Filters
total: 712
filtered: 627
Search results for: MACHINE LEARNING, MUSIC ANALYSIS, TONALITY
-
Analyzing the Effectiveness of the Brain–Computer Interface for Task Discerning Based on Machine Learning
PublicationThe aim of the study is to compare electroencephalographic (EEG) signal feature extraction methods in the context of the effectiveness of the classification of brain activities. For classification, electroencephalographic signals were obtained using an EEG device from 17 subjects in three mental states (relaxation, excitation, and solving logical task). Blind source separation employing independent component analysis (ICA) was...
-
Overcoming “Big Data” Barriers in Machine Learning Techniques for the Real-Life Applications
Publication -
Solubility Characteristics of Acetaminophen and Phenacetin in Binary Mixtures of Aqueous Organic Solvents: Experimental and Deep Machine Learning Screening of Green Dissolution Media
PublicationThe solubility of active pharmaceutical ingredients is a mandatory physicochemical characteristic in pharmaceutical practice. However, the number of potential solvents and their mixtures prevents direct measurements of all possible combinations for finding environmentally friendly, operational and cost-effective solubilizers. That is why support from theoretical screening seems to be valuable. Here, a collection of acetaminophen...
-
Machine learning-based prediction of residual drift and seismic risk assessment of steel moment-resisting frames considering soil-structure interaction
PublicationNowadays, due to improvements in seismic codes and computational devices, retrofitting buildings is an important topic, in which, permanent deformation of buildings, known as Residual Interstory Drift Ratio (RIDR), plays a crucial role. To provide an accurate yet reliable prediction model, 32 improved Machine Learning (ML) algorithms were considered using the Python software to investigate the best method for estimating Maximum...
-
Personalized prediction of the secondary oocytes number after ovarian stimulation: A machine learning model based on clinical and genetic data
PublicationControlled ovarian stimulation is tailored to the patient based on clinical parameters but estimating the number of retrieved metaphase II (MII) oocytes is a challenge. Here, we have developed a model that takes advantage of the patient’s genetic and clinical characteristics simultaneously for predicting the stimulation outcome. Sequence variants in reproduction-related genes identified by next-generation sequencing were matched...
-
Lead-free bismuth-based perovskites coupled with g–C3N4: A machine learning based novel approach for visible light induced degradation of pollutants
PublicationThe use of metal halide perovskites in photocatalytic processes has been attempted because of their unique optical properties. In this work, for the first time, Pb-free Bi-based perovskites of the Cs3Bi2X9 type (X = Cl, Br, I, Cl/Br, Cl/I, Br/I) were synthesized and subjected to comprehensive morphological, structural, and surface analyses, and photocatalytic properties in the phenol degradation reaction were examined. Furthermore,...
-
Data-driven Models for Predicting Compressive Strength of 3D-printed Fiber-Reinforced Concrete using Interpretable Machine Learning Algorithms
Publication3D printing technology is growing swiftly in the construction sector due to its numerous benefits, such as intricate designs, quicker construction, waste reduction, environmental friendliness, cost savings, and enhanced safety. Nevertheless, optimizing the concrete mix for 3D printing is a challenging task due to the numerous factors involved, requiring extensive experimentation. Therefore, this study used three machine learning...
-
Numerical analysis of chip removing system operation in circular sawing machine using CFD software
PublicationPaper presents the analysis of the results of numerical simulations of the air flow process of wood chips removing system in the circular sawing machine. The attention is focused on the upper cover and bottom shelter of the chip removing system. Within the framework of the work a systematic numerical modeling of the air flow distribution in the cover and shelter during operation of the selected rotational speed of saw blade with...
-
Deep Learning Optimization for Edge Devices: Analysis of Training Quantization Parameters
PublicationThis paper focuses on convolution neural network quantization problem. The quantization has a distinct stage of data conversion from floating-point into integer-point numbers. In general, the process of quantization is associated with the reduction of the matrix dimension via limited precision of the numbers. However, the training and inference stages of deep learning neural network are limited by the space of the memory and a...
-
Prediction of maximum tensile stress in plain-weave composite laminates with interacting holes via stacked machine learning algorithms: A comparative study
PublicationPlain weave composite is a long-lasting type of fabric composite that is stable enough when being handled. Open-hole composites have been widely used in industry, though they have weak structural performance and complex design processes. An extensive number of material/geometry parameters have been utilized for designing these composites, thereby an efficient computational tool is essential for that purpose. Different Machine Learning...
-
Machine Learning for Control Systems Security of Industrial Robots: a Post-covid-19 Overview
Publication -
Machine Learning Methods in Damage Prediction of Masonry Development Exposed to the Industrial Environment of Mines
Publication -
Advances in Architectures, Big Data, and Machine Learning Techniques for Complex Internet of Things Systems
PublicationTe feld of Big Data is rapidly developing with a lot of ongoing research, which will likely continue to expand in the future. A crucial part of this is Knowledge Discovery from Data (KDD), also known as the Knowledge Discovery Process (KDP). Tis process is a very complex procedure, and for that reason it is essential to divide it into several steps (Figure 1). Some authors use fve steps to describe this procedure, whereas others...
-
Detection of circulating tumor cells by means of machine learning using Smart-Seq2 sequencing
Publication -
Machine learning goes global: Cross-sectional return predictability in international stock markets
Publication -
Likelihood of Transformation to Green Infrastructure Using Ensemble Machine Learning Techniques in Jinan, China
Publication -
Musical Instrument Classification and Duet Analysis Employing Music Information Retrieval Techniques.
PublicationArtykuł przedstawia w sposób przeglądowy prace Katedry Systemów Multimedialnych Politechniki Gdańskiej związane z wyszukiwaniem informacji muzycznej, a w szczególności z klasyfikacją dźwięków instrumentów muzycznych. W opisywanych eksperymentach wykorzystano sztuczne sieci neuronowe.
-
A study on of music features derived from audio recordings examples – a quantitative analysis
PublicationThe paper presents a comparative study of music features derived from audio recordings, i.e. the same music pieces but representing different music genres, excerpts performed by different musicians, and songs performed by a musician, whose style evolved over time. Firstly, the origin and the background of the division of music genres were shortly presented. Then, several objective parameters of an audio signal were recalled that...
-
High-Performance Machine-Learning-Based Calibration of Low-Cost Nitrogen Dioxide Sensor Using Environmental Parameter Differentials and Global Data Scaling
PublicationAccurate tracking of harmful gas concentrations is essential to swiftly and effectively execute measures that mitigate the risks linked to air pollution, specifically in reducing its impact on living conditions, the environment, and the economy. One such prevalent pollutant in urban settings is nitrogen dioxide (NO2), generated from the combustion of fossil fuels in car engines, commercial manufacturing, and food processing. Its...
-
Perception of Pathologists in Poland of Artificial Intelligence and Machine Learning in Medical Diagnosis—A Cross-Sectional Study
Publication -
Machine Learning Applied to Aspirated and Non-Aspirated Allophone Classification—An Approach Based on Audio "Fingerprinting"
PublicationThe purpose of this study is to involve both Convolutional Neural Networks and a typical learning algorithm in the allophone classification process. A list of words including aspirated and non-aspirated allophones pronounced by native and non-native English speakers is recorded and then edited and analyzed. Allophones extracted from English speakers’ recordings are presented in the form of two-dimensional spectrogram images and...
-
Computational Analysis of Transformational Organisational Change with Focus on Organisational Culture and Organisational Learning: An Adaptive Dynamical Systems Modeling Approach
PublicationTransformative Organisational Change becomes more and more significant both practically and academically, especially in the context of organisational culture and learning. However computational modeling and formalization of organisational change and learning processes are still largely unexplored. This chapter aims to provide an adaptive network model of transformative organisational change and translate a selection of organisational...
-
Detection of Cystic Fibrosis Symptoms Based on X-Ray Images Using Machine Learning- Pilot Study
Publication -
Universal Predictors of Dental Students’ Attitudes towards COVID-19 Vaccination: Machine Learning-Based Approach
Publication -
Efficient Calibration of Cost-Efficient Particulate Matter Sensors Using Machine Learning and Time-Series Alignment
PublicationAtmospheric particulate matter (PM) poses a significant threat to human health, infiltrating the lungs and brain and leading to severe issues such as heart and lung diseases, cancer, and premature death. The main sources of PM pollution are vehicular and industrial emissions, construction and agricultural activities, and natural phenomena such as wildfires. Research underscores the absence of a safe threshold for particulate exposure,...
-
Quantitative Soil Characterization for Biochar–Cd Adsorption: Machine Learning Prediction Models for Cd Transformation and Immobilization
Publication -
Prediction of Wastewater Quality at a Wastewater Treatment Plant Inlet Using a System Based on Machine Learning Methods
PublicationOne of the important factors determining the biochemical processes in bioreactors is the quality of the wastewater inflow to the wastewater treatment plant (WWTP). Information on the quality of wastewater, sufficiently in advance, makes it possible to properly select bioreactor settings to obtain optimal process conditions. This paper presents the use of classification models to predict the variability of wastewater quality at...
-
Thermal Images Analysis Methods using Deep Learning Techniques for the Needs of Remote Medical Diagnostics
PublicationRemote medical diagnostic solutions have recently gained more importance due to global demographic shifts and play a key role in evaluation of health status during epidemic. Contactless estimation of vital signs with image processing techniques is especially important since it allows for obtaining health status without the use of additional sensors. Thermography enables us to reveal additional details, imperceptible in images acquired...
-
Cleaner energy for sustainable future using hybrid photovoltaics-thermoelectric generators system under non-static conditions using machine learning based control technique
PublicationIn addition to the load demand, the temperature difference between the hot and cold sides of the thermoelectric generator (TEG) module determines the output power for thermoelectric generator systems. Maximum power point tracking (MPPT) control is needed to track the optimal global power point as operating conditions change. The growing use of electricity and the decline in the use of fossil fuels have sparked interest in photovoltaic-TEG...
-
Presentation of Novel Architecture for Diagnosis and Identifying Breast Cancer Location Based on Ultrasound Images Using Machine Learning
Publication -
A Computationally Efficient Model for Predicting Successful Memory Encoding Using Machine-Learning-based EEG Channel Selection
PublicationComputational cost is an important consideration for memory encoding prediction models that use data from dozens of implanted electrodes. We propose a method to reduce computational expense by selecting a subset of all the electrodes to build the prediction model. The electrodes were selected based on their likelihood of measuring brain activity useful for predicting memory encoding better than chance (in terms of AUC). A logistic...
-
Analysis of Learning Outcomes in Medical Education with the Use of Fuzzy Logic
PublicationThe national curricula of the EU member states are structured around learning outcomes, selected according to Bloom’s Taxonomy. The authors of this paper claim that using Bloom’s Taxonomy to phrase learning outcomes in medical education in terms of students’ achievements is difficult and unclear. This paper presents an efficient method of assessing course learning outcomes using Fuzzy Logic.
-
Machine Learning- and Artificial Intelligence-Derived Prediction for Home Smart Energy Systems with PV Installation and Battery Energy Storage
Publication -
Machine Learning Algorithm-Based Tool and Digital Framework for Substituting Daylight Simulations In Early- Stage Architectural Design Evaluation
PublicationThe aim of this paper is to examine the new method of obtaining the simulation-based results using backpropagation of errors artificial neural networks. The primary motivation to conduct the research was to determine an alternative, more efficient and less timeconsuming method which would serve to achieve the results of daylight simulations. Three daylight metrics: Daylight Factor, Daylight Autonomy and Daylight Glare Probability have...
-
Application of creative problem-solving methods in remote learning. Bibliometric analysis
Publication -
Analysis of network infrastructure and QoS requirements for modern remote learning systems.
PublicationW referacie przedstawiono różne modele zdalnego nauczania. Podjęto próbę oceny wymagań nakładanych na infrastrukturę sieci. Ponadto przedstawiono mechanizmy QoS spotykane w sieciach teleinformatycznych oraz dokonano oceny możliwości ich współpracy w systemach edukacji zdalnej
-
Distance learning trends: introducing new solutions to data analysis courses
PublicationNowadays data analysis of any kind becomes a piece of art. The same happens with the teaching processes of statistics, econometrics and other related courses. This is not only because we are facing (and are forced to) teach online or in a hybrid mode. Students expect to see not only the theoretical part of the study and solve some practical examples together with the instructor. They are waiting to see a variety of tools, tutorials,...
-
Analysis of 2D Feature Spaces for Deep Learning-based Speech Recognition
Publicationconvolutional neural network (CNN) which is a class of deep, feed-forward artificial neural network. We decided to analyze audio signal feature maps, namely spectrograms, linear and Mel-scale cepstrograms, and chromagrams. The choice was made upon the fact that CNN performs well in 2D data-oriented processing contexts. Feature maps were employed in the Lithuanian word recognition task. The spectral analysis led to the highest word...
-
Determinants of anxiety levels among young males in a threat of experiencing military conflict–Applying a machine-learning algorithm in a psychosociological study
Publication -
Machine-learning-based precise cost-efficient NO2 sensor calibration by means of time series matching and global data pre-processing
PublicationAir pollution remains a considerable contemporary challenge affecting life quality, the environment, and economic well-being. It encompasses an array of pollutants—gases, particulate matter, biological molecules—emanating from sources such as vehicle emissions, industrial activities, agriculture, and natural occurrences. Nitrogen dioxide (NO2), a harmful gas, is particularly abundant in densely populated urban areas. Given its...
-
Statistical Data Pre-Processing and Time Series Incorporation for High-Efficacy Calibration of Low-Cost NO2 Sensor Using Machine Learning
PublicationAir pollution stands as a significant modern-day challenge impacting life quality, the environment, and the economy. It comprises various pollutants like gases, particulate matter, biological molecules, and more, stemming from sources such as vehicle emissions, industrial operations, agriculture, and natural events. Nitrogen dioxide (NO2), among these harmful gases, is notably prevalent in densely populated urban regions. Given...
-
Analysis of surface roughness of chemically impregnated Scots pine processed using frame-sawing machine
PublicationThe objective of this work was to evaluate the effect of the impregnation process of pine wood (Pinus sylvestris L.) on roughness parameters of the surface processed on a frame sawing. The samples weredried and impregnated using a commercial procedure by a local company. The touch method withthe use of measuring stylus (pin) was employed to determine of surface roughness of the samplesconsidering parameters, namely, arithmetical...
-
COMPARATIVE ANALYSIS OF COPING STRATEGIES WITH STRESS OF STUDENTS IN DIFFERENT LEARNING CONDITIONS DURING THE PANDEMIC
Publication -
Diversity of Students’ Unethical Behaviors in Online Learning Amid COVID-19 Pandemic: An Exploratory Analysis
Publication -
Sawdust size distribution analysis of thermally modified and unmodified oak wood sawed on the frame sawing machine PRW15-M
PublicationW pracy przedstawiono wyniki analizy granulometrycznej składu wiórów drewna dębowego niemodyfikowanego i modyfikowanego termicznie uzyskanych podczas piłowania na pilarce ramowej PRW15-M z prędkością posuwu 1.67 mmin-1. Otrzymane trociny termicznie modyfikowanego drewna dębowego składają się z wiórów o ziarnistości w przedziale od 44.7 mm do 4.6 mm, podczas gdy dla drewna niemodyfikowanego zaobserwowano zmiany ziarnistości w granicach...
-
Failure analysis of a high-speed induction machine driven by a SiC-inverter and operating on a common shaft with a high-speed generator
PublicationDue to ongoing research work, a prototype test rig for testing high-speed motors/generators has been developed. Its design is quite unique as the two high- speed machines share a single shaft with no support bearings between them. A very high maximum operating speed, up to 80,000 rpm, was required. Because of the need to minimise vibration during operation at very high rotational speeds, rolling bearings were used. To eliminate...
-
An automated learning model for twitter sentiment analysis using Ranger AdaBelief optimizer based Bidirectional Long Short Term Memory
PublicationSentiment analysis is an automated approach which is utilized in process of analysing textual data to describe public opinion. The sentiment analysis has major role in creating impact in the day-to-day life of individuals. However, a precise interpretation of text still relies as a major concern in classifying sentiment. So, this research introduced Bidirectional Long Short Term Memory with Ranger AdaBelief Optimizer (Bi-LSTM RAO)...
-
Granulometric analysis of dry sawdust from the sawing process on the frame sawing machine PRW15M = Granulometrická analýza suchej piliny z procesu pílenia borovicového dreva na rámovej píle PRW-15M
PublicationW artykule przedstawiono wyniki analizy granulometrycznej trocin otrzymanych podczas procesu przecinania drewna sosnowego na pilarce ramowej PRW15M. Wielkość otrzymanych trocin miesciła się w zakresie od 84,7 µm do 15,2 mm. Z punktu widzenia kształtu trociny średniej wielkości d>125µm są swym kształtem zbliżone do włókien drzewnych. Z kolei, drobne frakcje d<125µm mają kształt sześcienny. Ponadto, wzrost prędkości posuwu powoduje...
-
Adaptive Hounsfield Scale Windowing in Computed Tomography Liver Segmentation
PublicationIn computed tomography (CT) imaging, the Hounsfield Unit (HU) scale quantifies radiodensity, but its nonlinear nature across organs and lesions complicates machine learning analysis. This paper introduces an automated method for adaptive HU scale windowing in deep learning-based CT liver segmentation. We propose a new neural network layer that optimizes HU scale window parameters during training. Experiments on the Liver Tumor...
-
Load effect impact on the exploitation of concrete machine foundations used in the gas and oil industry
PublicationMachine foundations is a critical topic in the gas and oil industry, which design and exploitation require extensive technical knowledge. Machine foundations are the constructions which are intended for mounting on it a specific type of machine. The foundation has to transfer dynamic and static load from machine to the ground. The primary difference between machine foundations and building foundations is that the machine foundations...