Filters
total: 278
filtered: 272
Search results for: CONTINUAL LEARNING · MODEL MERGING
-
A new index for statistical analyses and prediction of travelling ionospheric disturbances
PublicationTravelling Ionospheric Disturbances (TIDs) are signatures of atmospheric gravity waves (AGWs) observed in changes in the electron density. The analysis of TIDs is relevant for studying coupling processes in the thermosphere–ionosphere system. A new TID index is introduced, which is based on an easy extension of the commonly used approach for TID detection. This TID activity index, which can be applied for individual Global Navigation...
-
How to Design Affect-aware Educational Systems – the AFFINT Process Approach
PublicationComputer systems, that support learning processes, can adapt to the needs and states of a learner. The adaptation might directly address the knowledge deficits and most tutoring systems apply an adaptable learning path of that kind. Apart from a preliminary knowledge state, there are more factors, that influence education effectiveness and among those there are fluctuating emotional states. The tutoring systems may recognize or...
-
THRIVING AND JOB SATISFACTION IN MULTICULTURAL ENVIRONMENTS OF MNCS
PublicationPurpose of the article The aim of the paper is to analyze the relationship between thriving and job satisfaction in multicultural environments of multinational corporations (MNCs). Methodology/methods The quantitative cross-sectional study was conducted on the sample of 128 individuals from subsidiaries of various MNCs located in Poland involved in intercultural interactions. Scientific aim The aim of this study was to examine...
-
Spiral Search Grasshopper Features Selection with VGG19-ResNet50 for Remote Sensing Object Detection
PublicationRemote sensing object detection plays a major role in satellite imaging and is required in various scenarios such as transportation, forestry, and the ocean. Deep learning techniques provide efficient performance in remote sensing object detection. The existing techniques have the limitations of data imbalance, overfitting, and lower efficiency in detecting small objects. This research proposes the spiral search grasshopper (SSG)...
-
Method of selecting the LS-SVM algorithm parameters in gas detection process
PublicationIn this paper we showed the method of resistive gas sensors data processing. The UV irradiation and temperature modulation was applied to improve gas sensors’ selectivity and sensitivity. Noise voltage across the sensor’s terminals (proportional to its resistance fluctuations) was recorded to estimate power spectral density. This function was an input data vector for LS-SVM (least squares – support vector machine) algorithm, which...
-
Deep CNN based decision support system for detection and assessing the stage of diabetic retinopathy
PublicationThe diabetic retinopathy is a disease caused by long-standing diabetes. Lack of effective treatment can lead to vision impairment and even irreversible blindness. The disease can be diagnosed by examining digital color fundus photographs of retina. In this paper we propose deep learning approach to automated diabetic retinopathy screening. Deep convolutional neural networks (CNN) - the most popular kind of deep learning algorithms...
-
Active learning on stacked machine learning techniques for predicting compressive strength of alkali-activated ultra-high-performance concrete
PublicationConventional ultra-high performance concrete (UHPC) has excellent development potential. However, a significant quantity of CO2 is produced throughout the cement-making process, which is in contrary to the current worldwide trend of lowering emissions and conserving energy, thus restricting the further advancement of UHPC. Considering climate change and sustainability concerns, cementless, eco-friendly, alkali-activated UHPC (AA-UHPC)...
-
WebCT - platforma i tłumaczenie.
PublicationW artykule przedstawiono doświadczenia Centrum Edukacji Niestacjonarnej i Międzywydziałowego Koła Naukowego Studentów Politechniki Gdańskiej DEC@TUG w tłumaczeniu i implementacji platform LMS (ang. Learning Management System). Krótko scharakteryzowano funkcjonalność platform BSCW I Moodle, których interfejsy zostały przetłumaczone przez członków Koła DEC@TUG w latach 2000-2003. Opisano główne funkcje platformy WebCT, takie jak...
-
Adversarial attack algorithm for traffic sign recognition
PublicationDeep learning suffers from the threat of adversarial attacks, and its defense methods have become a research hotspot. In all applications of deep learning, intelligent driving is an important and promising one, facing serious threat of adversarial attack in the meanwhile. To address the adversarial attack, this paper takes the traffic sign recognition as a typical object, for it is the core function of intelligent driving. Considering...
-
Pedestrian detection in low-resolution thermal images
PublicationOver one million people die in car accidents worldwide each year. A solution that will be able to reduce situations in which pedestrian safety is at risk has been sought for a long time. One of the techniques for detecting pedestrians on the road is the use of artificial intelligence in connection with thermal imaging. The purpose of this work was to design a system to assist the safety of people and car intelligence with the use...
-
Classification of objects in the LIDAR point clouds using Deep Neural Networks based on the PointNet model
PublicationThis work attempts to meet the challenges associated with the classification of LIDAR point clouds by means of deep learning. In addition to achieving high accuracy, the designed system should allow the classification of point clouds covering an area of several dozen square kilometers within a reasonable time interval. Therefore, it must be characterized by fast processing and efficient use of memory. Thus, the most popular approaches...
-
Musical Instrument Tagging Using Data Augmentation and Effective Noisy Data Processing
PublicationDeveloping signal processing methods to extract information automatically has potential in several applications, for example searching for multimedia based on its audio content, making context-aware mobile applications (e.g., tuning apps), or pre-processing for an automatic mixing system. However, the last-mentioned application needs a significant amount of research to reliably recognize real musical instruments in recordings....
-
Diagnostyka łożysk silnika indukcyjnego na podstawie prądu zasilającego przy użyciu sztucznych sieci neuronowych
PublicationW artykule zawarto wyniki badań dotyczące diagnostyki łożysk silnika indukcyjnego na podstawie pomiarów prądu zasilającego z wykorzystaniem sztucznych sieci neuronowych. Zaprezentowano wyniki uczenia sieci oraz rezultaty testów przeprowadzonych na danych spoza zbioru uczącego. Badania wykonane zostały na obiektach z celowo wprowadzonymi uszkodzeniami łożysk. Przedstawiona nowa koncepcja zakłada użycie zestawu sieci neuronowych...
-
Attention-Based Deep Learning System for Classification of Breast Lesions—Multimodal, Weakly Supervised Approach
PublicationBreast cancer is the most frequent female cancer, with a considerable disease burden and high mortality. Early diagnosis with screening mammography might be facilitated by automated systems supported by deep learning artificial intelligence. We propose a model based on a weakly supervised Clustering-constrained Attention Multiple Instance Learning (CLAM) classifier able to train under data scarcity effectively. We used a private...
-
A novel hybrid adaptive framework for support vector machine-based reliability analysis: A comparative study
PublicationThis study presents an innovative hybrid Adaptive Support Vector Machine - Monte Carlo Simulation (ASVM-MCS) framework for reliability analysis in complex engineering structures. These structures often involve highly nonlinear implicit functions, making traditional gradient-based first or second order reliability algorithms and Monte Carlo Simulation (MCS) time-consuming. The application of surrogate models has proven effective...
-
Interpretable deep learning approach for classification of breast cancer - a comparative analysis of multiple instance learning models
PublicationBreast cancer is the most frequent female cancer. Its early diagnosis increases the chances of a complete cure for the patient. Suitably designed deep learning algorithms can be an excellent tool for quick screening analysis and support radiologists and oncologists in diagnosing breast cancer.The design of a deep learning-based system for automated breast cancer diagnosis is not easy due to the lack of annotated data, especially...
-
Leadership, culture, intellectual capital and knowledge processes for organizational innovativeness across industries: the case of Poland
PublicationPurpose – This study aims to present the overview of intellectual capital creation micro-mechanisms concerning formal and informal knowledge processes. The organizational culture, transformational leadership and innovativeness are also included in the investigation as ascendants and consequences of the focal relation of intellectual capital and knowledge processes. Design/methodology/approach – Based on a sample of 1,418 Polish...
-
Augmenting digital documents with negotiation capability
PublicationActive digital documents are not only capable of performing various operations using their internal functionality and external services, accessible in the environment in which they operate, but can also migrate on their own over a network of mobile devices that provide dynamically changing execution contexts. They may imply conflicts between preferences of the active document and the device the former wishes to execute on. In the...
-
Differentiating patients with obstructive sleep apnea from healthy controls based on heart rate-blood pressure coupling quantified by entropy-based indices
PublicationWe introduce an entropy-based classification method for pairs of sequences (ECPS) for quantifying mutual dependencies in heart rate and beat-to-beat blood pressure recordings. The purpose of the method is to build a classifier for data in which each item consists of two intertwined data series taken for each subject. The method is based on ordinal patterns and uses entropy-like indices. Machine learning is used to select a subset...
-
Mask Detection and Classification in Thermal Face Images
PublicationFace masks are recommended to reduce the transmission of many viruses, especially SARS-CoV-2. Therefore, the automatic detection of whether there is a mask on the face, what type of mask is worn, and how it is worn is an important research topic. In this work, the use of thermal imaging was considered to analyze the possibility of detecting (localizing) a mask on the face, as well as to check whether it is possible to classify...
-
Antenna Optimization Using Machine Learning with Reduced-Dimensionality Surrogates
PublicationIn modern times, antenna design has become more demanding than ever. The escalating requirements for performance and functionality drive the development of intricately structured antennas, where parameters must be meticulously adjusted to achieve peak performance. Often, global adjustments to geometry are necessary for optimal results. However, direct manipulation of antenna responses evaluated with full-wave electromagnetic (EM)...
-
Computational Complexity and Its Influence on Predictive Capabilities of Machine Learning Models for Concrete Mix Design
PublicationThe design of concrete mixtures is crucial in concrete technology, aiming to produce concrete that meets specific quality and performance criteria. Modern standards require not only strength but also eco-friendliness and production efficiency. Based on the Three Equation Method, conventional mix design methods involve analytical and laboratory procedures but are insufficient for contemporary concrete technology, leading to overengineering...
-
Managerial Energy in Sustainable Enterprises: Organizational Wisdom Approach
PublicationThe circular economy (CE) as an idea involves applying the concept of sustainable development that has been gaining worldwide support. This shift in perception of energy and resource-use from its linear to circular forms creates a specific business environment, which constitutes the subject of this research. This article aims to analyze the impact of a manager’s energy on organizational wisdom, focusing on its circular business...
-
Tool Wear Monitoring Using Improved Dragonfly Optimization Algorithm and Deep Belief Network
PublicationIn recent decades, tool wear monitoring has played a crucial role in the improvement of industrial production quality and efficiency. In the machining process, it is important to predict both tool cost and life, and to reduce the equipment downtime. The conventional methods need enormous quantities of human resources and expert skills to achieve precise tool wear information. To automatically identify the tool wear types, deep...
-
Technique for reducing erosion in large-scale circulating fluidized bed units
PublicationThis paper presents a methodology, implemented for a real industrial-scale circulating fluidized bed boiler, to mitigate the risk of heating surfaces exposed to an intensive particle erosion process. For this purpose, a machine learning algorithm was developed to support the boiler reliability management process. Having a tool that can help mitigate the risk of uncontrolled power unit failure without expensive and technically complex...
-
Detection of Lexical Stress Errors in Non-Native (L2) English with Data Augmentation and Attention
PublicationThis paper describes two novel complementary techniques that improve the detection of lexical stress errors in non-native (L2) English speech: attention-based feature extraction and data augmentation based on Neural Text-To-Speech (TTS). In a classical approach, audio features are usually extracted from fixed regions of speech such as the syllable nucleus. We propose an attention-based deep learning model that automatically de...
-
A new multi-process collaborative architecture for time series classification
PublicationTime series classification (TSC) is the problem of categorizing time series data by using machine learning techniques. Its applications vary from cybersecurity and health care to remote sensing and human activity recognition. In this paper, we propose a novel multi-process collaborative architecture for TSC. The propositioned method amalgamates multi-head convolutional neural networks and capsule mechanism. In addition to the discovery...
-
A Comprehensive Analysis of Deep Neural-Based Cerebral Microbleeds Detection System
PublicationMachine learning-based systems are gaining interest in the field of medicine, mostly in medical imaging and diagnosis. In this paper, we address the problem of automatic cerebral microbleeds (CMB) detection in magnetic resonance images. It is challenging due to difficulty in distinguishing a true CMB from its mimics, however, if successfully solved it would streamline the radiologists work. To deal with this complex three-dimensional...
-
Jak wykraść złoto smokowi? - uczenie ze wzmocnieniem w świecie Wumpusa
PublicationNiniejszy rozdział zawiera łagodne wprowadzenie do problematyki uczenia ze wzmocnieniem, w którym podstawy teoretyczne wyjaśniane są na przykładzie przewodnim, jakim jest zagadnienie nauczenia agenta poruszania się w świecie potwora o imieniu Wumpus (ang. Wumpus world), klasycznym środowisku do testowania logicznego rozumowania agentów (problem nietrywialny dla algorytmów uczenia ze wzmocnieniem). Przedstawiona jest główna idea...
-
Diagnostyka łożysk silnika indukcyjnego na podstawie prądu zasilającego przy użyciu sztucznych sieci neuronowych
PublicationW artykule zawarto wyniki badań dotyczące diagnostyki łożysk silnika indukcyjnego na podstawie pomiarów prądu zasilającego z wyko-rzystaniem sztucznych sieci neuronowych. Zaprezentowano wyniki uczenia sieci oraz rezultaty testów przeprowadzonych na danych spoza zbioru uczącego. Badania wykonane zostały na obiektach z celowo wprowadzonymi uszkodzeniami łożysk. Przedstawiona nowa koncepcja zakłada użycie zestawu sieci neuronowych...
-
CNN-CLFFA: Support Mobile Edge Computing in Transportation Cyber Physical System
PublicationIn the present scenario, the transportation Cyber Physical System (CPS) improves the reliability and efficiency of the transportation systems by enhancing the interactions between the physical and cyber systems. With the provision of better storage ability and enhanced computing, cloud computing extends transportation CPS in Mobile Edge Computing (MEC). By inspecting the existing literatures, the cloud computing cannot fulfill...
-
Klasyfikator SVM w zastosowaniu do synchronizacji sygnału OFDM zniekształconego przez kanał wielodrogowy
PublicationW pracy przedstawiono analizę przydatności klasyfikatora SVM bazującego na uczeniu maszynowym do estymacji przesunięcia czasowego odebranego symbolu OFDM. Przedstawione wyniki wykazują, że ten klasyfikator potrafi zapewnić synchronizację dla różnych kanałów wielodrogowych o wysokim poziomie szumu. Eksperymenty przeprowadzone w Matlabie z użyciem modeli modulatora i demodulatora wykazały, że w większości przypadków klasyfikator...
-
Solubility of dapsone in deep eutectic solvents: Experimental analysis, molecular insights and machine learning predictions
PublicationBackground. Dapsone (DAP) is an anti-inflammatory and antimicrobial active pharmaceutical ingredient used to treat, e.g., AIDS-related diseases. However, low solubility is a feature hampering its efficient use. Objectives. First, deep eutectic solvents...
-
Neoclassical Navier–Stokes Equations Considering the Gyftopoulos–Beretta Exposition of Thermodynamics
PublicationThe seminal Navier-Stokes equations were stated even before the creation of the foundations of thermodynamics and its first and second laws. There is a widespread opinion in the literature on thermodynamic cycles that the Navier-Stokes equations cannot be taken as a thermodynamically correct model of a local "working fluid", which would be able to describe the conversion of "heating" into "working" (Carnot's type cycles) and vice...
-
Finding the Right Solvent: A Novel Screening Protocol for Identifying Environmentally Friendly and Cost-Effective Options for Benzenesulfonamide
PublicationThis study investigated the solubility of benzenesulfonamide (BSA) as a model compound using experimental and computational methods. New experimental solubility data were collected in the solvents DMSO, DMF, 4FM, and their binary mixtures with water. The predictive model was constructed based on the best-performing regression models trained on available experimental data, and their hyperparameters were optimized using a newly...
-
The impact of the AC922 Architecture on Performance of Deep Neural Network Training
PublicationPractical deep learning applications require more and more computing power. New computing architectures emerge, specifically designed for the artificial intelligence applications, including the IBM Power System AC922. In this paper we confront an AC922 (8335-GTG) server equipped with 4 NVIDIA Volta V100 GPUs with selected deep neural network training applications, including four convolutional and one recurrent model. We report...
-
Machine learning for the management of biochar yield and properties of biomass sources for sustainable energy
PublicationBiochar is emerging as a potential solution for biomass conversion to meet the ever increasing demand for sustainable energy. Efficient management systems are needed in order to exploit fully the potential of biochar. Modern machine learning (ML) techniques, and in particular ensemble approaches and explainable AI methods, are valuable for forecasting the properties and efficiency of biochar properly. Machine-learning-based forecasts,...
-
Iterative learning approach to active noise control of highly autocorrelated signals with applications to machinery noise
PublicationThis paper discusses the design and application of iterative learning control (ILC) and repetitive control (RC) for high modal density systems. Typical examples of these systems are structural and acoustical systems considered in active structural acoustic control (ASAC) and active noise control (ANC) applications. The application of traditional ILC and RC design techniques, which are based on a parametric system model, on systems...
-
Optical glyphs based localization and identification system
PublicationThe paper presents a description of functioning of a platform supporting the detection of obstructive diseases in the respiratory system education process. A 16-parameter model of the respiratory system simulated in the MATLAB/Simulink environment was set in the role of the tested patient. It has been linked to the control layer, developed in the LabVIEW environment, using the SIT library (Simulation Interface Toolkit). This layer...
-
An application supporting the educational process of the respiratory system obstructive diseases detection
PublicationThe paper presents a description of functioning of a platform supporting the detection of obstructive diseases in the respiratory system education process. A 16-parameter model of the respiratory system simulated in the MATLAB/Simulink environment was set in the role of the tested patient. It has been linked to the control layer, developed in the LabVIEW environment, using the SIT library (Simulation Interface Toolkit). This layer...
-
Influence of Escherichia coli on Expression of Selected Human Drug Addiction Genes
PublicationThe impact of enteric microflora on the expression of genes associated with cocaine and amphetamine addiction was described. Human genome-wide experiments on RNA transcripts expressed in response to three selected Escherichia coli strains allowed for significant alteration (p > 0.05) of the linear regression model between HT-29 RNA transcripts associated with the KEGG pathway:hsa05030:Cocaine addiction after 3 h stimulation with...
-
DOROTKA, czyli Doskonalenie Organizacji, ROzwoju oraz Tworzenia Kursów Akademickich przez Internet.
PublicationW artykule zaprezentowano dedykowaną platformę wspierającą kształcenie na odległość opracowaną i uruchomioną w ramach projektu Leonardo da Vinci TeleCAD (Teleworkers Training for CAD System Users, 1998-2001), wykorzystywaną w latach 2000-2003 do wspomagania przedmiotu Podstawy Informatyki na Wydziale Inżynierii Lądowej Politechniki Gdańskiej. Przedstawiono również, bazujący na wieloletnich doświadczeniach, model DOROTKA (Doskonalenie...
-
Exploring Neural Networks for Musical Instrument Identification in Polyphonic Audio
PublicationThe purpose of this paper is to introduce neural network-based methods that surpass state-of-the-art (SOTA) models, either by training faster or having simpler architecture, while maintaining comparable effectiveness in musical instrument identification in polyphonic music. Several approaches are presented, including two authors’ proposals, i.e., spiking neural networks (SNN) and a modular deep learning model named FMCNN (Fully...
-
Buried Object Characterization Using Ground Penetrating Radar Assisted by Data-Driven Surrogate-Models
PublicationThis work addresses artificial-intelligence-based buried object characterization using 3-D full-wave electromagnetic simulations of a ground penetrating radar (GPR). The task is to characterize cylindrical shape, perfectly electric conductor (PEC) object buried in various dispersive soil media, and in different positions. The main contributions of this work are (i) development of a fast and accurate data driven surrogate modeling...
-
Evaluating the risk of endometriosis based on patients’ self-assessment questionnaires
PublicationBackground Endometriosis is a condition that significantly affects the quality of life of about 10 % of reproductive-aged women. It is characterized by the presence of tissue similar to the uterine lining (endometrium) outside the uterus, which can lead lead scarring, adhesions, pain, and fertility issues. While numerous factors associated with endometriosis are documented, a wide range of symptoms may still be undiscovered. Methods In...
-
Computer-assisted pronunciation training—Speech synthesis is almost all you need
PublicationThe research community has long studied computer-assisted pronunciation training (CAPT) methods in non-native speech. Researchers focused on studying various model architectures, such as Bayesian networks and deep learning methods, as well as on the analysis of different representations of the speech signal. Despite significant progress in recent years, existing CAPT methods are not able to detect pronunciation errors with high...
-
Classification of Covid-19 using Differential Evolution Chaotic Whale Optimization based Convolutional Neural Network
PublicationCOVID-19, also known as the Coronavirus disease-2019, is an transferrable disease that spreads rapidly, affecting countless individuals and leading to fatalities in this worldwide pandemic. The precise and swift detection of COVID-19 plays a crucial role in managing the pandemic's dissemination. Additionally, it is necessary to recognize COVID-19 quickly and accurately by investigating chest x-ray images. This paper proposed a...
-
Data-driven, probabilistic model for attainable speed for ships approaching Gdańsk harbour
PublicationThe growing demand for maritime transportation leads to increased traffic in ports. From this arises the need to observe the consequences of the specific speed ships reach when approaching seaports. However, usually the analyzed cases refer only to the statistical evaluation of the studied phenomenon or to the empirical modelling, ignoring the mutual influence of variables such as ship type, length or weather conditions. In this...
-
Efficiency evaluation of graduation process in Australian public universities
PublicationFirst-year attrition and on-time graduation are key challenges for contemporary universities, which determine their efficiency. Based on the benefit of the doubt approach, this study reports the efficiency of the graduation process in 37 Australian public universities. The super-efficiency model extended by restrictions on virtual weights is used. The proposed model considers the attrition rate and the on-time graduation rate separately...
-
Kriging-assisted hybrid reliability design and optimization of offshore wind turbine support structure based on a portfolio allocation strategy
PublicationIn recent years, offshore wind power generation technology has developed rapidly around the world, making important contributions to the further development of renewable energy. When designing an Offshore Wind Turbine (OWT) system, the uncertainties in parameters and different types of constraints need to be considered to find the optimal design of these systems. Therefore, the Reliability-Based Design Optimization (RBDO) method...