displaying 1000 best results Help
Search results for: TRAFIC LIGHT RECOGNITION
-
Improving Traffic Light Recognition Methods using Shifting Time-Windows
PublicationWe propose a novel method of improving algorithms recognizing traffic lights in video sequences. Our focus is on algorithms for applications which notify the driver of a light in sight. Many existing methods process images in the recording separately. Our method bases on the observation that real-life videos depict underlying continuous processes. We named our method FSA (Frame Sequence Analyzed). It is applicable for any underlying...
-
Karolina Zielińska-Dąbkowska dr inż. arch.
PeopleKarolina M. Zielinska-Dabkowska, Ph.D., Eng. Arch., M. Arch., is an Assistant Professor at the Faculty of Architecture of Gdańsk University of Technology (GUT). In 2002, she completed her studies of Architecture and Urban Planning at Gdańsk University of Technology (Gdańsk Tech) and in 2004, Architectural Engineering at the University of Applied Sciences and Arts (HAWK) in Hildesheim, Germany. After graduation, she worked for several...
-
Strategie rozwoju byłych miast wojewódzkich w Polsce Wschodniej
PublicationPrzedmiotem opracowania są strategie rozwoju 9 miast należących do najsilniejszych ośrodków poza obecnymi miastami wojewódzkimi w najsłabiej rozwiniętych polskich regionach. Miasta te mogą dawać szansę aktywizacji swojego otoczenia. Przyczynić się do tego mogą dobre strategie zwiększające konkurencyjność miast i pobudzające rozwój. Celem badań było uzyskanie odpowiedzi na pytania, czy i w jakim stopniu badane strategie: (1) zgodne...
-
Natalia Sokół dr inż.
PeopleBACKGROUND Master of Science in Light and Lighting (2008-2009/11) The UCL Bartlett School of Graduate Studies, Faculty of the Built Environment, London, UK, www.bartlett.ucl.ac.uk MA Degree in Interior Architecture (1999-2004), The Academy of Fine Arts, Poznan, Poland, www.uap.edu.pl MA Degree in Art Education (1997-2002), Academy of Fine Arts, Poznan, Poland, www.uap.edu.pl MAIN RESEARCH AREAS · ...
-
Paweł Burdziakowski dr inż.
PeoplePaweł Burdziakowski, PhD, is a professional in low-altitude aerial photogrammetry and remote sensing, marine and aerial navigation. He is also a licensed flight instructor and software developer. His main areas of interest are digital photogrammetry, navigation of unmanned platforms and unmanned systems, including aerial, surface, underwater. He conducts research in algorithms and methods to improve the quality of spatial measurements...
-
Light & Engineering
Journals -
Uncertainty in emotion recognition
PublicationPurpose–The purpose of this paper is to explore uncertainty inherent in emotion recognition technologiesand the consequences resulting from that phenomenon.Design/methodology/approach–The paper is a general overview of the concept; however, it is basedon a meta-analysis of multiple experimental and observational studies performed over the past couple of years.Findings–The mainfinding of the paper might be summarized as follows:...
-
Recognition and sensing of anions
PublicationMolecular ion recognition is one of the most intensively studied areas of supramolecular technology. The reason for this is the essential role that ions play in many biological as well as industrial processes. On the other hand, however, it has been proved that ions can have a negative impact on human health and the environment. For these reasons, it is extremly important to develop rapid and simple methods allowing the determination...
-
Language Models in Speech Recognition
PublicationThis chapter describes language models used in speech recognition, It starts by indicating the role and the place of language models in speech recognition. Mesures used to compare language models follow. An overview of n-gram, syntactic, semantic, and neural models is given. It is accompanied by a list of popular software.
-
Integration in Multichannel Emotion Recognition
PublicationThe paper concerns integration of results provided by automatic emotion recognition algorithms. It presents both the challenges and the approaches to solve them. Paper shows experimental results of integration. The paper might be of interest to researchers and practitioners who deal with automatic emotion recognition and use more than one solution or multichannel observation.
-
Human emotion recognition with biosignals
PublicationThis chapter presents issues in the field of affective computing. Basic preliminary information for the recognition of emotions is given and models of emotions, various ways of evoking emotions, as well as their theoretical foundations are discussed. The particular attention is given to the use of physiological signals in recognizing emotions. This subject is outlined further below by presenting selected biosignals, their relationship...
-
Automatic sound recognition for security purposes
PublicationIn the paper an automatic sound recognition system is presented. It forms a part of a bigger security system developed in order to monitor outdoor places for non-typical audio-visual events. The analyzed audio signal is being recorded from a microphone mounted in an outdoor place thus a non stationary noise of a significant energy is present in it. In the paper an especially designed algorithm for outdoor noise reduction is presented,...
-
Recognition of Hand Drawn Flowcharts
PublicationIn this paper the problem of hand drawn flowcharts recognition is presented. There are described two attitudes to this problem: on-line and off-line. A concept of FCE, a system for recognizing and understanding of freehand drawn on-line flow charts on desktop computer and mobile devices is presented. The first experiments with the FCE system and the planes for future are also described.
-
Semantic Integration of Heterogeneous Recognition Systems
PublicationComputer perception of real-life situations is performed using a variety of recognition techniques, including video-based computer vision, biometric systems, RFID devices and others. The proliferation of recognition modules enables development of complex systems by integration of existing components, analogously to the Service Oriented Architecture technology. In the paper, we propose a method that enables integration of information...
-
Using Physiological Signals for Emotion Recognition
PublicationRecognizing user’s emotions is the promising area of research in a field of human-computer interaction. It is possible to recognize emotions using facial expression, audio signals, body poses, gestures etc. but physiological signals are very useful in this field because they are spontaneous and not controllable. In this paper a problem of using physiological signals for emotion recognition is presented. The kinds of physiological...
-
Emotion Recognition for Affect Aware Video Games
PublicationIn this paper the idea of affect aware video games is presented. A brief review of automatic multimodal affect recognition of facial expressions and emotions is given. The first result of emotions recognition using depth data as well as prototype affect aware video game are presented
-
Pose classification in the gesture recognition using the linear optical sensor
PublicationGesture sensors for mobile devices, which have a capability of distinguishing hand poses, require efficient and accurate classifiers in order to recognize gestures based on the sequences of primitives. Two methods of poses recognition for the optical linear sensor were proposed and validated. The Gaussian distribution fitting and Artificial Neural Network based methods represent two kinds of classification approaches. Three types...
-
Emotion Recognition and Its Applications
PublicationThe paper proposes a set of research scenarios to be applied in four domains: software engineering, website customization, education and gaming. The goal of applying the scenarios is to assess the possibility of using emotion recognition methods in these areas. It also points out the problems of defining sets of emotions to be recognized in different applications, representing the defined emotional states, gathering the data and...
-
Examining Feature Vector for Phoneme Recognition
PublicationThe aim of this paper is to analyze usability of descriptors coming from music information retrieval to the phoneme analysis. The case study presented consists in several steps. First, a short overview of parameters utilized in speech analysis is given. Then, a set of time and frequency domain-based parameters is selected and discussed in the context of stop consonant acoustical characteristics. A toolbox created for this purpose...
-
Rough Sets Applied to Mood of Music Recognition
PublicationWith the growth of accessible digital music libraries over the past decade, there is a need for research into automated systems for searching, organizing and recommending music. Mood of music is considered as one of the most intuitive criteria for listeners, thus this work is focused on the emotional content of music and its automatic recognition. The research study presented in this work contains an attempt to music emotion recognition...
-
Emotion Recognition Using Physiological Signals
PublicationIn this paper the problem of emotion recognition using physiological signals is presented. Firstly the problems with acquisition of physiological signals related to specific human emotions are described. It is not a trivial problem to elicit real emotions and to choose stimuli that always, and for all people, elicit the same emotion. Also different kinds of physiological signals for emotion recognition are considered. A set of...
-
Facial emotion recognition using depth data
PublicationIn this paper an original approach is presented for facial expression and emotion recognition based only on depth channel from Microsoft Kinect sensor. The emotional user model contains nine emotions including the neutral one. The proposed recognition algorithm uses local movements detection within the face area in order to recognize actual facial expression. This approach has been validated on Facial Expressions and Emotions Database...
-
Emotion recognition and its application in software engineering
PublicationIn this paper a novel application of multimodal emotion recognition algorithms in software engineering is described. Several application scenarios are proposed concerning program usability testing and software process improvement. Also a set of emotional states relevant in that application area is identified. The multimodal emotion recognition method that integrates video and depth channels, physiological signals and input devices...
-
Dependable Integration of Medical Image Recognition Components
PublicationComputer driven medical image recognition may support medical doctors in the diagnosis process, but requires high dependability considering potential consequences of incorrect results. The paper presentsa system that improves dependability of medical image recognition by integration of results from redundant components. The components implement alternative recognition algorithms of diseases in thefield of gastrointestinal endoscopy....
-
Feature extraction in detection and recognition of graphical objects
PublicationDetection and recognition of graphic objects in images are of great and growing importance in many areas, such as medical and industrial diagnostics, control systems in automation and robotics, or various types of security systems, including biometric security systems related to the recognition of the face or iris of the eye. In addition, there are all systems that facilitate the personal life of the blind people, visually impaired...
-
Mining inconsistent emotion recognition results with the multidimensional model
PublicationThe paper deals with the challenge of inconsistency in multichannel emotion recognition. The focus of the paper is to explore factors that might influence the inconsistency. The paper reports an experiment that used multi-camera facial expression analysis with multiple recognition systems. The data were analyzed using a multidimensional approach and data mining techniques. The study allowed us to explore camera location, occlusions...
-
Guido: a musical score recognition system
PublicationThis paper presents an optical music recognition system Guido that can automatically recognize the main musical symbols of music scores that were scanned or taken by a digital camera. The application is based on object model of musical notation and uses linguistic approach for symbol interpretation and error correction. The system offers musical editor with a partially automatic error correction.
-
Multimodal English corpus for automatic speech recognition
PublicationA multimodal corpus developed for research of speech recognition based on audio-visual data is presented. Besides usual video and sound excerpts, the prepared database contains also thermovision images and depth maps. All streams were recorded simultaneously, therefore the corpus enables to examine the importance of the information provided by different modalities. Based on the recordings, it is also possible to develop a speech...
-
Multiclass AdaBoost Classifier Parameter Adaptation for Pattern Recognition
PublicationThe article presents the problem of parameter value selection of the multiclass ``one against all'' approach of an AdaBoost algorithm in tasks of object recognition based on two-dimensional graphical images. AdaBoost classifier with Haar features is still used in mobile devices due to the processing speed in contrast to other methods like deep learning or SVM but its main drawback is the need to assembly the results of binary...
-
Games and play with light in architecture
PublicationThe paper deals with the issue of the influence of daylight on the creation of architecture in the view of designers` play with light in the architectural space. Using the examples of contemporary realizations of some art museums, the work demonstrates the impact of exploration and experimentation conducted by the creators of visual arts on the design styles and architectural solutions. It also reveals the historical continuity...
-
Voice command recognition using hybrid genetic algorithm
PublicationAbstract: Speech recognition is a process of converting the acoustic signal into a set of words, whereas voice command recognition consists in the correct identification of voice commands, usually single words. Voice command recognition systems are widely used in the military, control systems, electronic devices, such as cellular phones, or by people with disabilities (e.g., for controlling a wheelchair or operating a computer...
-
Investigating Feature Spaces for Isolated Word Recognition
PublicationMuch attention is given by researchers to the speech processing task in automatic speech recognition (ASR) over the past decades. The study addresses the issue related to the investigation of the appropriateness of a two-dimensional representation of speech feature spaces for speech recognition tasks based on deep learning techniques. The approach combines Convolutional Neural Networks (CNNs) and timefrequency signal representation...
-
Anion recognition by n,n'-diarylalkanediamides
PublicationThe preparation of N,N'-diarylalkanediamides from respective aliphatic dicarboxylic acidesand 4-nitroaniline via microwave-promoted reactions is presented. The most positive effect of microwave irradiation was observed for N,N'-bis(4-nitrophenyl)butanediamide. Anion binding studies on the obtained diamides were carried out in DMSO and acetonitrile using UV-vis and 1H NMR spectroscopy. A mechanism for selective fluoride recognition...
-
Examining Influence of Distance to Microphone on Accuracy of Speech Recognition
PublicationThe problem of controlling a machine by the distant-talking speaker without a necessity of handheld or body-worn equipment usage is considered. A laboratory setup is introduced for examination of performance of the developed automatic speech recognition system fed by direct and by distant speech acquired by microphones placed at three different distances from the speaker (0.5 m to 1.5 m). For feature extraction from the voice signal...
-
Robust and Efficient Machine Learning Algorithms for Visual Recognition
PublicationIn visual recognition, the task is to identify and localize all objects of interest in the input image. With the ubiquitous presence of visual data in modern days, the role of object recognition algorithms is becoming more significant than ever and ranges from autonomous driving to computer-aided diagnosis in medicine. Current models for visual recognition are dominated by models based on Convolutional Neural Networks (CNNs), which...
-
AN ALGORITHM FOR PORTAL HYPERTENSIVE GASTROPATHY RECOGNITION ON THE ENDOSCOPIC RECORDINGS
PublicationSymptoms recognition of portal hypertensive gastropathy (PHG) can be done by analysing endoscopic recordings, but manual analysis done by physician may take a long time. This increases probability of missing some symptoms and automated methods may be applied to prevent that. In this paper a novel hybrid algorithm for recognition of early stage of portal hypertensive gastropathy is proposed. First image preprocessing is described....
-
Polarised light pollution on river water surfaces caused by artificial light at night from illuminated bridges and surroundings
PublicationLight is the part of the electromagnetic spectrum visible to the human eye, and such electromagnetic waves can be polarised (Foster et al., 2018) (Supplementary Material). Generally, humans are not able to perceive polarised light, apart from some very specific situations (Haidinger, 1844), while several animals are able to perceive it (Foster et al., 2018). Polarisation can occur when unpolarised light is reflected or transmitted...
-
Limitations of Emotion Recognition in Software User Experience Evaluation Context
PublicationThis paper concerns how an affective-behavioural- cognitive approach applies to the evaluation of the software user experience. Although it may seem that affect recognition solutions are accurate in determining the user experience, there are several challenges in practice. This paper aims to explore the limitations of the automatic affect recognition applied in the usability context as well as...
-
Accelerometer signal pre-processing influence on human activity recognition
PublicationA study of data pre-processing influence on accelerometer-based human activity recognition algorithms is presented. The frequency band used to filter-out the accelerometer signals and the number of accelerometers involved were considered in terms of their influence on the recognition accuracy.
-
Investigating Feature Spaces for Isolated Word Recognition
PublicationThe study addresses the issues related to the appropriateness of a two-dimensional representation of speech signal for speech recognition tasks based on deep learning techniques. The approach combines Convolutional Neural Networks (CNNs) and time-frequency signal representation converted to the investigated feature spaces. In particular, waveforms and fractal dimension features of the signal were chosen for the time domain, and...
-
Bimodal Emotion Recognition Based on Vocal and Facial Features
PublicationEmotion recognition is a crucial aspect of human communication, with applications in fields such as psychology, education, and healthcare. Identifying emotions accurately is challenging, as people use a variety of signals to express and perceive emotions. In this study, we address the problem of multimodal emotion recognition using both audio and video signals, to develop a robust and reliable system that can recognize emotions...
-
Music Genre Recognition in the Rough Set-Based Environment
PublicationThe aim of this paper is to investigate music genre recognition in the rough set-based environment. Experiments involve a parameterized music data-base containing 1100 music excerpts. The database is divided into 11 classes cor-responding to music genres. Tests are conducted using the Rough Set Exploration System (RSES), a toolset for analyzing data with the use of methods based on the rough set theory. Classification effectiveness...
-
Emotion Recognition from Physiological Channels Using Graph Neural Network
PublicationIn recent years, a number of new research papers have emerged on the application of neural networks in affective computing. One of the newest trends observed is the utilization of graph neural networks (GNNs) to recognize emotions. The study presented in the paper follows this trend. Within the work, GraphSleepNet (a GNN for classifying the stages of sleep) was adjusted for emotion recognition and validated for this purpose. The...
-
Limitations of Emotion Recognition from Facial Expressions in e-Learning Context
PublicationThe paper concerns technology of automatic emotion recognition applied in e-learning environment. During a study of e-learning process the authors applied facial expressions observation via multiple video cameras. Preliminary analysis of the facial expressions using automatic emotion recognition tools revealed several unexpected results, including unavailability of recognition due to face coverage and significant inconsistency...
-
Visual Lip Contour Detection for the Purpose of Speech Recognition
PublicationA method for visual detection of lip contours in frontal recordings of speakers is described and evaluated. The purpose of the method is to facilitate speech recognition with visual features extracted from a mouth region. Different Active Appearance Models are employed for finding lips in video frames and for lip shape and texture statistical description. Search initialization procedure is proposed and error measure values are...
-
Hand gesture recognition supported by fuzzy rules and Kalman filters
PublicationThe paper presents a system based on camera and multimediaprojector enabling a user to control computer applications by dynamic hand gestures. Gesture recognition methodology based on representing hand movement trajectory by motion vectors analysed using fuzzy rule-based inference is first given. For effective hand position tracking Kalman filters are employed. The system engineered is developed using J2SE and C++/OpenCV technology....
-
An audio-visual corpus for multimodal automatic speech recognition
Publicationreview of available audio-visual speech corpora and a description of a new multimodal corpus of English speech recordings is provided. The new corpus containing 31 hours of recordings was created specifically to assist audio-visual speech recognition systems (AVSR) development. The database related to the corpus includes high-resolution, high-framerate stereoscopic video streams from RGB cameras, depth imaging stream utilizing Time-of-Flight...
-
Emotion Recognition Based on Facial Expressions of Gamers
PublicationThis article presents an approach to emotion recognition based on facial expressions of gamers. With application of certain methods crucial features of an analysed face like eyebrows' shape, eyes and mouth width, height were extracted. Afterwards a group of artificial intelligence methods was applied to classify a given feature set as one of the following emotions: happiness, sadness, anger and fear.The approach presented in this...
-
Emotion Recognition Based on Facial Expressions of Gamers
PublicationThis article presents an approach to emotion recognition based on facial expressions of gamers. With application of certain methods crucial features of an analyzed face like eyebrows' shape, eyes and mouth width, height were extracted. Afterwards a group of artificial intelligence methods was applied to classify a given feature set as one of the following emotions: happiness, sadness, anger and fear. The approach presented in this...
-
Protect our right to light
Publication“The struggle for light” is how the Swiss architect Le Corbusier described the history of architecture in 1935. Today, with the skies crowded out by buildings in modern cities, those words should ring in the ears of policymakers and planners. Skyscraper construction is booming. China is the leader, last year completing 88 of the 143 buildings around the world that are taller than 200 metres (see ‘Vertical growth’). As the nation’s...