of extended Lagrangian schemes for molecular dynamics simulations with classical polarizable force fields and density functional theory
PublikacjaIterative energy minimization with the aim of achieving self-consistency is a common feature of Born-Oppenheimer molecular dynamics (BOMD) and classical molecular dynamics with polarizable force fields. In the former, the electronic degrees of freedom are optimized, while the latter often involves an iterative determination of induced point dipoles. The computational effort of the self-consistency procedure can be reduced by re-using...
-
Linear-scaling calculation of Hartree-Fock exchange energy with Non-orthogonal Generalised Wannier Functions
PublikacjaWe present a method for the calculation of four-centre two-electron repulsion integrals in terms of localised non-orthogonal generalised Wannier functions (NGWFs). Our method has been imple- mented in the ONETEP program and is used to compute the Hartree-Fock exchange energy component of Hartree-Fock and Density Functional Theory (DFT) calculations with hybrid exchange-correlation functionals. As the NGWFs are optimised in situ...
-
Massively parallel linear-scaling Hartree–Fock exchange and hybrid exchange–correlation functionals with plane wave basis set accuracy
PublikacjaWe extend our linear-scaling approach for the calculation of Hartree–Fock exchange energy using localized in situ optimized orbitals [Dziedzic et al., J. Chem. Phys. 139, 214103 (2013)] to leverage massive parallelism. Our approach has been implemented in the ONETEP (Order-N Electronic Total Energy Package) density functional theory framework, which employs a basis of non-orthogonal generalized Wannier functions (NGWFs) to achieve...
-
Chemically Selective Alternatives to Photoferroelectrics for Polarization-Enhanced Photocatalysis: The Untapped Potential of Hybrid Inorganic Nanotubes
PublikacjaLinear-scaling density functional theory simulation of methylated imogolite nanotubes (NTs) elucidates the interplay between wall-polarization, bands separation, charge-transfer excitation, and tunable electrostatics inside and outside the NT-cavity. The results suggest that integration of polarization-enhanced selective photocatalysis and chemical separation into one overall dipole-free material should be possible.
-
Anharmonic Infrared Spectroscopy through the Fourier Transform of Time Correlation Function Formalism in ONETEP
PublikacjaDensity functional theory molecular dynamics (DFT-MD) provides an efficient framework for accurately computing several types of spectra. The major benefit of DFTMD approaches lies in the ability to naturally take into account the effects of temperature and anharmonicity, without having to introduce any ad hoc or a posteriori corrections. Consequently, computational spectroscopy based on DFT-MD approaches plays a pivotal role in...
-
Minimal parameter implicit solvent model for ab initioelectronic-structure calculations
PublikacjaAbstract - We present an implicit solvent model for ab initio electronic-structure calculations which is fully self-consistent and is based on direct solution of the nonhomogeneous Poisson equation. The solute cavity is naturally defined in terms of an isosurface of the electronic density according to the formula of Fattebert and Gygi (J. Comput. Chem., 23 (2002) 662). While this model depends on only two parameters, we demonstrate...
-
Electrochemistry from first-principles in the grand canonical ensemble
PublikacjaProgress in electrochemical technologies, such as automotive batteries, supercapacitors, and fuel cells, depends greatly on developing improved charged interfaces between electrodes and electrolytes. The rational development of such interfaces can benefit from the atomistic understanding of the materials involved by first-principles quantum mechanical simulations with Density Functional Theory (DFT). However, such simulations are...
-
Properties of Oxygen Vacancy and Hydrogen Interstitial Defects in Strontium Titanate: DFT + Ud,p Calculations
PublikacjaThis work presents extensive theoretical studies focused on the mixed ion-electron transport in cubic strontium titanate (STO). A new approach to the description of this difficult system was developed within the framework of linear-scaling Kohn–Sham density functional theory, as realized in the ONETEP program. The description we present is free of any empirical parameters and relies on the Hubbard U and Hund’s J corrections applied...
-
Electronic structure calculations in electrolyte solutions: Methods for neutralization of extended charged interfaces
PublikacjaDensity functional theory (DFT) is often used for simulating extended materials such as infinite crystals or surfaces, under periodic boundary conditions (PBCs). In such calculations, when the simulation cell has non-zero charge, electrical neutrality has to be imposed, and this is often done via a uniform background charge of opposite sign (“jellium”). This artificial neutralization does not occur in reality, where a different...
-
Advanced Potential Energy Surfaces for Molecular Simulation
PublikacjaAdvanced potential energy surfaces are defined as theoretical models that explicitly include many-body effects that transcend the standard fixed-charge, pairwise-additive paradigm typically used in molecular simulation. However, several factors relating to their software implementation have precluded their widespread use in condensed-phase simulations: the computational cost of the theoretical models, a paucity of approximate models...
-
Mutually polarizable QM/MM model with in situ optimized localized basis functions
PublikacjaWe extend our recently developed quantum-mechanical/molecular mechanics (QM/MM) approach [Dziedzic et al., J. Chem. Phys. 145, 124106 (2016)] to enable in situ optimization of the localized orbitals. The quantum subsystem is described with ONETEP linear-scaling density functional theory and the classical subsystem – with the AMOEBA polarizable force field. The two subsystems interact via multipolar electrostatics and are fully...
-
Marek Czachor prof. dr hab.
Osoby -
Theoretical study of the photoelectron spectrum of ethyl formate: Ab initio and density functional theory investigation
PublikacjaThe first ionization energy and associated photoelectron spectrum of ethyl formate are investigated with quantum chemistry calculations. The geometries, harmonic vibrational frequencies and first ionization energy are computed at the Hartree-Fock (HF) and at the second order Moller-Plesset perturbation theory (MP2). Moreover, accurate ionization energies are obtained with the Coupled-Cluster theory including singles and doubles...
-
Excited state properties of a series of molecular photocatalysts investigated by time dependent density functional theory.
PublikacjaTime dependent density functional theory calculations are applied on a series of molecular photocatalysts of the type [(tbbpy)2M1(tpphz)M2X2]2+ (M1 = Ru, Os; M2 = Pd, Pt; X = Cl, I) in order to provide information concerning the photochemistry occurring upon excitation of the compounds in the visible region. To this aim, the energies, oscillator strengths and orbital characters of the singlet and triplet excited states are investigated....
-
Ab initio and density functional theory calculations of proton affinities for volatile organic compounds
PublikacjaThe Hatree-Fock method with 6-311G** split-valence molecular orbitals basis sets and the density function theory-B3LYP have been applied to geometrical optimizations and calculations of total electronic, zero point vibrational energies and proton affinities at 298 K for volatile organic compounds. Calculated values of proton affinities are compared with experimental data.
-
Effect of Polymerization Statistics on the Electronic Properties of Copolymers for Organic Photovoltaics
PublikacjaStatistical block copolymers, composed of donor (D) and acceptor (A) blocks, are a novel type of material for organic photovoltaics (OPVs) devices. In particular a new series of polymers based on PBTZT-stat-BDTT-8, recently developed by Merck, offers high solubility in different solvents, and a high power conversion efficiency (PCE) in different device architectures. Although it is known that the electronic properties of these...
-
Density functional approaches to the many-body problem
Kursy Online -
Density functional LCAO calculations of vibrational modes and phonon density of states in the strained single-layer phosphorene
PublikacjaThe paper presents an investigation of phosphorene under axial strain on the phonon density of states and vibrational modes. The studies were performed by means of density functional theory (DFT) within the linear combination of atomic orbitals (LCAO). The strained models were constructed using optimised supercell techniques. The vibrational mode spectra were estimated for strains applied for both the zigzag and armchair directions...
-
The role of Herzberg-Teller effects on the resonance Raman spectrum of trans-porphycene investigated by time dependent density functional theory.
PublikacjaThe S1 excited state properties as well as the associated absorption and resonance Raman (RR) spectra of trans-porphycene are investigated by means of time dependent density functional theory calculations. The relative magnitude of the Franck-Condon (FC) contribution and of the Herzberg-Teller (HT) effects is evaluated for both the absorption and RR intensities. The accuracy of the calculated spectra is assessed by employing different...
-
Structure and elastic properties of Mg(OH)2from density functional theory
Publikacja -
Density functional theory calculations on entire proteins for free energies of binding: Application to a model polar binding site
PublikacjaIn drug optimization calculations, the molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) method can be used to compute free energies of binding of ligands to proteins. The method involves the evaluation of the energy of configurations in an implicit solvent model. One source of errors is the force field used, which can potentially lead to large errors due to the restrictions in accuracy imposed by its empirical nature....
-
Hydrogen Production Mechanism in Low-Temperature Methanol Decomposition Catalyzed by Ni3Sn4 Intermetallic Compound: A Combined Operando and Density Functional Theory Investigation
PublikacjaHydrogen production from methanol decomposition to syngas (H2 + CO) is a promising alternative route for clean energy transition. One major challenge is related to the quest for stable, cost-effective, and selective catalysts operating below 400 °C. We illustrate an investigation of the surface reactivity of a Ni3Sn4 catalyst working at 250 °C, by combining density functional theory, operando X-ray absorption spectroscopy, and high-resolution...
-
On constitutive relations in the resultatnt non-linear theory of shells
PublikacjaThe authors summarize their current research in the field of constitutive modelling in the framework of non-linear 6-parameter shell theory. In particular the description of isotropic, multilayered composite and functionally graded shells is presented.
-
A non-linear direct peridynamics plate theory
PublikacjaIn this paper a direct non-local peridynamics theory for thin plates is developed. Peridynamic points are assumed to behave like rigid bodies with independent translation and finite rotation degrees of freedom. The non-local mechanical interaction between points is characterized by force and moment vectors. The balance equations including the linear momentum, the angular momentum and the energy are presented. Peridynamic deformation...
-
Implementation of Hierarchical Control of Drinking Water Supply System
PublikacjaThe paper presents the outline of the didactical project of a complex computer controlled system realized by the first degree students of the Automatics and Robotics on the Faculty of Electrical and Control Engineering (FoEaCE) in Gdansk University of Technology (GUT). The synthesis, implementation and analysis of a multilayer hierarchical control system for drinking water supply system (DWSS) are main topics of that project. The...
-
Extended phase diagram of RNiC2 family: Linear scaling of the Peierls temperature
PublikacjaPhysical properties for the late-lanthanide-based RNiC2 (R = Dy, Ho, Er, and Tm) ternary compounds are reported. All the compounds show antiferromagnetic ground state with the Néel temperature ranging from 3.4 K for HoNiC2 to 8.5 K for ErNiC2. The results of the transport and galvanomagnetic properties confirm a charge density wave state at and above room temperature with transition temperatures TCDW = 284, 335, 366, and 394 K for...
-
Adsorption of a metalorganic complex at a metal surface: A density functional theory study vs. model description
Publikacja -
Drilling couples and refined constitutive equations in the resultant geometrically non-linear theory of elastic shells
PublikacjaIt is well known that distribution of displacements through the shell thickness is non-linear, in general. We introduce a modified polar decomposition of shell deformation gradient and a vector of deviation from the linear displacement distribution. When strains are assumed to be small, this allows one to propose an explicit definition of the drilling couples which is proportional to tangential components of the deviation vector....
-
Density Functional Theory Studies on Ir Spectra of the Triphenylene Derivatives. A Scaled Quantum Mechanical Force Field Approach
Publikacja -
Rotational Molding of Linear Low-Density Polyethylene Composites Filled with Wheat Bran
PublikacjaApplication of lignocellulosic fillers in the manufacturing of wood polymer composites (WPCs) is a very popular trend of research, however it is still rarely observed in the case of rotational molding. The present study aimed to analyze the impact of wheat bran content (from 2.5 wt.% to 20 wt.%) on the performance of rotationally-molded composites based on a linear low-density polyethylene (LLDPE) matrix. Microscopic structure...
-
Density functional theory-based simulations of sum frequency generation spectra involving methyl stretching vibrations: effect of the molecular model on the deduced molecular orientation and comparison with an analytical approach
PublikacjaThe knowledge of the first hyperpolarizability tensor elements of molecular groups is crucial for a quantitative interpretation of the sum frequency generation (SFG) activity of thin organic films at interfaces. Here, the SFG response of the terminal methyl group of a dodecanethiol (DDT) monolayer has been interpreted on the basis of calculations performed at the density functional theory (DFT) level of approximation. In particular,...
-
Novel Tools for Comprehensive Functional Analysis of LDLR (Low-Density Lipoprotein Receptor) Variants
PublikacjaFamilial hypercholesterolemia (FH) is an autosomal-dominant disorder caused mainly by substitutions in the low-density lipoprotein receptor (LDLR) gene, leading to an increased risk of premature cardiovascular diseases. Tremendous advances in sequencing techniques have resulted in the discovery of more than 3000 variants of the LDLR gene, but not all of them are clinically relevant. Therefore, functional studies of selected variants...
-
Exact resultant equilibrium conditions in the non-linear theory of branching and self-intersecting shells
PublikacjaWe formulate the exact, resultant equilibrium conditions for the non-linear theory of branching and self-intersecting shells. The conditions are derived by performing direct through-the-thickness integration in the global equilibrium conditions of continuum mechanics. At each regular internal and boundary point of the base surface our exact, local equilibrium equations and dynamic boundary conditions are equivalent, as expected,...
-
Spectroscopic and cytotoxic characteristics of (p-cymene)Ru(II) complexes with bidentate coumarins and density functional theory comparison with selected Pd(II) complexes
PublikacjaThis paper presents the synthesis of two new (p-cymene)-ruthenium(II) complexes with the bidentate coumarin ligands. Both complexes were characterized by FTIR spectroscopy, 1H NMR, 13C NMR, MS, elemental analysis and DFT calculations. The X-ray structure of complex 3a was also solved. The cytotoxic properties of both complexes were examined on human leukemia NALM-6 and HL-60 cells and melanoma WM-115 cells. The complexes possess...
-
Optimal linear control theory in power system application
PublikacjaPrzedstawiono syntezę stabilizatora systemowego przy wykorzystaniu metodyki Hinf. Zaprojektowany regulator umożliwia uzyskanie lepszych rezultatów w porównaniu z regulatorem odniesienia w szerokim zakresie zmian punktu pracy.
-
Ground lemon and stevia leaves as renewable functional fillers with antioxidant activity for high-density polyethylene composites
PublikacjaThe development of new sustainable material solutions in the processing of thermoplastic polymers concerns both the application of biopolymers and the use of valorized plant derivatives as fillers and modifiers of petrochemical polymers. Herein, the possibility of using unprocessed raw parts of two commonly used in the food industry leaves, i.e., lemon (LL) and stevia (ST), as active and functional fillers for high-density polyethylene...
-
Direct estimation of functional and density operators by local operations and classical communication.
PublikacjaWykazano, że można dokonywać detekcji splątania w paradygmacie odległych laboratoriów. Pokazano, jak można fizycznie zaimplementować strukturalne przybliżenie fizyczne niefizycznego odwzorowania w tym paradygmacie.
-
On shear correction factors in the non-linear theory of elastic shells
PublikacjaW pracy wyprowadzono analitycznie wartości korekcyjnych współczynników ścinania dla ścinania poprzecznego oraz dla momentów owinięcia w ramach nieliniowej sześcioparametrowej teorii powłok. Wartości wyprowadzono poprzez odpowiednie sformułowanie komplementarnej energii sprężystej. Na drodze analizy przy pomocy MES, badano wpływ wartości współczynników na położenie punktów bifurkacji, deformacje, całkowitą energię sprężystą układu...
-
Application of Graph Theory Algorithms in Non-disjoint Functional Decomposition of Specific Boolean Functions
Publikacja -
Catalytic conversion of linear low density polyethylene into carbon nanomaterials under the combined catalysis of Ni2O3 and poly(vinyl chloride)
Publikacja -
IR–Raman, NMR and density functional methods in the examination of tautomerism and features of N-methyl substituted 9-acridinamine derivatives
Publikacja -
Raw data for the paper "Mutually polarizable QM/MM model with in situ optimized localized basis functions"
Dane BadawczeThis dataset contains raw data used to generate plots in the paper Mutually polarizable QM/MM model with in situ optimized localized basis functions. The paper is devoted to a second generation of the TINKTEP model -- an QM/MM approach combining linear-scaling DFT (ONETEP) and a polarizable force field (AMOEBA).
-
Tuning the work function of graphite nanoparticles via edge termination
PublikacjaGraphite nanoparticles are important in energy materials applications such as lithium-ion batteries (LIBs), supercapacitors and as catalyst supports. Tuning the work function of the nanoparticles allows local control of lithiation behaviour in LIBs, and the potential of zero charge of electrocatalysts and supercapacitors. Using large scale density functional theory (DFT) calculations, we find that the surface termination of multilayer...
-
Li nucleation on the graphite anode under potential control in Li-ion batteries
PublikacjaApplication of Li-ion batteries in electric vehicles requires improved safety, increased lifetime and high charging rates. One of the most commonly used intercalation anode material for Li-ion batteries, graphite, is vulnerable to Li nucleation, a side reaction which competes with the intercalation process and leads to loss of reversible capacity of the battery, ageing and short-circuits. In this study, we deploy a combined grand...
-
Effects of Bromine Doping on the Structural Properties and Band Gap of CH3NH3Pb(I1–xBrx)3 Perovskite
PublikacjaAn experimental and theoretical study is reported to investigate the influence of bromine doping on CH3NH3Pb(I1−xBrx)3 perovskite for Br compositions ranging from x = 0 to x = 0.1, in which the material remains in the tetragonal phase. The experimental band gap is deduced from UV−vis absorption spectroscopy and displays a linear behavior as a function of bromine concentration. Density functional theory calculations are performed...
-
Designing efficient A-D-A1-D-A type fullerene free acceptor molecules with enhanced power conversion efficiency for solar cell applications
PublikacjaThe achievement of highly efficient power conversion efficiency (PCE) is a big concern for non-fullerene organic solar cells (NF-OSCs) because PCE can depend on numerous variables. Here, new five novel acceptor molecules without fullerenes were developed and investigated using DFT (density functional theory) and TD-DFT (time dependent-density functional theory). Compared to the recently synthesized molecule (PZ-dIDTC6), the developed...