Filters
total: 154
filtered: 133
-
Catalog
Chosen catalog filters
Search results for: DIAMOND, CVD, SECOND GROWTH, BDD
-
RAMAN DIAGNOSTICS OF CVD DIAMOND GROWTH
PublicationDevelopment of Raman spectroscopic system for diagnostics of growth of diamond and BDD (Boron- Doped-Diamond) thin films during μPA CVD (Microwave Plasma Assisted Chemical Vapour Deposition) process is described. Raman studies of such films were carried out as in-situ monitoring of film deposition as ex-situ measurements conducted for a sample outside the reaction vessel after manufacturing process. Modular system for the in-situ...
-
Influence of B/N co-doping on electrical and photoluminescence properties of CVD grown homoepitaxial diamond films
PublicationBoron doped diamond (BDD) has great potential in electrical, and electrochemical sensing applications. The growth parameters, substrates, and synthesis method play a vital role in the preparation of semiconducting BDD to metallic BDD. Doping of other elements along with boron (B) into diamond demonstrated improved efficacy of B doping and exceptional properties. In the present study, B and nitrogen (N) co-doped diamond has been...
-
Determination of chemical oxygen demand (cod) at boron-doped diamond (bdd) sensor by means of amperometric technique
PublicationA boron-doped diamond (BDD) sensor was proposed for effective detection of chemical oxygen demand (COD) by means of amperometric technique. Thin boron doped diamond active sensor layer was deposited on Si wafer and glassy carbon substrate by Microwave Plasma Enhanced Chemical Vapor Deposition (MW PE CVD). The structure of BDD was confirmed by Raman spectra analysis. Broad Raman bands centered at 482 cm-1 and 1219 cm-1 are typical...
-
Determination of Chemical Oxygen Demand (COD) at Boron-doped Diamond (BDD) Sensor by Means of Amperometric Technique
PublicationA boron-doped diamond (BDD) sensor was proposed for effective detection of chemical oxygen demand (COD) by means of amperometric technique. Thin boron doped diamond active sensor layer was deposited on Si wafer and glassy carbon substrate by Microwave Plasma Enhanced Chemical Vapor Deposition (MW PE CVD). The structure of BDD was confirmed by Raman spectra analysis. Broad Raman bands centered at 482 cm-1 and 1219 cm-1 are typical...
-
Nucleation and growth of CVD diamond on fused silica optical fibres with titanium dioxide interlayer
PublicationNucleation and growth processes of thin diamond films on fused silica optical fibres have been investigated. Fibres were coated with diamond film using microwave plasma enhanced chemical vapour deposition (µPE CVD) system. Since the growth of diamond on the fused silica glass requires high seeding density, two types of glass pre-treatment were applied: titanium dioxide (TiO2) interlayer deposition and sonication in nanodiamond...
-
Optoelectronic system for investigation of cvd diamond/DLC layers growth
PublicationDevelopment of the optoelectronic system for non-invasive monitoring of diamond/DLC (Diamond-Like-Carbon) thin films growth during μPA ECR CVD (Microwave Plasma Assisted Electron Cyclotron Resonance Chemical Vapour Deposition) process is described. The system uses multi-point Optical Emission Spectroscopy (OES) and long-working-distance Raman spectroscopy. Dissociation of H2 molecules, excitation and ionization of hydrogen atoms...
-
Thin CVD diamond films - synthesis, properties, applications
PublicationThe basic model of diamond films growth, in the low pressure synthesis, deposition from the CVD gas phase, is the mixture of hydrocarbon gas in presence with activated hydrogen and its nucleation on the substrate as a result of pyrolysis reaction. It allows to cross the great energetic barrier between graphite and diamond. High pressure and temperature are replaced by change of electronic structure of atoms into gas precursors...
-
Optoelectronic system for monitoring of thin diamond layers growth
PublicationDevelopment of the optoelectronic system for monitoring of diamond/DLC (Diamond-Like-Carbon) thin films growth during mu PA ECR CVD (Microwave Plasma Assisted Electron Cyclotron Resonance Chemical Vapour Deposition) process is described. The multi-point Optical Emission Spectroscopy (OES) and Raman spectroscopy were employed as non-invasive optoelectronic tools. Dissociation of H-2 molecules, excitation and ionization of hydrogen...
-
Growth and Isolation of Large Area Boron‐Doped Nanocrystalline Diamond Sheets: A Route toward Diamond‐on‐Graphene Heterojunction
PublicationMany material device applications would benefit from thin diamond coatings, but current growth techniques, such as chemical vapor deposition (CVD) or atomic layer deposition require high substrate and gas‐phase temperatures that would destroy the device being coated. The development of freestanding, thin boron‐doped diamond nanosheets grown on tantalum foil substrates via microwave plasma‐assisted CVD is reported. These diamond...
-
Low temperature growth of diamond films on optical fibers using Linear Antenna CVD system
PublicationIt is not trivial to achieve a good quality diamond-coated fibre interface due to a large difference in the properties and composition of the diamond films (or use coating even) and the optical fibre material, i.e. fused silica. One of the biggest problems is the high temperature during the deposition which influences the optical fibre or optical fibre sensor structure (e.g. long-period gratings (LPG)). The greatest advantage of...
-
Optical and structural properties of polycrystalline CVD diamond films grown on fused silica optical fibres pre-treated by high-power sonication seeding
PublicationIn this paper, the growth of polycrystalline chemical vapour deposition (CVD) diamond thin films on fused silica optical fibres has been investigated. The research results show that the effective substrate seeding process can lower defect nucleation, and it simultaneously increases surface encapsulation. However, the growth process on glass requires high seeding density. The effects of suspension type and ultrasonic power were...
-
In-situ optical diagnostics of boron-doped diamond films growth
PublicationInterferometry is a desirable method for in-situ measurement of thin, dielectric film growth, as it don't modify conditions of film deposition. Here we present interferometrical measurements of thickness of doped diamond films during Chemical Vapor Deposition (CVD) process. For this purpose we used a semiconductor laser with a 405nm wavelength. Additional ex-situ measurement using spectral interferometry and ellipsometry...
-
Electrical characterization of diamond/boron doped diamond nanostructures for use in harsh environment applications
PublicationThe polycrystalline boron doped diamond (BDD) shows stable electrical properties and high tolerance for harsh environments (e.g. high temperature or aggressive chemical compounds) comparing to other materials used in semiconductor devices. In this study authors have designed electronic devices fabricated from non-intentionally (NiD) films and highly boron doped diamond structures. Presented semiconductor devices consist of highly...
-
Enhanced capacitance of composite TiO2 nanotube / boron-doped diamond electrodes studied by impedance spectroscopy
PublicationWe report on the novel composite nanostructures based on boron-doped diamond thin film grown on top of TiO2 nanotubes. The nanostructures made of BDD-modified titania nanotubes showed an increase in activity and performance when used as electrodes in electrochemical environments. The BDD thin films (~200-500 nm) were deposited using microwave plasma assisted chemical vapor deposition (MW PA CVD) onto anodically fabricated TiO2...
-
Enhanced boron doping of thin diamond films grown in deuterium-rich microwave plasma
PublicationThe boron-doped diamond thin films were growth in deuterium rich microwave plasma in CVD process. The mechanism of influence of plasma composition on boron doping level was studied using optical emission spectroscopy. Deuterium rich plasma results in an increased dissociation of B2H6 precursor and intense boron-radicals' production. In consequence, a higher doping level of diamond films was observed by means of Laser Induced Breakdown...
-
Laser reflectance interferometry system with a 405 nm laser diode for in-situ measurement of CVD diamond thickness
PublicationIn situ monitoring of the thickness of thin diamond films during technological processes is important because it allows better control of deposition time and deeper understanding of deposition kinetics. One of the widely used techniques is laser reflectance interferometry (LRI) which enables non-contact measurement during CVD deposition. The authors have built a novel LRI system with a 405 nm laser diode which achieves better...
-
Diamondized carbon nanoarchitectures as electrocatalytic material for sulfate-based oxidizing species electrogeneration
PublicationThe introduction of nanotechnology seems to be an imperative factor to intensify the synergic effects of electrocatalytic materials to produce strong oxidant species or to increase the active sites on their surfaces as well as to enhance the conversion yield in a fuel cell, high-added value products, electrolytic treatment for environmental protection or the detection limit in electroanalysis. Recently, a new type of 3D-diamond...
-
Nitrogen-incorporated boron-doped diamond films for enhanced electrochemical supercapacitor performance
PublicationThe electrochemical (EC) supercapacitor, known for its rapid charging, reliability, and versatile applications, demands optimized electrode characteristics and an understanding of their electrochemical behaviour. Although boron-doped diamond (BDD) holds promise as a supercapacitor electrode, a crucial gap exists in comprehending its material behaviour under specific growth conditions. Here, nitrogen-incorporated BDD (N-BDD) films...
-
Optical and electrical properties of boron doped diamond thin conductive films deposited on fused silica glass substrates
PublicationThis paper presents boron-doped diamond (BDD) film as a conductive coating for optical and electronic purposes. Seeding and growth processes of thin diamond films on fused silica have been investigated. Growth processes of thin diamond films on fused silica were investigated at various boron doping level and methane admixture. Two step pre-treatment procedure of fused silica substrate was applied to achieve high seeding density....
-
Characterization of Optical and Electrical Properties of Transparent Conductive Boron-Doped Diamond thin Films Grown on Fused Silica
PublicationA conductive boron-doped diamond (BDD) grown on a fused silica/quartz has been investigated. Diamond thin films were deposited by the microwave plasma enhanced chemical vapor deposition (MW PECVD). The main parameters of the BDD synthesis, i.e. the methane admixture and the substrate temperature were investigated in detail. Preliminary studies of optical properties were performed to qualify an optimal CVD synthesis and film parameters...
-
Gas Composition Influence on the Properties of Boron-Doped Diamond Films Deposited on the Fused Silica
PublicationThe main subject of this study are molecular structures and optical properties of boron-doped diamond films with [B]/[C] ppm ratio between 1000 and 10 000, fabricated in two molar ratios of CH 4 -H 2 mixture (1 % and 4 %). Boron-doped diamond (BDD) film on the fused silica was presented as a conductive coating for optical and electronic purposes. The scanning electron microscopy images showed homogenous and polycrystalline surface...
-
Local impedance imaging of boron-doped polycrystalline diamond thin films
PublicationLocal impedance imaging (LII) was used to visualise surficial deviations of AC impedances in polycrystalline boron-doped diamond (BDD). The BDD thin film electrodes were deposited onto the highly doped silicon substrates via microwave plasma-enhanced CVD. The studied boron dopant concentrations, controlled by the [B]/[C] ratio in plasma, ranged from 1 × 1016 to 2 × 1021 atoms cm−3. The BDD films displayed microcrystalline structure,...
-
Application of BDD thin film electrode for electrochemical decomposition of heterogeneous aromatic compounds
PublicationThe aim of the presented study is to investigate the applicability of electrochemical oxidation of aromatic compounds containing heteroatoms, e.g. waste from production of pesticides or pharmaceutics, at a borondoped diamond (BDD) electrode. The BDD electrodes were synthesized by microwave plasma enhanced chemical vapour deposition (MW PE CVD). Investigation of the electrode surface by optical microscopy and scanning electron microscopy...
-
Amperometric sensing of chemical oxygen demand at glassy carbon and silicon electrodes modified with boron-doped diamond
Publication.A boron-doped diamond (BDD) sensor is proposed for effective detection of chemical oxygen demand (COD) by means of amperometric technique. Boron-doped diamond thin films, acting as active sensors, were deposited on both silicon wafer and glassy carbon (GC) substrates by microwave plasma assisted chemical vapour deposition. SEM micrographs showed that BDD–Si displays triangle-faceted crystallites ca. 0.5–3 μm in size, while BDD–GC...
-
Diamond-Based Supercapacitors with Ultrahigh Cyclic Stability Through Dual-Phase MnO2-Graphitic Transformation Induced by High-Dose Mn-Ion Implantation
PublicationWhile occasionally being able to charge and dischargemore quickly than batteries, carbon-based electrochemical supercapacitors(SCs) are nevertheless limited by their simplicity of processing, adjustableporosity, and lack of electrocatalytic active sites for a range of redox reactions.Even SCs based on the most stable form of carbon (sp3carbon/diamond)have a poor energy density and inadequate capacitance retention during longcharge/discharge...
-
Influence of the boron doping level on the electrochemical oxidation of the azo dyes at Si/BDD thin film electrodes
PublicationIn this study the efficiency of electrochemical oxidation of aromatic pollutants, such as reactive dyes, at boron-doped diamond on silicon (Si/BDD) electrodes was investigated. The level of [B]/[C] ratio which is effective for the degradation and mineralization of selected aromatic pollutants, and the impact of [B]/[C] ratio on the crystalline structure, layer conductivity and relative sp3/sp2 coefficient of a BDD electrode were...
-
Electrochemical Stability of Few-Layered Phosphorene Flakes on Boron-Doped Diamond: A Wide Potential Range of Studies in Aqueous Solutions
PublicationTwo-dimensional phosphorene has attracted great interest since its discovery as a result of its extraordinary properties. Two-dimensional single crystals of phosphorene can be useful for electrochemical (EC) sensing applications due to their enhanced surface-to-volume ratio. We proposed to investigate the electrochemical performance of phosphorene deposited directly on boron-doped diamond (BDD) electrodes. Noncovalent interaction...
-
Melamine-modified boron-doped diamond towards enhanced detection of adenine, guanine and caffeine
PublicationThis work describes the electrochemical method of boron-doped diamond (BDD) modification by poly-melamine to obtain organic film. The detection of adenine, guanine and caffeine were carried out by differential pulse wave voltammetry. The poly-melamine modified B-NCD electrodes exhibit excellent activity towards the electrochemical oxidation of all examined analytes. The poly-melamine modified BDD electrodes in all measurements...
-
The effect of boron concentration on the electrical, morphological and optical properties of boron-doped nanocrystalline diamond sheets: Tuning the diamond-on-graphene vertical junction
PublicationIn this paper, the effect of boron doping on the electrical, morphological and structural properties of free-standing nanocrystalline diamond sheets (thickness ~ 1 μm) was investigated. For this purpose, we used diamond films delaminated from a mirror-polished tantalum substrate following a microwave plasma-assisted chemical vapor deposition process, each grown with a different [B]/[C] ratio (up to 20,000 ppm) in the gas phase....
-
Schottky Junction-Driven Photocatalytic Effect in Boron-Doped Diamond-Graphene Core–Shell Nanoarchitectures: An sp3/sp2 Framework for Environmental Remediation
PublicationSelf-formation of boron-doped diamond (BDD)-multilayer graphene (MLG) core–shell nanowalls (BDGNWs) via microwave plasma-enhanced chemical vapor deposition is systematically investigated. Here, the incorporation of nitrogen brings out the origin of MLG shells encapsulating the diamond core, resulting in unique sp3/sp2 hybridized frameworks. The evolution mechanism of the nanowall-like morphology with the BDD-MLG core–shell composition...
-
Chemical-Assisted Mechanical Lapping of Thin Boron-Doped Diamond Films: A Fast Route Toward High Electrochemical Performance for Sensing Devices
PublicationThere is an urgent need for an effective and economically viable increase in electrochemical performance of boron-doped diamond (BDD) electrodes that are used in sensing and electrocatalytic applications. Specifically, one must take into consideration the electrode heterogeneity due to nonhomogenous boron-dopant distribution and the removal of sp2 carbon impurities saturating the electrode, without interference in material integrity....
-
Poly-L-Lysine-modified boron-doped diamond electrodes for the amperometric detection of nucleic acid bases
PublicationBoron-doped diamond (BDD) is a very promising supporting material used in the construction of biosensors for molecular recognition. The direct immobilization of structurally-organized huge molecules, such as poly-L-Lysine (PLL) provides the possibility of determining organic molecules, e.g. nucleic acid bases (e.g. adenine, guanine) or peptides and proteins. This paper describes the direct method for chemical and electrochemical...
-
Physicochemical and Mechanical Performance of Freestanding Boron-Doped Diamond Nanosheets Coated with C:H:N:O Plasma Polymer
PublicationThe physicochemical and mechanical properties of thin and freestanding heavy boron-doped diamond (BDD) nanosheets coated with a thin C:H:N:O plasma polymer were studied. First, diamond nanosheets were grown and doped with boron on a Ta substrate using the microwave plasma-enhanced chemical vapor deposition technique (MPECVD). Next, the BDD/Ta samples were covered with nylon 6.6 to improve their stability in harsh environments and...
-
The electrical, morphological and optical properties of heavily boron-doped diamond sheets as a function of methane concentration in the gas phase
PublicationBoron-doped diamonds (BDD) are known for their excellent properties such as high thermal conductivity, high mobility, low absorption in visible light, and biocompatibility. In this work, we investigated the electrical, morphological and optical properties of heavily boron-doped diamond thin sheets as a function of methane concentration in the gas phase. Free-standing diamond sheets were fabricated using a microwave plasma-assisted...
-
Fabrication and characterization of composite TiO2 nanotubes/ boron-doped diamond electrodes towards enhanced supercapacitors
PublicationThe composite TiO2 nanotubes / boron-doped diamond electrodes were deposited using Microwave Plasma Enhanced Chemical Vapor Deposition resulting in the improved electrochemical performance. This composite electrode can deliver high specific capacitance of 7.46 mF cm‐− 2 comparing to boron-doped diamond (BDD) deposited onto flat Ti plate (0.11 mF cm‐− 2).The morphology and composition of composite electrode were characterized...
-
Optical properties of boron-doped nanocrystalline diamond films studied by spectroscopic ellipsometry
PublicationThe optical properties of boron-doped nanocrystalline diamond films, coated using Microwave Plasma Enhanced Chemical Vapour Deposition (μPE CVD) system, were analyzed by spectroscopic ellipsometry. Diamond films were deposited on silicon substrates. The ellipsometry data (refractive index (n(λ)), extinction coefficient (k(λ)) were modeled using dedicated software. Evolution of the optical structure with boron doping was observed...
-
Novel Functionalization of Boron-Doped Diamond by Microwave Pulsed-Plasma Polymerized Allylamine Film
PublicationWe report the novel modification of a hydrogen-terminated polycrystalline boron-doped electrode with a microwave pulsed-plasma polymerized allylamine. Boron-doped diamond (BDD) was coated with a very thin layer of adherent cross-linked, pinhole- and additive-free allylamine plasma polymer (PPAAm) resistant to hydrolysis and delamination and characterized by a high density of positively charged amino groups. The pulsed microwave...
-
Tailoring the optical parameters of optical fiber interferometer with dedicated boron-doped nanocrystalline diamond thin film
PublicationOptical fiber interferometer using nanocrystalline boron-doped diamond film was investigated. The diamond films were deposited on glass plates using a Microwave Plasma-Enhanced Chemical Vapour Deposition (μPE CVD) sys-tem. The growth time was 3h, with boron doping level of 10 000 ppm producing films (B-NCD-10) of thickness ~ 200 nm. The presence of boron atoms in the diamond film is evident in Raman spectrum as peaks at 1212 cm-1...
-
Direct amination of boron-doped diamond by plasma polymerized allylamine film
PublicationA novel microwave pulsed-plasma based method for the modification of the hydrogen-terminated polycrystalline boron-doped diamond (BDD) with a thin film of polymerized allylamine (PPAAm) is reported. A modified BDD surface is resistant to hydrolysis and delamination and is characterized by a high density of positively charged amino groups. Pulsed microwave plasma was applied to improve the degree of cross-linking and bonding of...
-
The use of thin diamond films in fiber optic low-coherence interferometers”
PublicationIn this paper we present the use of thin diamond films in fiber-optic low-coherence interferometers. Two kinds of diamond surfaces were used: undoped diamond film and boron-doped diamond film. They were deposited on glass plates as well as silicon layers. A conventionally used mirror was used as a reference layer. Diamond films were deposited using Microwave Plasma Enhanced Chemical Vapour Deposition (μPE CVD) system. Measurements...
-
Kinetics of the Organic Compounds and Ammonium Nitrogen Electrochemical Oxidation in Landfill Leachates at Boron-Doped Diamond Anodes
PublicationElectrochemical oxidation (EO) of organic compounds and ammonium in the complex matrix of landfill leachates (LLs) was investigated using three different boron-doped diamond electrodes produced on silicon substrate (BDD/Si)(levels of boron doping [B]/[C] = 500, 10,000, and 15,000 ppm—0.5 k; 10 k, and 15 k, respectively) during 8-h tests. The LLs were collected from an old landfill in the Pomerania region (Northern Poland) and were...
-
Heterogeneous oxidation of highly boron-doped diamond electrodes and its influence on the surface distribution of electrochemical activity
PublicationThe electrochemical active surface area (EASA) of polycrystalline boron-doped diamond (BDD) electrodes is heterogeneous and can be affected by numerous factors. There is a strong need for proper consideration of BDD heterogeneity in order to improve this material's range of application in electrochemistry. Localized changes in surface termination due to the influence of oxidation agent result in increased surface resistance. The...
-
Heterogeneous distribution of surface electrochemical activity in polycrystalline highly boron-doped diamond electrodes under deep anodic polarization
PublicationThe surface homogeneity of boron-doped diamond electrodes is variable and depends on anodic polarization conditions. The differentiation factor is the gradual and localized change in surface termination. A series of measurements under different polarization conditions was performed in order to investigate the scale of this effect. Nanoscale impedance microscopy (NIM) revealed large variation of surface resistance in individual...
-
Improved surface coverage of an optical fibre with nanocrystalline diamond by the application of dip-coating seeding
PublicationGrowth processes of diamond thin films on the fused silica optical fibres (10 cm in length) were investigated at various temperatures. Fused silica pre-treatment by dip-coating in a dispersion consisting of detonation nanodiamond (DND) in dimethyl sulfoxide (DMSO) with polyvinyl alcohol (PVA) was applied. Nanocrystalline diamond (NCD) films were deposited on the fibres using the microwave plasma assisted chemical vapour deposition...
-
Preparation and Characterization of Diamond-like Carbon Coatings for Biomedical Applications—A Review
PublicationDiamond-like carbon (DLC) films are generally used in biomedical applications, mainly because of their tribological and chemical properties that prevent the release of substrate ions, extend the life cycle of the material, and promote cell growth. The unique properties of the coating depend on the ratio of the sp3/sp2 phases, where the sp2 phase provides coatings with a low coefficient of friction and good electrical conductivity,...
-
Electrochemical oxidation of sulphamerazine at boron-doped diamond electrodes: Influence of boron concentration
PublicationThe boron-doped diamond (BDD) electrodes with different boron concentrations have been tested as electrode material for sulphamerazine (SRM) oxidation in water solution. An investigation of the electrode morphology and molecular structure was carried out using high resolution scanning electron microscopy (SEM) and Raman spectroscopy. Electrochemical results showed clearly that the kinetics and efficiency of SRM oxidation were dependent...
-
A Closed Bipolar Electrochemical Cell for the Interrogation of BDD Single Particles: Electrochemical Advanced Oxidation
PublicationA closed bipolar electrochemical cell containing two conductive boron-doped diamond (BDD) particles of size 250 – 350 m, produced by high-pressure high-temperature (HPHT) synthesis, has been used to demonstrate the applicability of single BDD particles for electrochemical oxidative degradation of the dye, methylene blue (MB). The cell is fabricated using stereolithography 3D printing and the BDD particles are located at either...
-
Electrochemical performance of thin free-standing boron-doped diamond nanosheet electrodes
PublicationIn the following work we describe preparation and the electrochemical performance of thin and free-standing heavy boron-doped diamond (BDD) nanosheets. The investigated foils were deposited on Ta substrate using microwave plasma-enhanced chemical vapor deposition technique (MPECVD). Foils of two B-dopant densities were investigated, obtained on the base of 10 k and 20 k ppm [B]/[C] ratio in the gas admixture. The obtained foils...
-
Direct determination of paraquat herbicide by square-wave voltammetry by two-step transfer mechanism at heterogeneous boron-doped carbon nanowall electrodes
PublicationBoron-doped carbon nanowalls (B:CNW) versus boron-doped diamond (BDD) materials were investigated for the effective electrochemical detection of highly toxic herbicide paraquat (PQ). Depending on the surface morphology and functional groups of BDD and B:CNWs, the electrochemical absorption and detection of the target analyte PQ revealed different detection mechanisms. The surface absorption mechanism was mainly observed for BDD,...
-
Dynamic Electrochemical Impedance Spectroscopy (DEIS) as a Tool for Analyzing Surface Oxidation Processes on Boron-Doped Diamond Electrodes
PublicationSurface oxidation processes play a key role in understanding electrochemical properties of boron-doped diamond (BDD) electrodes. The type of surface termination groups, which create the potential window of electrolytic water stability or hydrophobicity, influences such properties. In this study the kinetics of oxidation process under anodic polarization were studied in situ by means of Dynamic Electrochemical Impedance Spectroscopy...