Filters
total: 249
filtered: 158
Search results for: CERAMIC TECHNOLOGY
-
Manufacturing technology of porous ceramic structure
PublicationW pracy przedstawiono wybrane metody otrzymywania porowatych struktur ceramicznych w oparciu o istniejące dane literaturowe.
-
Impact of blending with polystyrene on the microstructural and electrochemical properties of SiOC ceramic
PublicationIn this work, we present the electrochemical behavior and microstructural analysis of silicon oxycarbide (SiOC) ceramics influenced by an addition of polystyrene (PS). Polymer-derived ceramics were obtained by pyrolysis (1000°C, Ar atmosphere) of different polysiloxanes prepared by sol–gel synthesis. This method is very effective to obtain desired composition of final ceramic. Two alkoxysilanes phenylthriethoxysilane and diphenyldimethoxysilane...
-
Effects of La Content on the Densification, Microstructure, and Conductivity of Doped La10−x Ge6 O26±δ Electrolytes
PublicationIn this study, the influence of La content on the characteristics of Nb-, Mo-, and W-doped LaxGe6O26±δ electrolytes was investigated through sintering study, X-ray diffraction, scanning electron microscopy, and conductivity measurement. The densification of LaxGe5.5Nb0.5O26±δ and LaxGe5.5W0.5O26±δ was retarded as the x reached 9.75, while that of LaxGe5.5Mo0.5O26±δ improved with increasing La content. The average grain size slightly...
-
Impact of the addition of dolomite to cream‐firing clays on the technological and color properties of sintered ceramics
Publication -
Influence of yttria surface modification on high temperature corrosion of porous Ni22Cr alloy
PublicationProtective coatings for porous alloys for high temperature use are relatively new materials. Their main drawback is high temperature corrosion. In this work protective coatings based the on Y-precursor infiltrated into the sintered Ni22Cr alloys are studied at 700°C. Effects of the amount of the protective phase on the resulting corrosion properties are evaluated in air and humidified hydrogen. Weight gain of the samples, their...
-
Deposition and growth of thin ceramic films
Publication: Thin ceramic films play an important role in modern technology. One of the more utilized methods of deposition of ceramic films is spin coating. In this paper we investigate optimal deposition parameters for LaNi0.6Fe0.4O3−δ thin layers spin coated from a polymeric precursor. The quality of the obtained layers is checked using scanning electron microscopy. Additionally, we investigate the growth of grains in ceramic films annealed at...
-
Analysis of ring cracks in ceramic rolling elements using the boundary element method
PublicationCeramic materials have been increasingly used in bearing technology for over a dozen years. This is due to the characteristic properties of ceramic materials such as: high hardness, corrosion resistance, the possibility of use in aggressive chemical environments, as well as due to the lower specific weight compared to steel materials. However, the use of ceramic materials is connected with many limitations. The main disadvantages...
-
Study on the wear characteristics of a 3D printed tool in flat lapping of Al2O3 ceramic materials
PublicationWidespread and popular use of ceramic products in various industry sectors necessitates the search for methods of their efficient processing. Lapping technology, which enables obtaining high dimensional and shape accuracy and high surface flatness, is one of the basic methods of finishing hard and brittle technical ceramics with a porous structure. This study analyzed the characteristics and wear value of an SLS-printed abrasive...
-
Investigation of electrocatalytic gas sensor properties in presence of chlorine
PublicationIn this paper performance of an electrocatalytic sensor in presence of chlorine is investigated. Presented studies concern sensor prepared in ceramic technology based on NASICON as a solid electrolyte with two round shaped platinum electrodes. Measurements in different temperatures have been performed in order to determine optimal sensor working temperature.
-
Thermochemical Conversion of Biomass and Municipal Waste into Useful Energy Using Advanced HiTAG/HiTSG Technology
PublicationAn advanced thermal conversion system involving high-temperature gasification of biomass and municipal waste into biofuel, syngas or hydrogen-rich gas is presented in this paper. The decomposition of solid biomass and wastes by gasification is carried out experimentally with a modern and innovative regenerator and updraft continuous gasifier, among others. A ceramic high-cycle regenerator provides extra energy for the thermal conversion...
-
Electrocatalytic Gas Sensor with Reference Layer
PublicationThis paper presents studies of gas sensors prepared in ceramic technology with Nasicon as a solid electrolyte. Sensors work in the voltammetric mode thus based on the excitation of a sensor with a periodic potential signal while current response is recorded. The main aim is to investigate a Bi8Nb2O17 reference layer influence on sensor properties. Sensors I-V characteristics in different concentration of nitrogen dioxide have been...
-
A Pilot Study on Machining Difficult-to-Cut Materials with the Use of Tools Fabricated by SLS Technology
PublicationThe growing use of contemporary materials in various industrial sectors, such as aerospace, automotive, as well as the oil and gas industry, requires appropriate machining methods and tools. Currently, apart from the necessity to obtain high-dimensional and shape accuracy, the efficiency and economic aspects of the selected manufacturing process are equally important, especially when difficult-to-cut materials, such as hard and...
-
Effect of MAO coatings on cavitation erosion and tribological properties of 5056 and 7075 aluminum alloys
PublicationTwo ceramic coatings have been applied on 5056 and 7075 aluminum alloy by microarc oxidation (MAO) technology. The mass losses, surface morphologies and the phase constituents of the MAO coatings before and after cavitation tests were examined by means of digital scales, scanning electron microscopy (SEM) and X-ray diffraction (XRD), respectively. In order to assess the impact of the mechanical properties of the surface layer on...
-
Method of Monitoring of the Grinding Process with Lapping Kinematics Using Audible Sound Analysis
PublicationUtilising microphones as audible sound sensors for monitoring a single-side grinding process with lapping kinematics is presented in the paper. The audible sound generated during grinding depended on the cutting properties of electroplated tools with D107 diamond grains and different thicknesses of the nickel bond. The tool wear affected the obtained technological effects such as material removal rate and the surface roughness...
-
Application of ultrafiltration ceramic membrane for separation of oily wastewater generated by maritime transportation
Publication -
Protonic Ceramic Fuel Cells as novel electrochemical devices
PublicationProton ceramic conductors are novel materials which are interesting from the application point of view. For example, Protonic Ceramic Fuel Cells (PCFCs) is a type of a solid oxide fuel cell, which uses proton ceramic conductors as an electrolyte. Scientists are looking for the most efficient materials for these devices. In recent years main focus has been put on the search for new proton and mixed proton-electron conductors which...
-
Peculiarities associated with testing polyetheretherketone (PEEK) in a model rolling contact
PublicationPolyetheretherketone (PEEK) was investigated using a modified version of the four-ball tester in which the upper forth ball was replaced by a cone in such a way that kinematics of the four-ball configuration were fully preserved. Rotation of the cone enforced orbiting and rolling of the ceramic balls around the polymer cup. The results produced some unexpected peculiarities in the wear of ceramic balls which, in principle, should...
-
Estimation, optimization and analysis based investigation of the energy consumption in machinability of ceramic-based metal matrix composite materials
Publication -
Technological Problems in Lapping on Flat Surfaces of Ceramic Parts
PublicationThis paper will present the results of research on single-disc lapping of flat surfaces of small ceramic elements. Machining with the use of different tools such as metallic, two-metallic and abrasive-metallic will be analyzed. The basics and techniques of reinforcement of laps will be discussed. The results of the influence of parameters on the surface quality of ceramic conponents (sealing) for three treatments on lapping machines...
-
Crack propoagation in MgO-PSZ ceramic materials
PublicationThe properties of ceramic materials such as elevated hardness, high temperature capability, low coefficient of thermal expansion are of interest for rolling element materials. Widely used ceramic materials in engineering applications are silicon nitride, zirconia and alumina. The paper presents an experimental study of the fatigue life of MgO-PSZ ceramic material in lubricated contact with defined types of cracks. A ceramic angular...
-
Glass-ceramic joining of Fe22Cr porous alloy to Crofer22APU: interfacial issues and mechanical properties
PublicationThis work deals with the joining of porous Fe22Cr ferritic stainless steel to a dense Crofer22APU plate by using a silica-based, Ba-containing glass-ceramic. The chemical and interfacial stability and the mechanical properties of the joints were evaluated before and after thermal ageing at 700 ◦C for 500hrs. The sintering behaviour of the glass was assessed by using heating stage microscopy (HSM) to study the influence of a porous...
-
Glass-ceramic sealants and steel interconnects: accelerated interfacial stability and reactivity tests at high temperature
PublicationHigh-temperature reactions between glass-ceramic sealants and Fe-Cr alloy interconnects may lead to the formation of undesirable phases, and consequently degradation of solid oxide fuel/electrolyser devices. In this work, three different glass-ceramic sealants (Na-containing, Ba-containing, Sr-containing compositions) and Fe22Cr stainless steel powders (raw and pre-oxidised) are considered in order to test their chemical reactivity...
-
A New Microwave Ceramic – Polymer Composite with 0-3 Connectivity
PublicationGoal of the present research was to fabricate and study two-phase BiNbO4//PVDF composites with 0-3 connectivity. Such composite consists of there-dimensionally connected polymer matrix loaded with dielectric ceramic particles. In the present case BiNbO4 powder acted as an active phase (dispersed phase) whereas polyvinylidene fluoride (PVDF) acted as a non-active (passive) phase (matrix). BiNbO4//PVDF composites with the volume...
-
Mn-Co spinel coatings on Crofer 22 APU by electrophoretic deposition: Up scaling, performance in SOFC stack at 850 °C and compositional modifications
PublicationCeramic coatings for metallic interconnects play a key role in limiting corrosion and chromium evaporation in solid oxide cells. This study presents the upscaling of the electrophoretic deposition (EPD) technique to process Mn-Co spinels on real-dimension Crofer 22 APU interconnects and the test in a SOFC stack. Area specific resistance of long-term test conducted for 5000 h at 850 °C demonstrated that two-steps sintering has a...
-
Proton Conducting Ceramic Powder Synthesis by a Low Temperature Method
PublicationMolten salt synthesis (MSS) is a simple method for the preparation of ceramic powders with specific morphology. The main role of the molten salts is to increase the reaction rate and lower the reaction temperature. It occurs because of much higher mobility of reactants in the liquid medium than in the solid state. In this work the molten salt synthesis was applied to produce ceramic powders of La0995Ca0005NbO4 and BaCe09−xZrxY01O3....
-
Silicon Oxycarbide (SiOC) Ceramic Materials as Anodes for Lithium Ion Batteries
PublicationPolymer derived ceramics (PDCs) have attracted attention as alternative anode material for Li-ion batteries. It has been found that ternary SiOC and SiCN ceramics obtained through pyrolysis of various preceramic polymers display high reversible capacities of 500 – 650 mAh/g. In this work we try to correlate the electrochemical performance of polymer derived silicon oxycarbide with its chemical composition and microstructural features....
-
Silicon oxycarbide-tin nanocomposite derived from a UV crosslinked single source preceramic precursor as high-performance anode materials for Li-ion batteries
PublicationIn this work, we report an innovative and facile UV light-assisted synthesis of a nanocomposite based on silicon oxycarbide (SiOC) and tin nanoparticles. SiOC ceramic matrix, containing a conductive free carbon phase, participates in lithium-ion storage, and buffers the volume changes of Li-alloying/de-alloying material. The reported synthesis procedure through a polymer-derived ceramic route involves the preparation of a single-source...
-
INFLUENCE OF CERAMIC COATING ON MECHANICAL PROPERTIES OF STAINLESS STEEL
PublicationCrystal structure and phase composition of stainless steel substrates (AISI 304 type) was studied and it was found that they adopted the cubic symmetry. The calculated elementary cell parameter for the mayor Fe-Ni phase (weight fraction 99%) was a = 3.593 Å, whereas the mean grain size was = 2932 Å. Morphology of the stainless steel substrate surface was studied with profilometry. Mechanical properties of the stainless steel...
-
Evaluating the impact of ZnO doping on electrical and thermal properties of calcium-aluminosilicate oxynitride glass-ceramics
PublicationThis study aimed to investigate the impact of ZnO content on the structure, thermal, and electrical properties of oxynitride glass-ceramic(s) within the Ca–Al–Si–O–N (CASON) system. The base glass had the composition of Ca7Al14Si17O52N7, with ZnO additions ranging from 3 to 15 % by weight. A pristine Ca7Al14Si17O52N7 glass was successfully prepared by melt-quenching technique followed by converted into glass-ceramic by incorporating various...
-
Thermal and technological aspects of double face grinding of Al2O3 ceramic materials
PublicationDouble face grinding with planetary kinematics is a process to manufacture workpieces with plan parallel functional surfaces, such as bearing rings or sealing shims. In order to increase the economic efficiency of this process, it has to be advanced permanently. The temperature in the contact zone of most grinding processes has a huge influence on the process efficiency and the workpiece qualities. In contrast to most grinding...
-
Additive manufacturing of Proton-Conducting Ceramics by robocasting with integrated laser postprocessing
PublicationA hybrid system combining robocasting and NIR laser postprocessing has been designed to fabricate layers of mixed proton-electron conducting Ba0.5La0.5Co1-xFexO3-δ ceramic. The proposed manufacturing technique allows for the control of the geometry and microstructure and shortens the fabrication time to a range of a few minutes. Using 5 W laser power and a scanning speed of 500 mm⋅s− 1, sintering of a round-shaped layer with an...
-
Fabrication of Bi6Fe2Ti3O18 Ceramics by Mixed Oxide Method
PublicationIn the present study Bi6Fe2Ti3O18 (BFTO) ceramics has been fabricated by solid state reaction from the mixture of simple oxides viz. Bi2O3, TiO2 and Fe2O3. Stoichiometric mixture of the powders was thermally analyzed so parameters of the thermal treatment were determined. The EDS measurements have shown conservation of the chemical composition of the ceramic powder after calcination. Hot-pressing method was used for final densification...
-
Modelling of dielectric properties of BiNbO4-based microwave ceramics
PublicationIn the present paper results of the studies devoted to computer simulations of dielectric response of electroceramics in a frequency domain as well as analysis of the experimental data are given. As an object of investigations BiNbO4-based microwave ceramics was taken. Simulations of the hypothetical impedance response of the ceramic system were performed under assumption of the brick-layer model. A strategy for analysis and modelling...
-
Mixed ionic-electronic conductivity and structural properties of strontium-borate glass containing nanocrystallites of Bi2 VO5.5
PublicationSamples of strontium borate glass containing bismuth vanadate nanocrystallites were prepared. Nanocomposites containing up to 45mol% of the Bi2VO5.5 phase exhibit electrical properties closer to the strontium-borate glass than to the ferroelectric Bi2VO5.5 ceramic. The glass matrix still may contain some part of bismuth and vanadium ions even after crystallization process and there is too little of crystalline phase to observe...
-
Evaluation of adhesive forces and the specific surface energy of zirconia stabilized by yttria with alumina additions ceramic by AFM method
PublicationThe adhesive forces and the specific surface energy of ceramic material surfaces are very important for further tribological and biomedical applications of ceramics. Partially stabilized zirconia (zirconium oxide) is popular for manufacturing various medical products. ZrO2 stabilized by Y2O3 with additions of 5 wt% alumina was produced by slip casting method with a subsequent sintering. Structure and chemical composition of ceramic...
-
Tool wear, surface roughness, cutting temperature and chips morphology evaluation of Al/TiN coated carbide cutting tools in milling of Cu–B–CrC based ceramic matrix composites
Publication -
Utilization of molten salt synthesis route in ceramics production
PublicationThe molten salt synthesis method is widely used to prepare ceramic powders for various applications e.g. piezoelectric devices or electrolytes for solid oxide fuel cells. The usage of this method workdwide is quite common especially in piezoelectric powder synthesis. In this work several application of the method is presented and the advantages of this route are numbered.
-
Assessment of Trace Metals Leaching During Rainfall Events from Building Rooftops with Different Types of Coverage – Case Study
PublicationRunoff water is an important medium transporting various types of pollution originating from the atmosphere and washed out from roofing materials. The study presents a quality assessment of runoff from different roofs in the context of trace metal concentrations. The analysed rooftops were covered with copper, tar paper and ceramic tile. The quality of the rain water collected at the same time satisfies the demands of the first...
-
Performance and Stability in H2S of SrFe0.75Mo0.25O3-δ as Electrode in Proton Ceramic Fuel Cells
PublicationThe H2S-tolerance of SrFe0.75Mo0.25O3-δ (SFM) electrodes has been investigated in symmetric proton ceramic fuel cells (PCFC) with BaZr0.8Ce0.1Y0.1O3-δ (BZCY81) electrolyte. The ionic conductivity of the electrolyte under wet reducing conditions was found to be insignificantly affected in the presence of up to 5000 ppm H2S. The fuel cell exhibited an OCV of about 0.9 V at 700 °C, which dropped to about 0.6 V and 0.4 V upon exposure...
-
Emergency condition of the ceramic facade of a residential building
PublicationThe paper presents a description of the technical condition of the ceramic cladding of a residential building, the technical condition of which deteriorated significantly after only a few years of operation. The analysis of the influence of the applied design and working solutions on the façade failure frequency was analyzed. The article presents a conceptual solution to bring the building to the proper technical condition in terms...
-
Emergency condition of the ceramic facade of a residential building
PublicationThe paper presents a description of the technical condition of the ceramic cladding of a residential building, the technical condition of which deteriorated significantly after only a few years of operation. The analysis of the influence of the applied design and working solutions on the façade failure frequency was analyzed. The article presents a conceptual solution to bring the building to the proper technical condition in terms...
-
Ionic conductivity behavior by activated hopping conductivity (AHC) of barium aluminoborosilicate glass–ceramic system designed for SOFC sealing
PublicationNon-conducting BaO-B2O3-Al2O3-SiO2 parent glasses designed for solid oxide fuel cell (SOFC) sealing applications were prepared using the melt-quenching technique. The glass formation region was determined according to phase equilibrium relations and was found to be in the composition range 70BaO-(x)Al2O3-(10−x)B2O3-20SiO2 where 3.0 < x < 6.0 wt%. The conductivity values obtained conductivity ranged from 10−5 to 10−10 S/cm at temperatures...
-
SrCe0.9In0.1O3-δ-based reversible symmetrical Protonic Ceramic Cell
PublicationIn-doped SrCe0.9In0.1O3-δ (SCI) perovskite-type oxide is utilized as the solid electrolyte, as well as a component, together with SrFe0.75Mo0.25O3-δ (SFM) compound, in the composite-type electrodes to construct symmetrical Protonic Ceramic Fuel Cells (PCFC). With good mutual stability of SCI and SFM at high temperatures in water vapor-containing reducing and oxidizing conditions, as well as sufficient ionic conductivity with high...
-
Fabrication of La-Doped Bi4Ti3O12 Ceramics
PublicationLa-modified Bi4Ti3O12 is a typical ferroelectric, piezoelectric and electro-optic material, having relatively low coercive field, low dielectric constant, high Curie temperature and high breakdown strength. Goal of the present research was to apply mixed oxide method for fabrication of BiTLax ceramics, study its chemical composition, crystalline structure and microstructure. The compound BiTLax for x=0, 0.25, 0.5, 0.75 ceramic...
-
Effects of Ca2+, Mg2+, Na+, and K+ substitutions on the microstructure and electrical properties of GdCoO3 ceramics
PublicationGdCoO3-δ, Gd0.975Na0.025CoO3-δ, Gd0.98K0.02CoO3-δ, Gd0.98Ca0.02CoO3-δ, and GdCo0.99Mg0.01O3-δ ceramics were prepared via a solid-state reaction route. Among the dopants studied, substitution with Ca2+ slightly enhanced the densfication of GdCoO3 ceramics. All the lattice parameters of the doped ceramics were larger than those of pure GdCoO3-δ ceramic (a = 5.223 Å, b = 5.389 Å and c = 7.451 Å), and their cell volumes increased by...
-
A novel approach for processing CaAlSiON glass-ceramics by spark plasma sintering: Mechanical and electrical properties
PublicationLithium containing glassy materials can be used as solid electrolytes or electrode materials for lithium-ion batteries due to their high energy density. Conventional melt-quenched Ca11Al14Si16O49N10 glass powder containing 24 e/o N, doped with Li-ions (1, 3, and 6 wt. %) and sintered by spark plasma sintering technique (SPS) was studied. The benefits of using SPS to produce glass-ceramics are rapid heating rates compared to conventional...
-
Characteristics of LaCo 0.4 Ni 0.6-x Cu x O 3-δ ceramics as a cathode material for intermediate-temperature solid oxide fuel cells
PublicationIn this study, the effects of Cu-ion substitution on the densification, microstructure, and physical properties of LaCo0.4Ni0.6-xCuxO3-δ ceramics were investigated. The results indicate that doping with Cu ions not only enhances the densification but also promotes the grain growth of LaCo0.4Ni0.6-xCuxO3-δ ceramics. The Cu substitution at x ≤ 0.2 can suppress the formation of La4Ni3O10, while the excess Cu triggers the formation...
-
Fabrication and Study of BiNbO4 Ceramics
PublicationAim of the present research was to fabricate and study crystalline structure as well as dielectric properties of BiNbO4 ceramics. In the present study BiNbO4 ceramics was fabricated by solid state reaction from the mixture of simple oxides viz. Bi2O3, and Nb2O5. Stoichiometric mixture of the powders was thermally analyzed so parameters of the thermal treatment were determined. The EDS measurements proved conservation of the chemical...
-
Hertzian Crack Propagation in Ceramic Rolling Elements
PublicationThe properties of ceramics are of most interest to rolling element manufacturers. The influence of ring crack size on rolling contact fatigue failure has been studied using numerical fracture analysis. Such crack are very often found on ceramic bearing balls and decrease fatigue life rapidly. The numerical calculations are based on a three dimensional model for the ring crack propagation. The stress intensity factors along crack...
-
Injectable bone cement based on magnesium potassium phosphate and cross-linked alginate hydrogel designed for minimally invasive orthopedic procedures
PublicationBone cement based on magnesium phosphate has extremely favorable properties for its application as a bioactive bone substitute. However, further improvement is still expected due to difficult injectability and high brittleness. This paper reported the preparation of novel biocomposite cement, classified as dual-setting, obtained through ceramic hydration reaction and polymer cross-linking. Cement was composed of magnesium potassium...