Filters
total: 1210
filtered: 978
-
Catalog
Chosen catalog filters
Search results for: restricted boltzmann machine
-
An Approach to Data Reduction and Integrated Machine Classification
Publication -
Precision of cutting system in circular sawing machine
PublicationW pracy przedstawiono analizę dokładności układu przecinania pilarki tarczowej, w której uwzglednoino dokładność struktury geometryczno- ruchowej przecinarki.
-
THERMOPLASTIC POLYMER MACHINE GUARDS – EXPLOITATION SAFETY
Publication -
Control of induction machine supplied by a current source inverter using the multi-scalar transformation and backstepping approach
PublicationThe paper describes the voltage control technique of squire-cage induction machines supplied by a current source inverter. The control system is based on new transformation of the electric drive system (machine and inverter) state variables to the multi-scalar variables form. The backstepping approach is used to obtain the feedback control law. The control system contains the structure of the observer...
-
Non-linear circuit model of a single doubly-fed induction machine formulated in natural axes for drive systems simulation purposes
PublicationMathematical modelling and a circuit model formulated in natural axes of a single doubly-fed induction machine, with the account of magnetic circuit nonlinearity are presented in the paper. Derivation of the model differential equations was based on Lagrange's energy method. State functions of magnetic elements in the model are non-linear and depend on all currents flowing in the machine windings and on the angle of rotor position....
-
Machine learning-based seismic response and performance assessment of reinforced concrete buildings
PublicationComplexity and unpredictability nature of earthquakes makes them unique external loads that there is no unique formula used for the prediction of seismic responses. Hence, this research aims to implement the most well-known Machine Learning (ML) methods in Python software to propose a prediction model for seismic response and performance assessment of Reinforced Concrete Moment-Resisting Frames (RC MRFs). To prepare 92,400 data...
-
Machine-Learning-Based Global Optimization of Microwave Passives with Variable-Fidelity EM Models and Response Features
PublicationMaximizing microwave passive component performance demands precise parameter tuning, particularly as modern circuits grow increasingly intricate. Yet, achieving this often requires a comprehensive approach due to their complex geometries and miniaturized structures. However, the computational burden of optimizing these components via full-wave electromagnetic (EM) simulations is substantial. EM analysis remains crucial for circuit...
-
Application of a hybrid mechanistic/machine learning model for prediction of nitrous oxide (N2O) production in a nitrifying sequencing batch reactor
PublicationNitrous oxide (N2O) is a key parameter for evaluating the greenhouse gas emissions from wastewater treatment plants. In this study, a new method for predicting liquid N2O production during nitrification was developed based on a mechanistic model and machine learning (ML) algorithm. The mechanistic model was first used for simulation of two 15-day experimental trials in a nitrifying sequencing batch reactor. Then, model predictions...
-
Numerical analysis of chip removing system operation in circular sawing machine using CFD software
PublicationPaper presents the analysis of the results of numerical simulations of the air flow process of wood chips removing system in the circular sawing machine. The attention is focused on the upper cover and bottom shelter of the chip removing system. Within the framework of the work a systematic numerical modeling of the air flow distribution in the cover and shelter during operation of the selected rotational speed of saw blade with...
-
Improving the prediction of biochar production from various biomass sources through the implementation of eXplainable machine learning approaches
PublicationExamining the game-changing possibilities of explainable machine learning techniques, this study explores the fast-growing area of biochar production prediction. The paper demonstrates how recent advances in sensitivity analysis methodology, optimization of training hyperparameters, and state-of-the-art ensemble techniques have greatly simplified and enhanced the forecasting of biochar output and composition from various biomass...
-
Sperm segmentation and abnormalities detection during the ICSI procedure using machine learning algorithms
Publication(1) About 15-20% of couples struggle with the problem of infertility. 30 to 40% of these cases are caused by abnormalities in the structure and motility of sperm. Sometimes the only possibility for such people is to use the procedure of artificial insemination. CASA systems are used to increase the efficiency of this procedure by selecting the appropriate sperm cell. (2) This paper presents an approach to the sperm classification...
-
Detection of circulating tumor cells by means of machine learning using Smart-Seq2 sequencing
PublicationCirculating tumor cells (CTCs) are tumor cells that separate from the solid tumor and enter the bloodstream, which can cause metastasis. Detection and enumeration of CTCs show promising potential as a predictor for prognosis in cancer patients. Furthermore, single-cells sequencing is a technique that provides genetic information from individual cells and allows to classify them precisely and reliably. Sequencing data typically...
-
Game theory-based virtual machine migration for energy sustainability in cloud data centers
PublicationAs the demand for cloud computing services increases, optimizing resource allocation and energy consumption has become a key factor in achieving sustainability in cloud environments. This paper presents a novel approach to address these challenges through an optimized virtual machine (VM) migration strategy that employs a game-theoretic approach based on particle swarm optimization (PSO) (PSO-GTA). The proposed approach leverages...
-
Machine learning-based seismic fragility and seismic vulnerability assessment of reinforced concrete structures
PublicationMany studies have been performed to put quantifying uncertainties into the seismic risk assessment of reinforced concrete (RC) buildings. This paper provides a risk-assessment support tool for purpose of retrofitting and potential design strategies of RC buildings. Machine Learning (ML) algorithms were developed in Python software by innovative methods of hyperparameter optimization, such as halving search, grid search, random...
-
From Data to Decision: Interpretable Machine Learning for Predicting Flood Susceptibility in Gdańsk, Poland
PublicationFlood susceptibility prediction is complex due to the multifaceted interactions among hydrological, meteorological, and urbanisation factors, further exacerbated by climate change. This study addresses these complexities by investigating flood susceptibility in rapidly urbanising regions prone to extreme weather events, focusing on Gdańsk, Poland. Three popular ML techniques, Support Vector Machine (SVM), Random Forest (RF), and...
-
Unsupervised machine-learning classification of electrophysiologically active electrodes during human cognitive task performance
PublicationIdentification of active electrodes that record task-relevant neurophysiological activity is needed for clinical and industrial applications as well as for investigating brain functions. We developed an unsupervised, fully automated approach to classify active electrodes showing event-related intracranial EEG (iEEG) responses from 115 patients performing a free recall verbal memory task. Our approach employed new interpretable...
-
Active Annotation in Evaluating the Credibility of Web-Based Medical Information: Guidelines for Creating Training Data Sets for Machine Learning
PublicationMethods Results Discussion References Abbreviations Copyright Abstract Background: The spread of false medical information on the web is rapidly accelerating. Establishing the credibility of web-based medical information has become a pressing necessity. Machine learning offers a solution that, when properly deployed, can be an effective tool in fighting medical misinformation on the web. Objective: The aim of this study is to...
-
Machine-Learning Methods for Estimating Performance of Structural Concrete Members Reinforced with Fiber-Reinforced Polymers
PublicationIn recent years, fiber-reinforced polymers (FRP) in reinforced concrete (RC) members have gained significant attention due to their exceptional properties, including lightweight construction, high specific strength, and stiffness. These attributes have found application in structures, infrastructures, wind power equipment, and various advanced civil products. However, the production process and the extensive testing required for...
-
Machine-learning methods for estimating compressive strength of high-performance alkali-activated concrete
PublicationHigh-performance alkali-activated concrete (HP-AAC) is acknowledged as a cementless and environmentally friendly material. It has recently received a substantial amount of interest not only due to the potential it has for being used instead of ordinary concrete but also owing to the concerns associated with climate change, sustainability, reduction of CO2 emissions, and energy consumption. The characteristics and amounts of the...
-
Performance Analysis of Machine Learning Methods with Class Imbalance Problem in Android Malware Detection
PublicationDue to the exponential rise of mobile technology, a slew of new mobile security concerns has surfaced recently. To address the hazards connected with malware, many approaches have been developed. Signature-based detection is the most widely used approach for detecting Android malware. This approach has the disadvantage of being unable to identify unknown malware. As a result of this issue, machine learning (ML) for detecting malware...
-
Machine Learning-Based Wetland Vulnerability Assessment in the Sindh Province Ramsar Site Using Remote Sensing Data
PublicationWetlands provide vital ecological and socioeconomic services but face escalating pressures worldwide. This study undertakes an integrated spatiotemporal assessment of the multifaceted vulnerabilities shaping Khinjhir Lake, an ecologically significant wetland ecosystem in Pakistan, using advanced geospatial and machine learning techniques. Multi-temporal optical remote sensing data from 2000 to 2020 was analyzed through spectral...
-
Hybrid excited electric machine with axial flux bridges
Publication -
Machine learning applied to bi-heterocyclic drugs recognition
Publication -
Personal bankruptcy prediction using machine learning techniques
Publication -
Stacking-Based Integrated Machine Learning with Data Reduction
Publication -
INVESTIGATION OF THE LOMBARD EFFECT BASED ON A MACHINE LEARNING APPROACH
PublicationThe Lombard effect is an involuntary increase in the speaker’s pitch, intensity, and duration in the presence of noise. It makes it possible to communicate in noisy environments more effectively. This study aims to investigate an efficient method for detecting the Lombard effect in uttered speech. The influence of interfering noise, room type, and the gender of the person on the detection process is examined. First, acoustic parameters...
-
Geometric working volume of a satellite positive displacement machine
PublicationThis article describes a method for determining the geometric working volume of satellite positive displacement machines (pump and motor). The working mechanism of these machines is satellite mechanism consisting of two non-circular gears (rotor and curvature) and circular gears (satellites). Two variants of the satellite mechanism are presented. In the first mechanism, the rolling line of the rotor is a sinusoid "wrapped" around...
-
Machine learning system for estimating the rhythmic salience of sounds.
PublicationW artykule przedstawiono badania dotyczące wyszukiwania danych rytmicznych w muzyce. W pracy przedstawiono postać funkcji rankingujacej poszczególnych dźwięków frazy muzycznej. Opracowano metodę tworzenia wszystkich możliwych hierarchicznych struktur rytmicznych, zwanych hipotezami rytmicznymi. Otrzymane hipotezy są następnie porządkowane w kolejności malejącej wartości funkcji rankingującej, aby ustalić, która ze znalezionych...
-
Synthesis of irregular motion mechanisms for production machine drives
Publication -
Broken rotor symptoms in the sensorless control of induction machine
PublicationThe purpose of this paper is to investigate the need for a universal method for sensorless controlled induction motor drive diagnosis. The increasing number of sensorless control systems in industrial applications require a universal method for the drive diagnosis, which provides reliable diagnostic reasoning independent of control system structure and state variables measurement or estimation method.Simulations and experimental...
-
Microgrinding of flat surfaces on single-disk lapping machine
PublicationW pracy przedstawiono wyniki badań mikroszlifowania z kinematyką docierania w układzie jednotarczowym z wykorzystaniem nowego narzędzia wykonanego z pastylek ściernych z ziarnem diamentowym (D3/2) i spoiwem żywicznym. Zakres pracy obejmował przeprowadzenie badań eksperymentalnych i modelowych związanych z analizą promienia krzywizny rys obróbkowych.
-
MACHINE LEARNING SYSTEM FOR AUTOMATED BLOOD SMEAR ANALYSIS
PublicationIn this paper the authors propose a decision support system for automatic blood smear analysis based on microscopic images. The images are pre-processed in order to remove irrelevant elements and to enhance the most important ones - the healthy blood cells (erythrocytes) and the pathologic (echinocytes). The separated blood cells are analyzed in terms of their most important features by the eigenfaces method. The features are the...
-
PERFORMANCE COMPARISON OF MACHINE LEARNING ALGORITHMS FOR PREDICTIVE MAINTENANCE
Publication -
Machine Learning for Sensorless Temperature Estimation of a BLDC Motor
Publication -
Microgrinding of flat surfaces on a single-disc lapping machine
PublicationW referacie przedstawiono wyniki badań eksperymentalnych mikroszlifowania z kinematyką docierania jednotarczowego. Przedstawiono propozycję narzędzia z wkładkami ściernymi z ziarnem diamentowym D3/2 i spoiwem żywicznym. Omówiono kinematykę docierania jednotarczowego i sposób oceny krzywizny rys obróbkowych.
-
Monitoring of the circular saw vibrations with machine vision system.
PublicationPraca przedstawia metodologię wyznaczania drgań obracających się pił tarczowych z wykorzystaniem technik wizyjnych. Na podstawie otrzymanych wyników można wyznaczyc prędkości krytyczne piły oraz podac obszary prędkości zalecanych (najmniejsze wartości drgań poprzecznych piły).
-
Microgrinding of flat surfaces on single-disc lapping machine
PublicationW pracy przedstawiono możliwości zastosowania specjalnych narzędzi do mikroszlifowania na docierarce jednotarczowej. Jedno z zastosowanych narzędzi posiada warstwę ścierniwa diamentowego (D64) nałożoną metodą galwaniczną. Drugie przetestowane narzędzie zbudowane zostało z diamentowych pastylek ściernych (D3/2). Przedstawiono analizę kinematyczną i wyniki ubytku materiałowego oraz osiągnięte parametry chropowatości.
-
Finishing of Ceramics in a Single-Disk Lapping Machine Configuration
PublicationPrzedstawiono metodę obróbki ceramiki technicznej na zmodifikowanej docierarce jednotarczowej z niezależnym napędem pierścienia prowadzącego. Omówiono przebieg obróbki z wykorzystaniem nowych narzędzi i zastosowaniem ziarna wiązanego.
-
Machine Learning Modelling and Feature Engineering in Seismology Experiment
Publication -
Data Reduction Algorithm for Machine Learning and Data Mining
Publication -
Digital measurements in monitoring of position and velocity of machine subassambly
PublicationReferat dotyczy zastosowania enkoderów z sygnałem wyjściowym kwadraturowym współdziałających z odpowiednim systemem DAQ do monitorowania przebiegu ruchu podzespołów maszyn technologicznych. Przedyskutowano podstawowe zasady konstrukcji układów do cyfrowych pomiarów prędkości i przemieszczeń.Porównano wady, zalety i ograniczenia rozdzielczości pomiaru prędkości dwoma znanymi sposobami. Omówiono własne rozwiązania zastosowane w układach...
-
MACHINE LEARNING–BASED ANALYSIS OF ENGLISH LATERAL ALLOPHONES
PublicationAutomatic classification methods, such as artificial neural networks (ANNs), the k-nearest neighbor (kNN) and selforganizing maps (SOMs), are applied to allophone analysis based on recorded speech. A list of 650 words was created for that purpose, containing positionally and/or contextually conditioned allophones. For each word, a group of 16 native and non-native speakers were audio-video recorded, from which seven native speakers’...
-
The use of machine learning for face regions detection in thermograms
PublicationThe aim of this study is to analyse the methods of detecting characteristic points of the face in thermographic images. As part of the implementation an extensive analysis of scientific publications covering similar issues both for the analysis of images made in visible light and thermographic images was carried out. On the basis of this analysis, 3 models were selected and then they were implemented and tested on the basis of...
-
Exploring the Solubility Limits of Edaravone in Neat Solvents and Binary Mixtures: Experimental and Machine Learning Study
PublicationThis study explores the edaravone solubility space encompassing both neat and binary dissolution media. Efforts were made to reveal the inherent concentration limits of common pure and mixed solvents. For this purpose, the published solubility data of the title drug were scrupulously inspected and cured, which made the dataset consistent and coherent. However, the lack of some important types of solvents in the collection called...
-
Active Learning on Ensemble Machine-Learning Model to Retrofit Buildings Under Seismic Mainshock-Aftershock Sequence
PublicationThis research presents an efficient computational method for retrofitting of buildings by employing an active learning-based ensemble machine learning (AL-Ensemble ML) approach developed in OpenSees, Python and MATLAB. The results of the study shows that the AL-Ensemble ML model provides the most accurate estimations of interstory drift (ID) and residual interstory drift (RID) for steel structures using a dataset of 2-, to 9-story...
-
Rapid Surrogate-Aided Multi-Criterial Optimization of Compact Microwave Passives Employing Machine Learning and ANNs
PublicationThis article introduces an innovative method for achieving low-cost and reliable multi-objective optimization (MO) of microwave passive circuits. The technique capitalizes on the attributes of surrogate models, specifically artificial neural networks (ANNs), and multi-resolution electromagnetic (EM) analysis. We integrate the search process into a machine learning (ML) framework, where each iteration produces multiple infill points...
-
Prediction of fracture toughness in fibre-reinforced concrete, mortar, and rocks using various Machine learning techniques
PublicationMachine Learning (ML) method is widely used in engineering applications such as fracture mechanics. In this study, twenty different ML algorithms were employed and compared for the prediction of the fracture toughness and fracture load in modes I, II, and mixed-mode (I-II) of various materials, including fibre-reinforced concrete, cement mortar, sandstone, white travertine, marble, and granite. A set of 401 specimens of “Brazilian...
-
Predicting seismic response of SMRFs founded on different soil types using machine learning techniques
PublicationPredicting the Maximum Interstory Drift Ratio (M-IDR) of Steel Moment-Resisting Frames (SMRFs) is a useful tool for designers to approximately evaluate the vulnerability of SMRFs. This study aims to explore supervised Machine Learning (ML) algorithms to build a surrogate prediction model for SMRFs to reduce the need for complex modeling. For this purpose, twenty well-known ML algorithms implemented in Python software are trained...
-
Experimental and Machine-Learning-Assisted Design of Pharmaceutically Acceptable Deep Eutectic Solvents for the Solubility Improvement of Non-Selective COX Inhibitors Ibuprofen and Ketoprofen
PublicationDeep eutectic solvents (DESs) are commonly used in pharmaceutical applications as excellent solubilizers of active substances. This study investigated the tuning of ibuprofen and ketoprofen solubility utilizing DESs containing choline chloride or betaine as hydrogen bond acceptors and various polyols (ethylene glycol, diethylene glycol, triethylene glycol, glycerol, 1,2-propanediol, 1,3-butanediol) as hydrogen bond donors. Experimental...
-
Experimental and Machine-Learning-Assisted Design of Pharmaceutically Acceptable Deep Eutectic Solvents for the Solubility Improvement of Non-Selective COX Inhibitors Ibuprofen and Ketoprofen
PublicationDeep eutectic solvents (DESs) are commonly used in pharmaceutical applications as excellent solubilizers of active substances. This study investigated the tuning of ibuprofen and ketoprofen solubility utilizing DESs containing choline chloride or betaine as hydrogen bond acceptors and various polyols (ethylene glycol, diethylene glycol, triethylene glycol, glycerol, 1,2-propanediol, 1,3-butanediol) as hydrogen bond donors. Experimental...