Publikacje
Filtry
wszystkich: 377
Katalog Publikacji
Rok 2016
-
Some variations of perfect graphs
PublikacjaWe consider (ψk−γk−1)-perfect graphs, i.e., graphs G for which ψk(H) =γk−1(H) for any induced subgraph H of G, where ψk and γk−1 are the k -path vertex cover number and the distance (k−1)-domination number, respectively. We study (ψk−γk−1)-perfect paths, cycles and complete graphs for k≥2. Moreover, we provide a complete characterisation of (ψ2−γ1)-perfect graphs describing the set of its forbidden induced subgraphs and providing...
-
Structured populations with diffusion and Feller conditions
PublikacjaWe prove a weak maximum principle for structured population models with dynamic boundary conditions. We establish existence and positivity of solutions of these models and investigate the asymptotic behaviour of solutions. In particular, we analyse so called size profile.
-
The convex domination subdivision number of a graph
PublikacjaLet G = (V;E) be a simple graph. A set D\subset V is a dominating set of G if every vertex in V - D has at least one neighbor in D. The distance d_G(u, v) between two vertices u and v is the length of a shortest (u, v)-path in G. An (u, v)-path of length d_G(u; v) is called an (u, v)-geodesic. A set X\subset V is convex in G if vertices from all (a, b)-geodesics belong to X for any two vertices a, b \in X. A set X is a convex dominating...
-
The finite difference methods of computation of X-rays propagation through a system of many lenses
PublikacjaThe propagation of X-ray waves through an optical system consisting of many beryllium X-ray refrac- tive lenses is considered. In order to calculate the propagation of electromagnetic in the optical sys- tem, two differential equations are considered. First equation for an electric field of a monochromatic wave and the second equation derived for complex phase of the same electric The propagation of X-ray waves through an optical system...
-
Uniform Expansivity Outside a Critical Neighborhood in the Quadratic Family
Publikacja -
Weakly convex and convex domination numbers of some products of graphs
PublikacjaIf $G=(V,E)$ is a simple connected graph and $a,b\in V$, then a shortest $(a-b)$ path is called a $(u-v)$-{\it geodesic}. A set $X\subseteq V$ is called {\it weakly convex} in $G$ if for every two vertices $a,b\in X$ exists $(a-b)$- geodesic whose all vertices belong to $X$. A set $X$ is {\it convex} in $G$ if for every $a,b\in X$ all vertices from every $(a-b)$-geodesic belong to $X$. The {\it weakly convex domination number}...
-
Weakly convex domination subdivision number of a graph
PublikacjaA set X is weakly convex in G if for any two vertices a; b \in X there exists an ab–geodesic such that all of its vertices belong to X. A set X \subset V is a weakly convex dominating set if X is weakly convex and dominating. The weakly convex domination number \gamma_wcon(G) of a graph G equals the minimum cardinality of a weakly convex dominating set in G. The weakly convex domination subdivision number sd_wcon (G) is the minimum...
Rok 2015
-
A remark on singular sets of vector bundle morphisms
PublikacjaIf characteristic classes for two vector bundles over the same base space do not coincide, then the bundles are not isomorphic. We give under rather common assumptions a lower bound on the topological dimension of the set of all points in the base over which a morphism between such bundles is not bijective. Moreover, we show that this set is topologically non-trivial.
-
An algorithmic approach to estimating the minimal number of periodic points for smooth self-maps of simply-connected manifolds
Publikacja -
An algorithmic approach to estimating the minimal number of periodic points for smooth self-maps of simply-connected manifolds
PublikacjaFor a given self-map f of M, a closed smooth connected and simply-connected manifold of dimension m 4, we provide an algorithm for estimating the values of the topological invariant D^m_r [f], which equals the minimal number of r-periodic points in the smooth homotopy class of f. Our results are based on the combinatorial scheme for computing D^m_r [f] introduced by G. Graff and J. Jezierski [J. Fixed Point Theory Appl. 13 (2013),...
-
Analysis of Interspike-Intervals for the General Class of Integrate-and-Fire Models with Periodic Drive
PublikacjaWe study one-dimensional integrate-and-fire models of the general type x˙=F (t, x) and analyze properties of the firing map which iterations recover consecutive spike timings. We impose very week constraints for the regularity of the function F (t, x), e.g. often it suffices to assume that F is continuous. If additionally F is periodic in t, using mathematical study of the displacement sequence of an orientation preserving circle...
-
ANALYSIS OF THE p53 PROTEIN GENE EXPRESSION MODEL
PublikacjaWe study the asymptotic behaviour of the solutions of the p53-Mdm2 model proposed by Monk (2003). The p53 gene is crucial for cellular inhibition of the angiogenesis process, while Mdm2 is a negative regulator of the p53 tumor-suppressor. We investigate the stability of the positive steady state and perform some numerical experiments.
-
Asymptotic properties of quadratic stochastic operators acting on the L1 space
PublikacjaQuadratic stochastic operators can exhibit a wide variety of asymptotic behaviours and these have been introduced and studied recently in the ℓ1 space. It turns out that in principle most of the results can be carried over to the L1 space. However, due to topological properties of this space one has to restrict in some situations to kernel quadratic stochastic operators. In this article we study the uniform and strong asymptotic...
-
Computation of cubical homology, cohomology, and (co)homological operations via chain contraction
Publikacja -
Efficient quadrature for fast oscillating integralof paraxial optics
PublikacjaThe study concerns the determination of quadrature for the integral solutionof the paraxial wave equation. The difficulty in computation of the integral isassociated with the rapid change of the integrand phase. The developed quadraturetakes into account the fast oscillating character of the integrand. The presentedmethod is an alternative to the commonly used methods based on the use of theFourier transform. The determination...
-
Entropy Measures in the Assessment of Heart Rate Variability in Patients with Cardiodepressive Vasovagal Syncope
PublikacjaSample entropy (SampEn) was reported to be useful in the assessment of the complexity of heart rate dynamics. Permutation entropy (PermEn) is a new measure based on the concept of order and was previously shown to be accurate for short, non-stationary datasets. The aim of the present study is to assess if SampEn and PermEn obtained from baseline recordings might differentiate patients with various outcomes of the head-up tilt test...
-
Existence and uniqueness of solutions for single-population McKendrick-von Foerster models with renewal
PublikacjaWe study a McKendrick-von Foerster type equation with renewal. This model is represented by a single equation which describes one species which produces young individuals. The renewal condition is linear but takes into account some history of the population. This model addresses nonlocal interactions between individuals structured by age. The vast majority of size-structured models are also treatable. Our model generalizes a number...
-
Highly porous nanoberyllium for X-ray beam speckle suppression
PublikacjaThe speckle suppressor device containing highly porous nanoberyllium is proposed for manipulating with the spatial coherence length and removing undesirable speckle structure during the imaging experiments. We report a special device called the speckle suppressor, which contains the highly porous nanoberyllium plate, compacted from both sides by two beryllium windows. By insertion the speckle suppressor in the X-ray beam it allows...
-
Homoclinic and Heteroclinic Orbits for a Class of Singular Planar Newtonian Systems
PublikacjaThe study of existence and multiplicity of solutions of differential equations possessing a variational nature is a problem of great meaning since most of them derives from mechanics and physics. In particular, this relates to Hamiltonian systems including Newtonian ones. During the past thirty years there has been a great deal of progress in the use of variational methods to find periodic, homoclinic and heteroclinic solutions...
-
Homoclinic orbits for an almost periodically forced singular Newtonian system in R^3
Publikacja. This work uses a variational approach to establish the existence of at least two homoclinic solutions for a family of singular Newtonian systems in R^3 which are subjected to almost periodic forcing in time variable
-
Inducing a map on homology from a correspondence
Publikacja -
INFLUENCE OF A VERTEX REMOVING ON THE CONNECTED DOMINATION NUMBER – APPLICATION TO AD-HOC WIRELESS NETWORKS
PublikacjaA minimum connected dominating set (MCDS) can be used as virtual backbone in ad-hoc wireless networks for efficient routing and broadcasting tasks. To find the MCDS is an NP- complete problem even in unit disk graphs. Many suboptimal algorithms are reported in the literature to find the MCDS using local information instead to use global network knowledge, achieving an important reduction in complexity. Since a wireless network...
-
Method of lines for physiologically structured models with diffusion
PublikacjaWe deal with a size-structured model with diffusion. Partial differential equations are approximated by a large system of ordinary differential equations. Due to a maximum principle for this approximation method its solutions preserve positivity and boundedness. We formulate theorems on stability of the method of lines and provide suitable numerical experiments.
-
Morse cohomology in a Hilbert space via the Conley index
PublikacjaThe main theorem of this paper states that Morse cohomology groups in a Hilbert space are isomorphic to the cohomological Conley index. It is also shown that calculating the cohomological Conley index does not require finite-dimensional approximations of the vector field. Further directions are discussed.
-
On the convergence of a nonlinear finite-difference discretization of the generalized Burgers–Fisher equation
PublikacjaIn this note, we establish analytically the convergence of a nonlinear finite-difference discretization of the generalized Burgers-Fisher equation. The existence and uniqueness of positive, bounded and monotone solutions for this scheme was recently established in [J. Diff. Eq. Appl. 19, 1907{1920 (2014)]. In the present work, we prove additionally that the method is convergent of order one in time, and of order two in space. Some...
-
On the interspike-intervals of periodically-driven integrate-and-fire models
PublikacjaWe analyze properties of the firing map, which iterations give information about consecutive spikes, for periodically driven linear integrate-and-fire models. By considering locally integrable (thus in general not continuous) input functions, we generalize some results of other authors. In particular, we prove theorems concerning continuous dependence of the firing map on the input in suitable function spaces. Using mathematical...
-
On the regularity of the displacement sequence of an orientation preserving circle homeomorphism
PublikacjaWe investigate the regularity properties of the displacemnet sequence of an orientation preserving circle homeomorphism. is rational, then ηn(z) is asymptotically periodic with semi-period q. This
-
On the space of equivariant local maps
Publikacja -
On Von Karman Equations and the Buckling of a Thin Circular Elastic Plate
PublikacjaWe shall be concerned with the buckling of a thin circular elastic plate simply supported along a boundary, subjected to a radial compressive load uniformly distributed along its boundary. One of the main engineering concerns is to reduce deformations of plate structures. It is well known that von Karman equations provide an established model that describes nonlinear deformations of elastic plates. Our approach to study plate deformations...
-
One-dimensional chaos in a system with dry friction: analytical approach
PublikacjaWe introduce a new analytical method, which allows to find chaotic regimes in non-smooth dynamical systems. A simple mechanical system consisting of a mass and a dry friction element is considered. The corresponding mathematical model is being studied. We show that the considered dynamical system is a skew product over a piecewise smooth mapping of a segment (the so-called base map). For this base map we demonstrate existence of...
-
On-line Ramsey Numbers of Paths and Cycles
PublikacjaConsider a game played on the edge set of the infinite clique by two players, Builder and Painter. In each round, Builder chooses an edge and Painter colours it red or blue. Builder wins by creating either a red copy of $G$ or a blue copy of $H$ for some fixed graphs $G$ and $H$. The minimum number of rounds within which Builder can win, assuming both players play perfectly, is the \emph{on-line Ramsey number} $\tilde{r}(G,H)$. In...
-
Rich Bifurcation Structure in a Two-Patch Vaccination Model
Publikacja -
Smooth orthogonal projections on sphere.
PublikacjaWe construct a decomposition of the identity operator on the sphere S^d as a sum of smooth orthogonal projections subordinate to an open cover of S^d. We give applications of our main result in the study of function spaces and Parseval frames on the sphere.
-
Spectral splittings in the Conley index theory
Publikacja -
Subcritical bifurcation of free elastic shell of biological cluster
PublikacjaIn this paper we will investigate symmetry-breaking bifurcation of equilibrium forms of biological cluster. A biological cluster is a two-dimensional analogue of a gas balloon. The cluster boundary is connected with its kernel by elastic links. The inside part is filled with compressed gas or fluid. Equilibrium forms of biological cluster can be found as solutions of a certain second order ordinary functional-differential equation...
-
Super Dominating Sets in Graphs
PublikacjaIn this paper some results on the super domination number are obtained. We prove that if T is a tree with at least three vertices, then n2≤γsp(T)≤n−s, where s is the number of support vertices in T and we characterize the extremal trees.
-
The cohomological span of LS-Conley index
PublikacjaIn this paper we introduce a new homotopy invariant – the cohomological span of LS-Conley index. We prove the theorems on the existence of critical points for a class of strongly indefinite functionals with the gradient of the form Lx+K(x), where L is bounded linear and K is completely continuous. We give examples of Hamiltonian systems for which our methods give better results than the Morse inequalities. We also give a formula...
-
The Hopf theorem for gradient local vector fields on manifolds
PublikacjaWe prove the Hopf theorem for gradient local vector fields on manifolds, i.e., we show that there is a natural bijection between the set of gradient otopy classes of gradient local vector fields and the integers if the manifold is connected Riemannian without boundary.
-
Thermal ablation modeling via the bioheat equation and its numerical treatment
PublikacjaThe phenomenon of thermal ablation is described by Pennes’ bioheat equation. This model is based on Newton’s law of cooling. Many approximate methods have been considered because of the importance of this issue. We propose an implicit numerical scheme which has better stability properties than other approaches.
-
TOTAL DOMINATION MULTISUBDIVISION NUMBER OF A GRAPH
PublikacjaThe domination multisubdivision number of a nonempty graph G was defined in [3] as the minimum positive integer k such that there exists an edge which must be subdivided k times to increase the domination number of G. Similarly we define the total domination multisubdivision number msd_t (G) of a graph G and we show that for any connected graph G of order at least two, msd_t (G) ≤ 3. We show that for trees the total domination...
-
Weighted difference schemes for systems of quasilinear first order partial functional differential equations
PublikacjaThe paper deals with initial boundary value problems of the Dirichlet type for system of quasilinear functional differential equations. We investigate weighted difference methods for these problems. A complete convergence analysis of the considered difference methods is given. Nonlinear estimates of the Perron type with respect to functional variables for given functions are assumed. The proof of the stability of difference problems...
Rok 2014
-
A note on an approximative scheme of finding almost homoclinic solutions for Newtonian systems
PublikacjaIn this work we will be concerned with the existence of an almost homoclinic solution for a perturbed Newtonian system in a finite dimensional space. It is assumed that a potential is C^1 smooth and its gradient is bounded with respect to a time variable. Moreover, a forcing term is continuous, bounded and squere integrable. We will show that the appproximative scheme due to J. Janczewska for a time periodic potential extends to...
-
A NOTE ON ON-LINE RAMSEY NUMBERS FOR QUADRILATERALS
PublikacjaWe consider on-line Ramsey numbers defined by a game played between two players, Builder and Painter. In each round Builder draws an the edge and Painter colors it either red or blue, as it appears. Builder’s goal is to force Painter to create a monochromatic copy of a fixed graph H in as few rounds as possible. The minimum number of rounds (assuming both players play perfectly) is the on-line Ramsey number \widetilde{r}(H) of...
-
Acoustic Streaming Induced by Periodic and Aperiodic Sound in a Bubbly Liquid
PublikacjaThe vortex ow which follows intense sound propagating in a bubbly liquid, is considered. The reasons for acoustic streaming are both nonlinearity and dispersion. That makes streaming especial as compared with that in a Newtonian uid. Conclusions concern the vortex ow induced in a half-space by initially harmonic or impulse Gaussian beam. The vortex ow recalls a turbulent ow with increasing in time number of small-scale vortices...
-
Approximative sequences and almost homoclinic solutions for a class of second order perturbed Hamiltonian systems
PublikacjaIn this work we will consider a class of second order perturbed Hamiltonian systems with a superquadratic growth condition on a time periodic potential and a small aperiodic forcing term. To get an almost homoclinic solution we approximate the original system by time periodic ones with larger and larger time periods. These approximative systems admit periodic solutions, and an almost homoclinic solution for the original system...
-
Bondage number of grid graphs
PublikacjaThe bondage number b(G) of a nonempty graph G is the cardinality of a smallest set of edges whose removal from G results in a graph with domination number greater than the domination number of G. Here we study the bondage number of some grid-like graphs. In this sense, we obtain some bounds or exact values of the bondage number of some strong product and direct product of two paths.
-
Critical Case Stochastic Phylogenetic Tree Model via the Laplace Transform
PublikacjaBirth–and–death models are now a common mathematical tool to describe branching patterns observed in real–world phylogenetic trees. Liggett and Schinazi (2009) is one such example. The authors propose a simple birth–and–death model that is compatible with phylogenetic trees of both influenza and HIV, depending on the birth rate parameter. An interesting special case of this model is the critical case where the birth rate equals the...
-
Density smoothness estimation problem using a wavelet approach
PublikacjaIn this paper we consider a smoothness parameter estimation problem for a density function. The smoothness parameter of a function is defined in terms of Besov spaces. This paper is an extension of recent results (K. Dziedziul, M. Kucharska, B. Wolnik, Estimation of the smoothness parameter ). The construction of the estimator is based on wavelets coefficients. Although we believe that the effective estimation of the smoothness...
-
Difference functional inequalities and applications.
PublikacjaThe paper deals with the difference inequalities generated by initial boundary value problems for hyperbolic nonlinear differential functional systems. We apply this result to investigate the stability of constructed difference schemes. The proof of the convergence of the difference method is based on the comparison technique, and the result for difference functional inequalities is used. Numerical examples are presented.
-
Distribution of the displacement sequence of an orientation preserving circle homeomorphism
PublikacjaIn some applications not only the knowledge of the behaviour of trajectories of a map is important, but also their displacements. We describe in detail the distribution of elements of the displacement sequence along a trajectory of an orientation preserving circle homeomorphism ϕ with irrational rotation number ϱ(ϕ). The values of displacement are dense in a set which depends on the map γ (semi-)conjugating ϕ with the rotation...