Filters
total: 514
filtered: 430
Search results for: metody uczenia sieci neuronowych
-
Poprawa jakości klasyfikacji głębokich sieci neuronowych poprzez optymalizację ich struktury i dwuetapowy proces uczenia
PublicationW pracy doktorskiej podjęto problem realizacji algorytmów głębokiego uczenia w warunkach deficytu danych uczących. Głównym celem było opracowanie podejścia optymalizującego strukturę sieci neuronowej oraz zastosowanie uczeniu dwuetapowym, w celu uzyskania mniejszych struktur, zachowując przy tym dokładności. Proponowane rozwiązania poddano testom na zadaniu klasyfikacji znamion skórnych na znamiona złośliwe i łagodne. W pierwszym...
-
WYKORZYSTANIE SIECI NEURONOWYCH I METODY WEKTORÓW NOŚNYCH SVM W PROCESIE ROZPOZNAWANIA AKTYWNOŚCI RUCHOWEJ PACJENTÓW DOTKNIĘTYCH CHOROBĄ PARKINSONA
PublicationChoroba Parkinsona (ang. PD - Parkinson Disease) zaliczana jest do grupy chorób neurodegeneracyjnych. Jest to powoli postępująca choroba zwyrodnieniowa ośrodkowego układu nerwowego. Jej powstawanie związane jest z zaburzeniem produkcji dopaminy przez komórki nerwowe mózgu. Choroba manifestuje się zaburzeniami ruchowymi. Przyczyna występowania tego typu zaburzeń nie została do końca wyjaśniona. Leczenie osób dotkniętych PD oparte...
-
Comparative study of learning methods for artificial network
PublicationW artykule przedstawiono wyniki badań porównawczych metod uczenia sieci neuronowych takich jak: metoda propagacji wstecznej błędów, rekurencyjna metoda najmniejszych kwadratów, metoda Zangwill'a, metoda algorytmów ewolucyjnych. Celem tych badań jest dobieranie najefektywniejszej metody uczenia do projektowania adaptacyjnego neuronowego regulatora napięcia generatora synchronicznego.metody uczenia, sieć neuronowa, neuronowy regulator...
-
Sieci neuronowe jako alternatywny sposób uzyskania modelu obliczeniowego
PublicationW pracy zaprezentowano i omówiono rodzaje sieci neuronowych, obszary ich zastosowań oraz metody uczenia. Przedstawiono teorie działania oraz ich interpretacje matematyczną i numeryczną. Szczególną uwagę zwrócono na możliwości uzyskania modelu obliczeniowego oraz obszarów jego stosowania przez wzgląd na unikalne cech Sztucznych Sieci Neuronowych (SSN). Jako przykład pracy sieci zaprezentowano model obliczeniowy identyfikujący własności...
-
Identyfikacja instrumentu muzycznego z nagrania fonicznego za pomocą sztucznych sieci neuronowych
PublicationCelem rozprawy jest zbadanie algorytmów do identyfikacji instrumentów występujących w sygnale polifonicznym z wykorzystaniem sztucznych sieci neuronowych. W części teoretycznej przywołano podstawy przetwarzania sygnałów fonicznych w kontekście ekstrakcji parametrów sygnałów wykorzystywanych w treningu sieci neuronowych. Dodatkowo dokonano analizy rozwoju metod uczenia maszynowego z uwzględnieniem podziału na sieci neuronowe pierwszej,...
-
Comparative study of methods for artificial neural network training.
PublicationPrzedstawiono wyniki badań porównawczych następujących metod uczenia sieci neuronowych: propagacji wstecznej błędów, rekursywnej metody najmniejszych kwadratów, metody Zangwill'a i algorytmów ewolucyjnych. Badania dotyczyły projektowania adaptacyjnego regulatora neuronowego napięcia generatora synchronicznego.
-
Artificial Neural Networks in Microwave Components and Circuits Modeling
PublicationArtykuł dotyczy wykorzystania sztucznych sieci neuronowych (SNN) w projektowaniu i optymalizacji układów mikrofalowych.Zaprezentowano podstawowe zasady i założenia modelowania z użyciem SNN. Możliwości opisywanej metody opisano wykorzystując przykładowyprojekt anteny łatowej. Przedstawiono różne strategie modelowania układów, które wykorzystują możliwości opisywanej metody w połączeniu zwiedzą mikrofalową. Porównano również dokładność...
-
INFLUENCE OF DATA NORMALIZATION ON THE EFFECTIVENESS OF NEURAL NETWORKS APPLIED TO CLASSIFICATION OF PAVEMENT CONDITIONS – CASE STUDY
PublicationIn recent years automatic classification employing machine learning seems to be in high demand for tele-informatic-based solutions. An example of such solutions are intelligent transportation systems (ITS), in which various factors are taken into account. The subject of the study presented is the impact of data pre-processing and normalization on the accuracy and training effectiveness of artificial neural networks in the case...
-
Diagnostyka łożysk silnika indukcyjnego na podstawie prądu zasilającego przy użyciu sztucznych sieci neuronowych
PublicationW artykule zawarto wyniki badań dotyczące diagnostyki łożysk silnika indukcyjnego na podstawie pomiarów prądu zasilającego z wykorzystaniem sztucznych sieci neuronowych. Zaprezentowano wyniki uczenia sieci oraz rezultaty testów przeprowadzonych na danych spoza zbioru uczącego. Badania wykonane zostały na obiektach z celowo wprowadzonymi uszkodzeniami łożysk. Przedstawiona nowa koncepcja zakłada użycie zestawu sieci neuronowych...
-
Diagnostyka łożysk silnika indukcyjnego na podstawie prądu zasilającego przy użyciu sztucznych sieci neuronowych
PublicationW artykule zawarto wyniki badań dotyczące diagnostyki łożysk silnika indukcyjnego na podstawie pomiarów prądu zasilającego z wyko-rzystaniem sztucznych sieci neuronowych. Zaprezentowano wyniki uczenia sieci oraz rezultaty testów przeprowadzonych na danych spoza zbioru uczącego. Badania wykonane zostały na obiektach z celowo wprowadzonymi uszkodzeniami łożysk. Przedstawiona nowa koncepcja zakłada użycie zestawu sieci neuronowych...
-
Zastosowanie sieci neuronowych w cyfrowej syntezie dźwięku
PublicationRozwój technik związanych z uczeniem maszynowym umożliwia nowe podejście i nowe definiowanie wielu dotychczasowych problemów. Heurystyczne algorytmy stosowane do problemów takich jak klasyfikacja danych w postaci wektorów cech, czy wyróżnianie grup obiektów o podobnych własnościach mogą znaleźć także zastosowanie w takich dziedzinach jak analiza i synteza dźwięków muzycznych. W referacie przybliżone zostały podstawowe zasady projektowania...
-
WYKORZYSTANIE SZTUCZNYCH SIECI NEURONOWYCH DO ANALIZY ODPOWIEDZI MATRYC CZUJNIKÓW GAZU
PublicationW pracy zaprezentowano efekt wykorzystania sztucznych sieci neuronowych w procesie analizy odpowiedzi matryc czujników gazu. Przedstawione zostały podstawy teoretyczne sieci neuronowej jednokierunkowej oraz dwóch algorytmów uczenia tej sieci, następnie została ona wykorzystana do klasyfikacji substancji lotnych na podstawie pomiarów matrycy sześciu rezystancyjnych półprzewodnikowych czujników gazu. Przy użyciu środowiska obliczeniowego...
-
WYKORZYSTANIE SIECI NEURONOWYCH DO SYNTEZY MOWY WYRAŻAJĄCEJ EMOCJE
PublicationW niniejszym artykule przedstawiono analizę rozwiązań do rozpoznawania emocji opartych na mowie i możliwości ich wykorzystania w syntezie mowy z emocjami, wykorzystując do tego celu sieci neuronowe. Przedstawiono aktualne rozwiązania dotyczące rozpoznawania emocji w mowie i metod syntezy mowy za pomocą sieci neuronowych. Obecnie obserwuje się znaczny wzrost zainteresowania i wykorzystania uczenia głębokiego w aplikacjach związanych...
-
Wykorzystanie sieci neuronowych do syntezy mowy wyrażającej emocje
PublicationW niniejszym artykule przedstawiono analizę rozwiązań do rozpoznawania emocji opratych na mowie i możliwości ich wykprzystania w syntezie mowy z emocjami stosując do tego celu sieci neuronowe. Wskazano również przydatnośc parametrów typowo stosowanych do rozpoznawania mowy w detekcji emocji w śpiewie i rozróżnianiu tych emocji w obu przypadkach. Przedstawiono aktualne rozwiązania dotyczące rozpoznawania emocji w mowie i metod syntezy...
-
Zastosowanie algorytmu ewolucyjnego do uczenia neuronowego regulatora napięcia generatora synchronicznego. Evolutionary algorithm for training a neural network of synchronous generator voltage controller
PublicationNajpopularniejsza metoda uczenia wielowarstwowych sieci neuronowych -metoda wstecznej propagacji błędu - charakteryzuje się słabą efektywnością. Z tego względu podejmowane są próby stosowania innych metod do uczenia sieci. W pracy przedstawiono wyniki uczenia sieci realizującej regulator neuronowy, za pomocą algorytmu ewolucyjnego. Obliczenia symulacyjne potwierdziły dobrą zbieżność algorytmu ewolucyjnego w tym zastosowaniu.
-
Prognozirovanie svojstv betonov s pomoŝ'û iskusstvennyh nejronovyh setej
PublicationObserwacje mózgu ludzkiego oraz podstawowych komórek z jakich się składa (neuronów), doprowadziły do prób modelowania niedużych układów połączonych neuronów. Układy te, zwane w literaturze jako sieci neuronowe lub sieci neuropodobne (ang. neural network) wykazują pewne cechy zbliżone do cech mózgu. Są nimi np. zdolność uczenia i kojarzenia. Choć znany obecnie model matematyczny neuronu jest dość skomplikowany, to zachęcające wyniki...
-
Identyfikacja parametrów funkcjonalnych analogowych układów elektronicznych z zastosowaniem sztucznych sieci neuronowych
PublicationPrzedmiotem artykułu jest metoda identyfikacji parametrów funkcjonalnych analogowych układów elektronicznych w dziedzinie czasu. Testowany układ pobudzany jest sygnałem pomiarowym zoptymalizowanym za pomocą algorytmu genetycznego. Identyfikacja parametrów funkcjonalnych polega na odwzorowaniu wyników pomiarów odpowiedzi układu w dziedzinie czasu w przestrzeń parametrów funkcjonalnych z wykorzystaniem sztucznej sieci neuronowej....
-
Neural nets application in diagnostics of industrial robots
PublicationPrzedstawiono wyniki wstępnych badań nad możliwością zastosowania sztucznych sieci neuronowych w procesie diagnozowania stanu technicznego robotów przemysłowych z napędem elektrycznym. Omówiono proces projektowania sieci neuronowych, za pomocą których realizowano liniową predykcję zmian dokładności pozycjonowania jednokierunkowego robota IRB 6 powstających przy różnych obciążeniach i prędkościach manipulatora podczas pracy z celowo...
-
Przykład zastosowania i analiza metod sztucznej inteligencji w technice cieplnej i chłodniczej (cz. 2)
PublicationW artykule przedstawiono teorie działania oraz modele matematyczne i numeryczne sztucznych sieci neuronowych (SSN). Dokonano szczegółowegoomówienia rodzajów sieci, metod uczenia i obszarów możliwych zastosowań w technice cieplnej i chłodniczej, jako nowych alternatywnych metod uzyskania modelu numerycznego. Szczególną uwagę zwrócono na cechy SSN, które są unikalne i wyróżniające na tle innych metod. Zamieszczono przykład wykorzystania...
-
Przykład zastosowania i analiza metod sztucznej inteligencji w technice cieplnej i chłodniczej (cz. 1)
PublicationW artykule przedstawiono teorie działania oraz modele matematyczne i numeryczne sztucznych sieci neuronowych (SSN). Dokonano szczegółowegoomówienia rodzajów sieci, metod uczenia i obszarów możliwych zastosowań w technice cieplnej i chłodniczej, jako nowych alternatywnych metod uzyskania modelu numerycznego. Szczególną uwagę zwrócono na cechy SSN, które są unikalne i wyróżniające na tle innych metod. Zamieszczono przykład wykorzystania...
-
Neuronowy model mocy farmy wiatrowej
PublicationPopularność i rosnące możliwości sztucznych sieci neuronowych przyczyniają się do coraz to szerszego zastosowania przemysłowego. Szybki przyrost mocy elektrowni wiatrowych w krajowej sieci elektroenergetycznej (KSE) stawia trudne zadanie bilansowania mocy przed krajowymi Operatorami Sieci Dystrybucyjnych (OSD) i Operatorem Sieci Przesyłowej (OSP). Prawnym obowiązkiem prognozowania mocy farmy wiatrowej obarczony jest właściciel....
-
Neuronowy model mocy farmy wiatrowej
PublicationPopularność i rosnące możliwości sztucznych sieci neuronowych przyczyniają się do coraz to szerszego zastosowania przemysłowego. Szybki przyrost mocy elektrowni wiatrowych w krajowej sieci elektroenergetycznej (KSE) stawia trudne zadanie bilansowania mocy przed krajowymi Operatorami Sieci Dystrybucyjnych (OSD) i Operatorem Sieci Przesyłowej (OSP). Prawnym obowiązkiem prognozowania mocy farmy wiatrowej obarczony jest właściciel....
-
Analiza istotności cech znamion skórnych dla celów diagnostyki czerniaka złośliwego
PublicationPomimo dynamicznego rozwoju metod uczenia maszynowego i ich wdrażania do praktyki lekarskiej, automatyczna analiza znamion skórnych wciąż jest nierozwiązanym problemem. Poniższy artykuł proponuje zastosowanie algorytmu ewolucyjnego do zaprojektowania, wytrenowania i przetestowania całych populacji klasyfikatorów (sztucznych sieci neuronowych) oraz ich iteracyjnego udoskonalania w każdej kolejnej populacji, w celu osiągnięcia jak...
-
Sieci neuronowe oparte na prawach fizyki
PublicationWiele fizycznie nieuzasadnionych sieci neuronowych, mimo zadowalają- cej wydajności, generuje sprzeczności z logiką i prowadzi do rozbieżno- ści wyników z rzeczywistością. Jedną z metod poprawy funkcjonowania typowego modelu typu “black-box” na etapie uczenia, jest rozszerzenie jego funkcji kosztu o zależność bezpośrednio inspirowaną wzorem fizycz- nym. Niniejszy rozdział wyjaśnia koncepcję budowy sieci neuronowych opartych na...
-
Neural networks in the diagnostics of induction motor rotor cages.
PublicationW środowisku Lab VIEW została stworzona aplikacja służąca do pomiaru, prezentacji i zapisu przebiegów widma prądu stojana z uwzględnieniem potrzeb pomiarowych występujących podczas badania wirników silników indukcyjnych przy użyciu sieci neuronowych. Utworzona na bazie zbioru uczącego sieć Kohonena z powodzeniem rozwiązała stawiany przed nią problem klasyfikacji widm prądu stojana, a co za tym idzie również diagnozy stanu...
-
Prognozowanie mocy wytwórczej farmy wiatrowej
PublicationCelem pracy było opracowanie metody obliczeniowej oraz budowa narzędzia programowego do określenia produkcji mocy farmy wiatrowej na podstawie standardowej prognozy pogody z wyprzedzeniem jednej doby. W pracy przedstawiono rzeczywistą charakterystykę generacji mocy wytwórczej przemysłowych farm wiatrowych zależnej od zmiennych warunków wiatrowych. Analizując dane pomiarowe można znaleźć pewne zależności charakterystyczne. Wpływ...
-
Zastosowanie sztucznych sieci neuronowych do aproksymacji funkcji
PublicationW artykule opisano główne grupy zastosowań sztucznych sieci neuronowych (SSN). Ponadto opisano podstawowe typy sztucznych sieci neuronowych. Omówiono algorytm posługiwania się SSN oraz pokazano przykład ich zastosowania do aproksymacji funkcji.
-
Właściwości aproksymacyjne sztucznych sieci neuronowych (SSN)
PublicationOpisano budowę sztucznego neuronu, rodzaje sztucznych sieci neuronowych i ich zastosowanie. Przedstawiono SSN jako uniwersalny aproksymator oraz opisano problem jednoczesnej aproksymacji funkcji wraz z pochodnymi.
-
Metody uczenia optymalizacji wieloetapowych procesów decyzyjnych.
PublicationOptymalizacja wieloetapowych procesów decyzyjnych jest zdaniem, w którym zbiegają się metody pochodzące pierwotnie z różnych dziedzin: rachunku wariacyjnego, algorytmów optymalizacji i metod uczenia maszynowego rozpatrywanych w sztucznej inteligencji. W niniejszej pracy podjęto próbę zestawienia różnych metod oraz podano wyniki optymalizacji przykładowego zadania z zastosowaniem algorytmów ewolucyjnych.
-
Klasyfikacja tekstu przy użyciu grafowych sieci neuronowych
PublicationWspółczesnym algorytmom analizy tekstu wciąż daleko do ludzkiego poziomu jego zrozumienia. Jednym z wyzwań jest znajdowanie przez maszynę związków pomiędzy odległymi fragmentami tekstu. Próbą rozwiązania tego problemu są grafowe reprezentacje tekstu, które bardzo dobrze sprawdzają się w przedstawianiu złożonych zależności. W tekście opisane zostały dwie metody grafowej reprezentacji tekstu oraz algorytm grafowych konwolucyjnych...
-
Implementacja Sztucznych sieci neuronowych w środowisku LabVIEW.
PublicationPrzedstawiono możliwości oraz strukturę zrealizowanego przez autora modułu do implementacji sztucznych sieci neuronowych w środowisku LabVIEW.
-
Zastosowanie algorytmu ewolucyjnego do trenowania jednokierunkowych płaskich sztucznych sieci neuronowych
PublicationW artykule przedstawiono zastosowanie algorytmu ewolucyjnego do trenowania jednokierunkowych, płaskich, sztucznych sieci neuronowych. Przy użyciu proponowanej metody wytrenowano trzy sieci neuronowe do klasyfikacji problemu parity-3, parity-4 oraz parity-5. Otrzymane wyniki porównano z wynikami uzyskanymi przy użyciu metody wstecznej propagacji błędu ze wględu na liczbę iteracji potrzebną do wytrenowania danej sieci oraz ze względu...
-
Optymalizacja treningu i wnioskowania sieci neuronowych
PublicationSieci neuronowe są jedną z najpopularniejszych i najszybciej rozwijających się dziedzin sztucznej inteligencji. Ich praktyczne wykorzystanie umożliwiło szersze użycie komputerów w wielu obszarach komunikacji, przemysłu i transportu. Dowody tego są widoczne w elektronice użytkowej, medycynie, a nawet w zastosowaniach militarnych. Wykorzystanie sztucznej inteligencji w wielu przypadkach wymaga jednak znacznej mocy obliczeniowej,...
-
Zastosowanie sztucznych sieci neuronowych w analizie sygnałów elektrokardiograficznych
PublicationCelem pracy było przebadanie możliwości zastosowania sztucznych sieci neuronowych do analizy i rozpoznawania sygnałów EKG. Artykuł zawiera przegląd zagadnień dotyczących EKG, pozyskiwania i interpretacji sygnałów oraz zastosowania sztucznych sieci neuronowych do diagnostyki. Znaczącym elementem pracy jest próba zaimplementowania w programie Matlab systemu rozróżniającego sygnały różnego typu.
-
Wykorzystanie sztucznych sieci neuronowych do szacowania wpływu drgań na budynki jednorodzinne
PublicationW artykule przedstawiono metodę prognozowania wpływu drgań na budynki mieszkalne z wykorzystaniem sztucznych sieci neuronowych. Drgania komunikacyjne mogą doprowadzić do uszkodzenia elementów konstrukcyjnych, a nawet do awarii budynku. Najczęstszym efektem są jednak rysy, pękanie tynku i wypraw. Metody oparte na sztucznej inteligencji są przybliżone, ale stanowią wystarczająco dokładną i ekonomiczną alternatywę dla tradycyjnych...
-
Modelowanie charakterystyk magnesowania przełączalnych silników reluktancyjnych z wykorzystaniem sieci neuronowych
PublicationW pracy przedstawiono możliwość wykorzystania sztucznej sieci neuronowej w jednej z metod analitycznych modelowania charakterystyk magnesowania przełączalnych silników reluktancyjnych. W szczególności przedstawiono uzasadnienie doboru zmiennych podawanych na warstwę neuronów wejściowych sieci, przygotowanie zbioru uczącego, walidacyjnego i testującego, wybór struktury i dobór parametrów sieci, proces uczenia t testowania oraz wyniki...
-
ZASTOSOWANIE ALGORYTMÓW SZTUCZNYCH SIECI NEURONOWYCH DO PROGNOZOWANIA ZUŻYCIA ENERGII ELEKTRYCZNEJ
PublicationW artykule przestawiono algorytm przewidywania zużycia energii elektrycznej budynków mieszkalnych z wykorzystaniem informacji o produkcji i warunkach atmosferycznych. W artykule została zaproponowana własna metoda predykcji z wykorzystaniem wielowarstwowej jednokierunkowej sztucznej sieci neuronowej. W pracy zostały przedstawione podstawowe pojęcia z zakresu sieci neuronowych oraz testy działania programu prognozującego na podstawie...
-
Wykorzystanie sieci neuronowych do identyfikacji sił aerodynamicznych w stopniu turbinowym.
PublicationPrzedstawiono metodę wyznaczania współczynników sił aerodynamicznych, generowanych w uszczelnieniu nadbandażowym, które powodują drgania wirników turbinowych za pomocą sieci neuronowych. Rezultaty porównano z metodą współczynników macierzowych równań liniowych opisujących wymuszenia aerodynamiczne w konwencjonalny sposób.
-
Implementacja wybranych struktur sztucznych sieci neuronowych w cyfrowych układach programowalnych.
PublicationW pracy przedstawiono zagadnienia związane z budową i implementacją sztucznych sieci neuronowych w układach programowalnych typu FPGA. Szczegółowo omówiono implementację pojedynczego neuronu z wykorzystaniem dostępnych zasobów sprzętowych układu Virtex FPGA. Poruszono również zagadnienie optymalizacji struktury sieci do konkretnych zastosowań. Zdefiniowano trzy rodzaje realizacji neuronu: równoległą, równoległo-sekwencyjną i sekwencyjną....
-
Forecasting of currency exchange rates using artificial neural networks
PublicationW rozdziale tym autor przedstawił wyniki swoich badań nad wykorzystaniem sztucznych sieci neuronowych do prognozowania kursu walut (na przykładzie pary walutowej PLN-USD).Głównym celem badań było porównanie skuteczności przewidywania kursu złotówki w latach 1997 - 2005 przy pomocy różnych rodzajów sieci neuronowych.
-
KLASYFIKACJA SYGNAŁU EKG PRZY UŻYCIU KONWOLUCYJNYCH SIECI NEURONOWYCH
PublicationPodniesienie jakości i zautomatyzowanie procesu diagnozy jest istotnym elementem rozwoju medycyny i samokontroli stanu zdrowia pacjentów. Od dłuższego czasu istnieją i są stosowane różne metody analizy i klasyfikacji sygnału EKG, jednak nie zawsze ich dokładność jest zadowalająca. Największym problemem jest trudność rozpoznania istniejącej nieprawidłowości, w przypadku gdy jej reprezentacja jest podobna do prawidłowej pracy...
-
Detekcja uszkodzeń instalacji rurociągów okrętowych z wykorzystaniem sztucznych sieci neuronowych
PublicationMonitoring funkcjonowania szczególnie ważnych instalacji rurociągów okrętowych umożliwia wczesne uzyskanie informacji o występujących nieprawidłowościach, a tym samym podjęcie odpowiednich działań przez załogę. Oprócz stosowanych obecnie rozwiązań nadzór taki oraz pozyskiwanie w czasie rzeczywistym wspomnianych informacji, możliwy jest do realizacji z wykorzystaniem sztucznych sieci neuronowych, co na przykładzie wybranej instalacji...
-
Zastosowanie sztucznych sieci neuronowych do diagnostyki cieplno-przepływowej wieńców turbin parowych.
PublicationW artykule wykazano konieczność stosowania systemów diagnostyki cieplno przepływowej dla obiektów energetycznych. Przedstawiono wady dotychczas stosowanych metod obliczeniowych (CFD) oraz zaprezentowano wstępne wyniki obliczeń z użyciem sztucznych sieci neuronowych (SSN). Wyniki uzyskane za pomocą CFD i SSN porównano.
-
Diagnozowanie stanu retinopatii cukrzycowej przy pomocy głębokich sieci neuronowych
PublicationW referacie opisano problem wykrywania oraz klasyfikacji stanu retinopatii cukrzycowej ze zdjęć dna oka przy pomocy głębokich sieci neuronowych. Retinopatia cukrzycowa jest chorobą oczu często występującą u osób z cukrzycą. Nieleczona prowadzi do uszkodzenia wzroku, a nawet ślepoty. W pracy badawczej opracowano system wykrywania retinopatii cukrzycowej na podstawie zdjęć dna oka. Opracowana sieć neuronowa przypisuje stan choroby...
-
Modelowanie ciągów danych z użyciem sieci neuronowych
PublicationRozdział opisuje problematykę przetwarzania ciągów danych. Opisane zostały typy ciągów danych: dane sekwencyjne, sekwencje czasowe oraz przebiegi czasowe. Przedstawiona została architektura sieci rekurencyj
-
Modele prognozowania upadłości przedsiębiorstw - analiza porównawcza wyników sztucznych sieci neuronowych z tradycyjną analizą dyskryminacyjną
PublicationW artykule autor przedstawił swoje cztery modele sztucznych sieci neuronowych prognozowania upadłości przedsiębiorstw. Ponadto artykuł zawiera analizę porównawczą wyników modeli sztucznych sieci neuronowych z modelami analizy dyskryminacyjnej na rok i na dwa lata przed upadłością firm. Zawarto w nim również badania nad wyborem najlepszych wskaźników-predyktorów zagrożenia bankructwem przedsiębiorstw.
-
ZASTOSOWANIE METOD SZTUCZNYCH SIECI NEURONOWYCH DO PROJEKTOWANIA ŁOPATEK TURBINOWYCH KSZTAŁTOWANYCH PRZESTRZENNIE
PublicationW rozdziale tym przeanalizowano zdolności sieci neuronowych do rozwiązywania zagadnień związanych z kształtowaniem przestrzennym łopatki. Do testu przyjęto najbardziej skomplikowany przypadek konstrukcji stopnia turbiny kondensacyjnej dużej mocy. Określono zmiany sprawności, reakcyjności (zdefiniowanej jako stosunek spadku entalpii w palisadzie wirnikowej do spadku entalpii w stopniu) i innych charakterystyk wraz ze zmianą geometrii...
-
Koncepcja szacowania wpływu drgań komunikacyjnych na budynki i na ludzi przy użyciu sztucznych sieci neuronowych
PublicationKoncepcja szacowania wpływu drgań komunikacyjnych na budynki i na ludzi przy użyciu sztucznych sieci neuronowych
-
Metody pomiaru drgań górnej sieci jezdnej
PublicationOpracowanie referencyjnego modelu sieci trakcyjnej wymaga określenia parametrów mechanicznych poszczególnych jej elementów. Parametry te wyznacza się poprzez wykonanie pomiarów przebiegów drgań wywołanych wymuszeniami zewnętrznymi. W artykule przedstawiono rozważania na temat możliwych do zastosowania metod pomiarowych. Omówiono wybrane metody pokazując ich zalety i wady oraz oceniając przydatność do realizacji pomiarów drgań sieci...
-
Application of a fuzzy neural network for river water quality prediction
PublicationMonitoring i modelowanie zmian w jakości wód powierzchniowych stanowią jeden z kluczowych elementów monitoringu i zarządzania ochroną środowiska na skalę globalną. Kontrolowanie tak złożonych i nieliniowych w swojej charakterystyce obiektów, jakimi są rzeki, jest trudnym zadaniem. Zazwyczaj do tego celu wykorzystuje się modele matematyczne, jednak czasem wymagają one bardzo dużej ilości danych, lub czas oczekiwania na odpowiedź...