Publikacje
Filtry
wszystkich: 388
Katalog Publikacji
Rok 2023
-
Application of galvanodynamic impedance spectroscopy for studying passive film cracking under mechanical strain
PublikacjaThe paper reports the results of simultaneous mechanical and electrochemical investigations on austenitic (18/8) stainless steel in a 2 % solution of sulphuric acid. The measurements were performed using Galvanodynamic Electrochemical Impedance Spectroscopy (GDEIS). Electrochemical analysis of mechanical passive layer cracking and repassivation conditions during a tensile test was carried out. Application of this methodology allowed...
-
Brownian Motion in Optical Tweezers, a Comparison between MD Simulations and Experimental Data in the Ballistic Regime
PublikacjaThe four most popular water models in molecular dynamics were studied in large-scale simulations of Brownian motion of colloidal particles in optical tweezers and then compared with experimental measurements in the same time scale. We present the most direct comparison of colloidal polystyrene particle diffusion in molecular dynamics simulations and experimental data on the same time scales in the ballistic regime. The four most...
-
Comparison of Cu1.3Mn1.7O4 spinels doped with Ni or Fe and synthesized via wet chemistry and solid-state reaction methods, designed as potential coating materials for metallic interconnects
PublikacjaThe influence of the method applied to synthesize Cu-Mn-O spinel was evaluated. The methods selected for the investigation were EDTA gel processes and solid-state reaction synthesis. From the obtained powders, sinters were prepared and assessed in terms of their properties as potential coating materials. Additionally, the influence of Ni and Fe dopants was evaluated. The results show that the EDTA gel processes method seems to...
-
Energetics of formation and stability in high pressure steam of barium lanthanide cobaltite double perovskites
PublikacjaThis study concerns energetics of formation and the stability in high water partial pressure of BaLnCo2O6−δ, (Ln = La, Pr, Nd, and Gd) (BLnC) and BaGd1−xLaxCo2O6−δ, where x = 0.2, 0.5, and 0.7 (BGLC) double perovskite cobaltites. Those materials are extensively studied due to their potential applications as a positrode in electrochemical devices. Therefore, their stability under such conditions is a key issue. All investigated...
-
Evaluation of electrosynthesized reduced graphene oxide–Ni/Fe/Co-based (oxy)hydroxide catalysts towards the oxygen evolution reaction
PublikacjaIn this work, the specific role of the addition of graphene oxide (GO) to state-of-the-art nickel–iron (NiFe) and cobalt–nickel–iron (CoNiFe) mixed oxides/hydroxides towards the oxygen evolution reaction (OER) is investigated. Morphology, structure, and OER catalytic activity of the catalysts with and without GO were studied. The catalysts were fabricated via a two-step electrodeposition. The first step included the deposition...
-
Evaluation of structural and electrical properties of multicomponent spinel oxide thin films deposited via spray pyrolysis technique
PublikacjaThis work reports the preparation of (Mn,Co,Fe,Ni,Cr)3O4 high-entropy spinel oxide in the form of a ~ 500 nm thin film utilising a facile spray pyrolysis technique. The structural and electrical properties of the layers were characterised after exposure to temperatures in the range of 400–900 ◦C. The as-deposited layers were amorphous, and crystallised upon heat treatment at 500 ◦C. Microstructural analyses proved a homogeneous...
-
Fabrication of wormhole-like YSZ and Ni-YSZ by the novel soft-hard template CTAB/NaCl-assisted route. Suppressing Ni coalescence in SOFC
PublikacjaA novel one-pot synthesis route leading to the formation of a wormhole-like structure was developed for the successful fabrication of porous YSZ and Ni-YSZ systems. This method involved co-precipitation in the presence of the micelle-forming agents CTAB/Pluronic P123 and crystallising NaCl. The obtained skeletons were mechanically stable and presented almost 50% uniform, open porosity without using any additional pore-formers....
-
Fungal co-culture improves the biodegradation of hydrophobic VOCs gas mixtures in conventional biofilters and biotrickling filters
PublikacjaThe present study systematically evaluated the potential of Candida subhashii, Fusarium solani and their consortium for the abatement of n-hexane, trichloroethylene (TCE), toluene and α-pinene in biofilters (BFs) and biotrickling filters (BTFs). Three 3.2 L BFs packed with polyurethane foam and operated at a gas residence time of 77 s with an air mixture of hydrophobic volatile organic compounds (VOCs) were inoculated with C. subhashii,...
-
High-temperature Corrosion of ~ 30 Pct Porous FeCr Stainless Steels in Air: Long-Term Evaluation Up to Breakaway
PublikacjaIn this work, a long-term (up to 6000 hours) corrosion evaluation of three porous (~ 30 pct of initial porosity) ferritic iron-chromium alloys with different Cr contents (20, 22, and 27 wt pct of Cr) was carried out at 600 C, 700 C, 800 C, and 900 C in air. Mass gain measurements and SEM analyses revealed that at temperatures above 600 C, all alloys exhibit breakaway corrosion, whereas at 600 C, none of the alloys were heavily...
-
Osteoblast and bacterial cell response on RGD peptide‐functionalized chitosan coatings electrophoretically deposited from different suspensions on Ti13Nb13Zr alloy
PublikacjaMetallic materials for long-term load-bearing implants still do not provide high antimicrobial activity while maintaining strong compatibility with bone cells. This study aimed to modify the surface of Ti13Nb13Zr alloy by electrophoretic deposition of a chitosan coating with a covalently attached Arg-Gly-Asp (RGD) peptide. The suspensions for coating deposition were prepared in two different ways either using hydroxyacetic acid...
-
Oxide nanoparticle exsolution in Lu-doped (Ba,La)CoO3
PublikacjaThis study investigated Lu doping of Ba0.5La0.5CoO3 and its influence on the exsolution of oxide nanoparticles (NPs). As a result of Lu doping, we observed the phase segregation into the main Ba0.4La0.6Co0.85Lu0.15O3 (BLCO–Lu) phase and the secondary Ba0.85La0.15Co0.75Lu0.25O3 (BCO–Lu) phase. We noticed the exsolution of BCO–Lu nanoparticles on the main BLCO–Lu phase. Moreover, the BLCO–Lu phase exsolved in the form of nanoparticles...
-
Scanning with Laser Beam over the TiO2 Nanotubes Covered with Thin Chromium Layers towards the Activation of the Material under the Visible Light
Publikacja -
Tailoring a low-energy ball milled MnCo2O4 spinel catalyst to boost oxygen evolution reaction performance
PublikacjaThe development of cost-efficient oxygen evolution reaction (OER) catalysts is one of the most important tasks facing modern techniques for hydrogen production. In this work, for the first time, a low-energy ball milling process of MnCo2O4 (MCO) spinel powders, with a mechanical modification time exceeding 1 day was used. After 6 days of ball-milling, the obtained overpotential of the electrocatalyst reached the value of 375 mV...
-
The effect of PEDOT morphology on hexavalent chromium reduction over 2D TiO2/PEDOT photocatalyst under UV–vis light
PublikacjaThe present study represents an approach to apply organic-inorganic hybrid materials for photocatalytic removal of heavy metals from the aqueous environment. The photocatalytic activity of the semiconductor modified with the conjugated polymer may depends on the conjugated polymer type, its amount and morphology. Therefore, in the present study the effect of poly (3, 4-ethylenedioxythiophene) (PEDOT) morphology on adsorption and photoreduction...
-
Tuning of eg electron occupancy of MnCo2O4 spinel for oxygen evolution reaction by partial substitution of Co by Fe at octahedral sites
PublikacjaTo study the effect of partial Co substitution by Fe in the B site of MnCo2O4 spinel on its physicochemical and electrochemical properties, a series of MnCo2-xFexO4 powders (x=0.125; 0.250; 0.500; 0.750; 1.000) were synthesized by means of the sol-gel method. The produced powders were characterized by powder X ray diffraction (pXRD), scanning and transmission electron microscopy (SEM & TEM) coupled with energy dispersive spectroscopy...
-
Vibrational Properties of LaNb0.8M0.2O4-δ (M=As, Sb, V, and Ta)
PublikacjaLaNb0.8M0.2O4-δ (where M=As, Sb, V, and Ta) oxides with pentavalent elements of different ionic sizes were synthesized by a solid-state reaction method. The vibrational properties of these oxides have been investigated. These studies revealed that the substituent element influences both Debye temperature value as well as the Raman active vibrational modes. Additionally, the low-temperature vibrational properties of LaNb0.8Sb0.2O4-δ...
Rok 2022
-
A dual-control strategy based on electrode material and electrolyte optimization to construct an asymmetric supercapacitor with high energy density
PublikacjaMetal-organic frames (MOFs) are regarded as excellent candidates for supercapacitors that have attracted much attention because of their diversity, adjustability and porosity. However, both poor structural stability in aqueous alkaline electrolytes and the low electrical conductivity of MOF materials constrain their practical implementation in supercapacitors. In this study, bimetallic CoNi-MOF were synthesized to enhance the electrical...
-
A state of the art review on the use of fungi in biofiltration to remove volatile hydrophobic pollutants
PublikacjaThe physical/chemical abatement of gas pollutants creates many technical problems, is costly and entails significant environmental impacts. Biological purification of off-gases is a cheap and ecologically safe way of neutralization of gas pollutants. Despite the recent advances, the main technological challenge nowadays is the purification of volatile organic compounds (VOCs) of hydrophobic character due to their low solubility...
-
Antibacterial properties of laser-encapsulated titanium oxide nanotubes decorated with nanosilver and covered with chitosan/Eudragit polymers
PublikacjaTo provide antibacterial properties, the titanium samples were subjected to electrochemical oxidation in the fluoride-containing diethylene glycol-based electrolyte to create a titanium oxide nanotubular surface. Afterward, the surface was covered by sputtering with silver 5 nm film, and the tops of the nanotubes were capped using laser treatment, resulting in an appearance of silver nanoparticles (AgNPs) of around 30 nm in diameter...
-
Cu-Doped Layered Double Hydroxide Constructs the Performance-Enhanced Supercapacitor Via Band Gap Reduction and Defect Triggering
PublikacjaLayered double hydroxides (LDHs) are regarded as the excellent electrode materials for supercapacitors because of their high theoretical capacitance and abundance. However, the poor conductivity and limited reaction kinetics of LDHs restrict their practical application severely. Herein, Cu is chosen from groups VIII/IB/IIB as dopants for Co-based LDH (CuCo-LDH). The designed metal–organic framework-derived hierarchical CuCo-LDH...
-
Effectiveness of a dual surface modification of metallic interconnects for application in energy conversion devices
PublikacjaA dual surface modification of an SOFC metallic interconnect with a Gd2O3 layer and an MnCo2O4 coating was evaluated. The tested samples were oxidized for 7000 h in air at 1073 K. Oxidation products were characterized using XRD, SEM-EDS, and confocal Raman imaging, and ASR was measured. The effect of gadolinium segregation at grain boundaries in Cr2O3 was evaluated using S/TEM-EDS. Area specific-resistance was measured and fuel...
-
Effects of La0.8Sr0.2MnO3 and Ag electrodes on bismuth-oxide-based low-temperature solid electrolyte oxygen generators
PublikacjaIn this study, La0.8Sr0.2MnO3 (LSM) was used as the ceramic electrode in a (Bi1.50Y0.50)0.98Zr0.04O3+δ (BYO)-based solid electrolyte oxygen generator (SEOG) and its performance was compared with that of a previously studied high-fire Ag electrode. Among La0.6Sr0.4Co0.2Fe0.8O3, LaNi0.6Fe0.4O3, Cu1.4Mn1.6O4, and LSM materials, only LSM materials did not trigger any chemical reaction or interdiffusion with BYO at temperatures up to...
-
Effects of Ni-NCAL and Ni–Ag electrodes on the cell performances of low-temperature solid oxide fuel cells with Sm0.2Ce0·8O2-δ electrolyte at various temperatures
PublikacjaThree low-temperature solid oxide fuel cells are built using Sm0.2Ce0·8O2-δ (SDC) as the electrolyte. Cell A is symmetrical and features Ni–LiNi0.8Co0·15Al0·05O2 (Ni–NCAL) electrodes, Cell B comprises a Ni–NCAL anode and a Ni–Ag cathode, and Cell C is fabricated using a Ni–NCAL cathode and a Ni–Ag anode. The ohmic resistance and polarization resistance (Rp) of Cells B and C are significantly higher than those of Cell A. The reduction...
-
Electrolytic deposition of reactive element thin films on Crofer 22 APU and evaluation of the resulting high-temperature corrosion protection properties at 700 °C–900 °C
PublikacjaThis article presents electrolytic deposition of thin Rare Earth (RE) coatings on Crofer 22 APU stainless steel substrates for high temperature applications, such as interconnects in solid oxide cell stacks. The deposition of coatings based on yttrium-, gadolinium-, lanthanum-, and cerium nitrates is discussed. The high temperature corrosion properties of surface-modified steels were examined using thermogravimetry and electrical...
-
Electrophoretic co-deposition of Mn1.5Co1.5O4, Fe2O3 and CuO: Unravelling the effect of simultaneous addition of Cu and Fe on the microstructural, thermo-mechanical and corrosion properties of in-situ modified spinel coatings for solid oxide cell interconnects
PublikacjaA systematic microstructural, thermo-mechanical and electrical characterization of simultaneous Fe–Cu doped Mn–Co spinel coatings processed by electrophoretic co-deposition on Crofer 22 APU is here reported and discussed. An innovative approach for the simultaneous electrophoretic deposition of three spinel precursors is designed, conceived and optimised, with the aim of outlining time- and energy-saving spinel modification routes....
-
Facile and cost-effective technique to control europium oxidation states in glassy fluorophosphate matrices with tunable photoluminescence
Publikacja -
Glass-ceramic joining of Fe22Cr porous alloy to Crofer22APU: interfacial issues and mechanical properties
PublikacjaThis work deals with the joining of porous Fe22Cr ferritic stainless steel to a dense Crofer22APU plate by using a silica-based, Ba-containing glass-ceramic. The chemical and interfacial stability and the mechanical properties of the joints were evaluated before and after thermal ageing at 700 ◦C for 500hrs. The sintering behaviour of the glass was assessed by using heating stage microscopy (HSM) to study the influence of a porous...
-
High-performance anode-supported solid oxide fuel cells with co-fired Sm0.2Ce0.8O2-δ/La0.8Sr0.2Ga0.8Mg0.2O3−δ/Sm0.2Ce0.8O2-δ sandwiched electrolyte
PublikacjaIn this study, intermediate-temperature solid oxide fuel cells (IT-SOFCs) with a nine-layer structure are constructed via a simple method based on the cost-effective tape casting-screen printing-co-firing process with the structure composed of a NiO-based four-layer anode, a Sm0.2Ce0·8O2-δ(SDC)/La0·8Sr0.2Ga0.8Mg0·2O3−δ (LSGM)/SDC tri-layer electrolyte, and an La0·6Sr0·4Co0·2Fe0·8O3-δ (LSCF)-based bi-layer cathode. The resultant...
-
Hydrothermal modification of TiO2 nanotubes in water and alkali metal electrolytes (LiNO3, NaNO3, KNO3) – Direct evidence for photocatalytic activity enhancement
PublikacjaThe influence of hydrothermal annealing (HA) of TiO2 nanotubes (TiO2-NTs) in various baths (H2O, LiNO3, NaNO3, KNO3 performed for 4 h, 24 h, 64 h), on their photocatalytic and photoelectrocatalytic properties, was studied. The use of electrolytes was to enable the monitoring of photoactivity changes as a result of the expected impact on the population of hydroxyl groups on the surface. The assumption turned out to be correct and...
-
Identification of defected sensors in an array of amperometric gas sensors
PublikacjaPurpose Amperometric gas sensors are commonly used in air quality monitoring in long-term measurements. Baseline shift of sensor responses and power failure may occur over time, which is an obstacle for reliable operation of the entire system. The purpose of this study is to check the possibility of using PCA method to detect defected samples, identify faulty sensor and correct the responses of the sensor identified as faulty. Design/methodology/approach In...
-
Microporous N-Doped Carbon Obtained from Salt Melt Pyrolysis of Chitosan toward Supercapacitor and Oxygen Reduction Catalysts
PublikacjaThe direct carbonization of low-cost and abundant chitosan biopolymer in the presencesalt eutectics leads to highly microporous, N-doped nanostructures. The microporous structureeasily manufactured using eutectic mixture (ZnCl2 -KCl) and chitosan. Potassium ions here can act as an intercalating agent, leading to the formation of lamellar carbon sheets, whereas zinc chloride generates significant porosity. Here, we present an efficient...
-
Morphology changes in Fe-Cr porous alloys upon high-temperature oxidation quantified by X-ray tomographic microscopy
PublikacjaThe effect of high-temperature oxidation at 850 C (10 h, 30 h, 100 h) and 900 C (10 h) on porous (30 % porosity) ferritic stainless steel (Fe22Cr) has been investigated using synchrotron tomographic microscopy, which allowed for visualisation, separation and quantitative analysis of the metallic core, closed pores, open pores and oxide scale phase. The same regions within the samples were investigated before and after oxidation...
-
Physical and sealing properties of BaO–Al2O3–SiO2–CaO–V2O5 glasses for solid oxide fuel cell applications
PublikacjaIn this study, the properties of BaO–Al2O3–SiO2 (SAB) glasses incorporated with CaO and V2O5 as the network modifier and additive, respectively, are evaluated. The electrical resistivities of the glasses decrease upon the addition of CaO but increase upon increasing their V2O5 content because the V5+ species lower the ionic mobility of the glasses. The addition of V2O5 improves the wettability of the glasses on the Crofer 22 APU...
-
Physicochemical properties of Mn1.45Co1.45Cu0.1O4 spinel coating deposited on the Crofer 22 H ferritic steel and exposed to high-temperature oxidation under thermal cycling conditions
PublikacjaThe Crofer 22 H ferritic steel substrate was coated with an Mn1.45Co1.45Cu0.1O4 spinel by means of electrophoresis. After high-temperature oxidation under thermal cycling conditions, the physicochemical properties of the obtained system were evaluated. During 48-h cycles that involved heating the samples up to temperatures of either 750 or 800 °C, the oxidation kinetics of both coated and unmodified steel approximately obeyed...
-
Poly-L-Lysine-functionalized fluorescent diamond particles: pH triggered fluorescence enhancement via surface charge modulation
PublikacjaRecently, the interest in applying fluorescent diamond particles (FDPs) containing nitrogen-vacancy (NV) centers for enhancing the mechanical and chemical properties of some materials, biological imaging, and sensing has been expanding rapidly. The unique properties of NV centers such as intensive, time-stable fluorescence, and an electron spin, which exhibits long coherence time and may be manipulated using external stimuli, such...
-
Preparation of methanation catalysts for high temperature SOEC by β-cyclodextrin-assisted impregnation of nano-CeO2 with transition metal oxides
PublikacjaThe aim of this work was to prepare and examine the catalytic activity of nanometric CeO2 decorated with transition metal oxides – Ni, Co, Cu, Fe and Mn – towards a high-temperature methanation process under SOEC CO2/H2O simulated co-electrolysis conditions. Samples were prepared using the wet impregnation method via the conventional process and with the addition of native cyclodextrin. The influence of β-cyclodextrin (βCD) onto...
-
Structural properties of mixed conductor Ba1−xGd1−yLax+yCo2O6−δ
PublikacjaBa1−xGd1−yLax+yCo2O6−δ (BGLC) compositions with large compositional ranges of Ba, Gd, and La have been characterised with respect to phase compositions, structure, and thermal and chemical expansion. The results show a system with large compositional flexibility, enabling tuning of functional properties and thermal and chemical expansion. We show anisotropic chemical expansion and detailed refinements of emerging phases as La is...
-
Systematic comparison of a biotrickling filter and a conventional filter for the removal of a mixture of hydrophobic VOCs by Candida subhashii
PublikacjaThis work systematically compared the potential of a conventional fungal biofilter (BF) and a fungal biotrickling filter (BTF) for the abatement of a mixture of hydrophobic volatile organic compounds (VOCs). Candida subhashii was herein used for the first time, to the best of the author's knowledge, to remove n-hexane, trichloroethylene, toluene and α-pinene under aerobic conditions. C. subhashii immobilized on polyurethane foam...
-
Tetrahedrally modified MnMe0.1Co1.9O4 (Me = Zn, Mg, Li) spinels for non-enzymatic glucose sensing
PublikacjaIn this work, tetrahedrally modified MnMe0.1Co1.9O4 (Me = Zn, Mg, Li) spinels were prepared via the sol–gel synthesis method with subsequent ball-milling fragmentation. The prepared samples were evaluated as glucose–sensing catalyst. The reference MnCo2O4 spinel exhibited a sensitivity of 49 µA mM−1 cm−2 and a nonlinearity error of 5.2% in the response range from 0.02 to 1 mM. The partial substitution of cobalt in the reference...
-
The valance state of vanadium-key factor in the flexibility of potassium vanadates structure as cathode materials in Li-ion batteries
PublikacjaPotassium hexavanadate (K2V6O16·nH2O) nanobelts have been synthesized by the LPE-IonEx method, which is dedicated to synthesis of transition metal oxide bronzes with controlled morphology and structure. The electrochemical performance of K2V6O16·nH2O as a cathode material for lithium-ion batteries has been evaluated. The KVO nanobelts demonstrated a high discharge capacity of 260 mAh g−1, and long-term cyclic stability up to 100...
-
Tuning Electrochemical Performance by Microstructural Optimization of the Nanocrystalline Functional Oxygen Electrode Layer for Solid Oxide Cells
PublikacjaFurther development of solid oxide fuel cell (SOFC) oxygen electrodes can be achieved through improvements in oxygen electrode design by microstructure miniaturisation alongside nanomaterials implementation. In this work, improved electrochemical performance of an La0.6Sr0.4Co0.2Fe0.8O3-d (LSCF) cathode was achieved by the controlled modification of the La0.6Sr0.4CoO3-d (LSC) nanocrystalline interlayer introduced between a porous...
Rok 2021
-
Classification of submandibular salivary stones based on ultrastructural studies
PublikacjaIntroduction: Sialolithiasis remains a clinical problem with unclear etiopathogenesis, lack of prevention methods, and only surgical treatment. Materials and methods: An ultrastructure examination of submandibular sialoliths obtained from patients with chronic sialolithiasis was conducted using a scanning electron microscope and X‐ray photoelectron spectroscopy. Results: Based on the results, we divided sialoliths into three types:...
-
Efficacious Alkaline Copper Corrosion Inhibition by a Mixed Ligand Copper(II) Complex of 2,2′-Bipyridine and Glycine: Electrochemical and Theoretical Studies
PublikacjaA mixed ligand copper(II) complex, namely, [Cu(BPy)(Gly)Cl]⋅2H2O (CuC) (BPy=2,2′-bipyridine and Gly=glycine), was synthesized and characterized. The synthesized CuC complex was tested as inhibitor to effectively mitigate the corrosion of copper in alkaline solutions using the linear sweep voltammetry (LSV) and linear polarization resistance (LPR) techniques. For the sake of comparison, such two D.C. electrochemical techniques were...
-
Gas mixtures recognition using an array of amperometric gas sensors with drifting or faulty sensors
PublikacjaIn this study, the possibility of using selected methods for diagnostics of performance of matrix composed with six amperometric electrochemical gas sensors is investigated. Measurements of sensor responses in selected concentrations of single toxic gases or gas mixtures were performed and were repeated over time to show sensor drift. Additionally, the studies on the sensors’ drift were performed. The drift has been recognized...
-
Gigantic electro-chemo-mechanical properties of nanostructured praseodymium doped ceria
PublikacjaSome oxygen defective fluorites are non-Newnham electrostrictors, i.e., the electromechanical response does not depend on their dielectric properties. Here, we show gigantic electrostriction in nanocrystalline 25 mol% praseodymium doped ceria (PCO) bulk ceramics. The material was fabricated with a fieldassisted spark plasma sintering (SPS) process from high-purity nanoscale PCO powders (<20 nm). The SPS process consolidates the...
-
Glass-ceramic sealants and steel interconnects: accelerated interfacial stability and reactivity tests at high temperature
PublikacjaHigh-temperature reactions between glass-ceramic sealants and Fe-Cr alloy interconnects may lead to the formation of undesirable phases, and consequently degradation of solid oxide fuel/electrolyser devices. In this work, three different glass-ceramic sealants (Na-containing, Ba-containing, Sr-containing compositions) and Fe22Cr stainless steel powders (raw and pre-oxidised) are considered in order to test their chemical reactivity...
-
High temperature corrosion evaluation and lifetime prediction of porous Fe22Cr stainless steel in air in temperature range 700–900 °C
PublikacjaThis work describes a high temperature corrosion kinetics study of ~30% porous Fe22Cr alloys. The surface area of the alloy (~0.02 m2 g-1) has been determined by tomographic microscopy. The weight gain of the alloys was studied by isothermal thermogravimetry in the air for 100 hours at 700 - 900 °C. Breakaway oxidation was observed after oxidation at 850 °C (~100 hours) and 900 °C (~30 hours). The lifetime prediction shows the...
-
High-performance NdSrCo2O5+δ–Ce0.8Gd0.2O2-δ composite cathodes for electrolyte-supported microtubular solid oxide fuel cells
PublikacjaNdSrCo2O5+δ (NSCO) is a perovskite with an electrical conductivity of 1551.3 S cm−1 at 500 °C and 921.7 S cm−1 at 800 °C and has a metal-like temperature dependence. This perovskite is used as the cathode material for Ce0.8Gd0.2O2-δ (GDC)-supported microtubular solid oxide fuel cells (MT-SOFCs). The MT-SOFCs fabricated in this study consist of a bilayer anode, comprising a NiO–GDC composite layer and a NiO layer, and a NSCO–GDC...
-
Hydrothermal Cobalt Doping of Titanium Dioxide Nanotubes towards Photoanode Activity Enhancement
PublikacjaDoping and modification of TiO2 nanotubes were carried out using the hydrothermal method. The introduction of small amounts of cobalt (0.1 at %) into the structure of anatase caused an increase in the absorption of light in the visible spectrum, changes in the position of the flat band potential, a decrease in the threshold potential of water oxidation in the dark, and a significant increase in the anode photocurrent. The material...
-
Improvement of Oxygen Electrode Performance of Intermediate Temperature Solid Oxide Cells by Spray Pyrolysis Deposited Active Layers
PublikacjaIntermediate temperature solid oxide fuel cells oxygen electrodes are modified by active interfacial layers. Spray pyrolysis is used to produce thin (≈500 nm) layers of mixed ionic and electronic conductors: Sm0.5Sr0.5CoO3−δ (SSC), La0.6Sr0.4CoO3−δ (LSC), La0.6Sr0.4Co0.2Fe0.8O3−δ (LSCF), and Pr6O11 (PrOx) on the electrode–electrolyte interface. The influence of the annealing temperature on the electrode polarization (area specific...