Filters
total: 443
Search results for: NUMERICAL PREDICTION
-
Failure mode prediction for composite structural insulated panels with MgO board facings
PublicationSandwich panels are readily used in civil engineering due to their high strength to weight ratio and the ease and speed of assembly. The idea of a sandwich section is to combine thin and durable facings with a light-weight core and the choice of materials used allows obtaining the desired behaviour. Panels in consideration consist of MgO (magnesium oxide) board facings and expanded polystyrene core and are characterized by immunity...
-
Results of the application of tropospheric corrections from different troposphere models for precise GPS rapid static positioning
PublicationIn many surveying applications, determination of accurate heights is of significant interest. The delay caused by the neutral atmosphere is one of the main factors limiting the accuracy of GPS positioning and affecting mainly the height coordinate component rather than horizontal ones. Estimation of the zenith total delay is a commonly used technique for accounting for the tropospheric delay in static positioning. However, in the...
-
AVHRR Level1CD covering Baltic Sea area year 2006
Open Research DataThe product level is the NOAA AVHRR Level 1C that is result of processing the AVHRR data from the HRPT stream based on ancillary information like sensing geometry and calibration data. Then converted into geophysical variables: top-of-the atmosphere (TOA) albedo or brightness temperature. Additionally, information like geolocation has been added. Other...
-
AVHRR Level1CD covering Baltic Sea area year 2010
Open Research DataThe product level is the NOAA AVHRR Level 1C that is result of processing the AVHRR data from the HRPT stream based on ancillary information like sensing geometry and calibration data. Then converted into geophysical variables: top-of-the atmosphere (TOA) albedo or brightness temperature. Additionally, information like geolocation has been added. Other...
-
AVHRR Level1CD covering Baltic Sea area year 2007
Open Research DataThe product level is the NOAA AVHRR Level 1C that is result of processing the AVHRR data from the HRPT stream based on ancillary information like sensing geometry and calibration data. Then converted into geophysical variables: top-of-the atmosphere (TOA) albedo or brightness temperature. Additionally, information like geolocation has been added. Other...
-
AVHRR Level1CD covering Baltic Sea area year 2011
Open Research DataThe product level is the NOAA AVHRR Level 1C that is result of processing the AVHRR data from the HRPT stream based on ancillary information like sensing geometry and calibration data. Then converted into geophysical variables: top-of-the atmosphere (TOA) albedo or brightness temperature. Additionally, information like geolocation has been added. Other...
-
AVHRR Level1CD covering Baltic Sea area year 2012
Open Research DataThe product level is the NOAA AVHRR Level 1C that is result of processing the AVHRR data from the HRPT stream based on ancillary information like sensing geometry and calibration data. Then converted into geophysical variables: top-of-the atmosphere (TOA) albedo or brightness temperature. Additionally, information like geolocation has been added. Other...
-
AVHRR Level1CD covering Baltic Sea area year 2008
Open Research DataThe product level is the NOAA AVHRR Level 1C that is result of processing the AVHRR data from the HRPT stream based on ancillary information like sensing geometry and calibration data. Then converted into geophysical variables: top-of-the atmosphere (TOA) albedo or brightness temperature. Additionally, information like geolocation has been added. Other...
-
AVHRR Level1CD covering Baltic Sea area year 2009
Open Research DataThe product level is the NOAA AVHRR Level 1C that is result of processing the AVHRR data from the HRPT stream based on ancillary information like sensing geometry and calibration data. Then converted into geophysical variables: top-of-the atmosphere (TOA) albedo or brightness temperature. Additionally, information like geolocation has been added. Other...
-
On Nature-Inspired Design Optimization of Antenna Structures Using Variable-Resolution EM Models
PublicationNumerical optimization has been ubiquitous in antenna design for over a decade or so. It is indispensable in handling of multiple geometry/material parameters, performance goals, and constraints. It is also challenging as it incurs significant CPU expenses, especially when the underlying computational model involves full-wave electromagnetic (EM) analysis. In most practical cases, the latter is imperative to ensure evaluation reliability....
-
Rapid Microwave Design Optimization in Frequency Domain Using Adaptive Response Scaling
PublicationIn this paper, a novel methodology for cost-efficient microwave design optimization in the frequency domain is proposed. Our technique, referred to as adaptive response scaling (ARS), has been developed for constructing a fast replacement model (surrogate) of the high-fidelity electromagnetic-simulated model of the microwave structure under design using its equivalent circuit (low-fidelity model). The basic principle of ARS is...
-
An energetic analysis of a gas turbine with regenerative heating using turbine extraction at intermediate pressure - Brayton cycle advanced according to Szewalski's idea
PublicationIn this paper, a modification of a simple gas turbine into the Brayton cycle with regenerative heating, using turbine extraction at intermediate pressure, is presented. The main concept of the retrofitting is based on the transfer of heat from the turbine exhaust gases to the air entering the combustion chamber. The extracted gas transfers heat to air via the divided regenerative heat exchanger and after that is compressed and...
-
Smooth least absolute deviation estimators for outlier-proof identification
PublicationThe paper proposes to identify the parameters of linear dynamic models based on the original implementation of least absolute deviation estimators. It is known that the object estimation procedures synthesized in the sense of the least sum of absolute prediction errors are particularly resistant to occasional outliers and gaps in the analyzed system data series, while the classical least squares procedure unfortunately becomes...
-
Cost-efficient design optimization of compact patch antennas with improved bandwidth
PublicationIn this letter, a surrogate-assisted optimization procedure for fast design of compact patch antennas with enhanced bandwidth is presented. The procedure aims at addressing a fundamental challenge of the design of antenna structures with complex topologies, which is simultaneous adjustment of numerous geometry parameters. The latter is necessary in order to find a truly optimum design and cannot be executed-at the level of high-fidelity...
-
AVHRR Level1CD covering Baltic Sea area year 2001
Open Research DataThe dataset contains data derived from recordings of the AVHRR/3 radiometer operating on board the NOAA POES (Polar Orbiting Environmental Satellites) Series - 5th Generation Satellites covering the Baltic Sea area. The satellite data was recorded in the years 2000-2012 directly by the HRPT station installed at the University of Gdańsk. The registration...
-
Data-Driven Modeling of Mechanical Properties of Fiber-Reinforced Concrete: A Critical Review
PublicationFiber-reinforced concrete (FRC) is extensively used in diverse structural engineering applications, and its mechanical properties are crucial for designing and evaluating its performance. The compressive, flexural, splitting tensile, and shear strengths of FRCs are among the most important attributes, which have been discussed more extensively than other properties. The accurate prediction of these properties, which are required...
-
REVIEW OF WEATHER FORECAST SERVICES FOR SHIP ROUTING PURPOSES
PublicationWeather data is nowadays used in a variety of navigational and ocean engineering research problems: from the obvious ones like voyage planning and routing of sea-going vessels, through the analysis of stability-related phenomena, to detailed modelling of ships’ manoeuvrability for collision avoidance purposes. Apart from that, weather forecasts are essential for passenger cruises and fishing vessels that want to avoid the risk...
-
AVHRR Level1CD covering Baltic Sea area year 2005
Open Research DataThe dataset contains data derived from recordings of the AVHRR/3 radiometer operating on board the NOAA POES (Polar Orbiting Environmental Satellites) Series - 5th Generation Satellites covering the Baltic Sea area. The satellite data was recorded in the years 2000-2012 directly by the HRPT station installed at the University of Gdańsk. The registration...
-
AVHRR Level1CD covering Baltic Sea area year 2004
Open Research DataThe dataset contains data derived from recordings of the AVHRR/3 radiometer operating on board the NOAA POES (Polar Orbiting Environmental Satellites) Series - 5th Generation Satellites covering the Baltic Sea area. The satellite data was recorded in the years 2000-2012 directly by the HRPT station installed at the University of Gdańsk. The registration...
-
AVHRR Level1CD covering Baltic Sea area year 2003
Open Research DataThe dataset contains data derived from recordings of the AVHRR/3 radiometer operating on board the NOAA POES (Polar Orbiting Environmental Satellites) Series - 5th Generation Satellites covering the Baltic Sea area. The satellite data was recorded in the years 2000-2012 directly by the HRPT station installed at the University of Gdańsk. The registration...
-
AVHRR Level1CD covering Baltic Sea area year 2002
Open Research DataThe dataset contains data derived from recordings of the AVHRR/3 radiometer operating on board the NOAA POES (Polar Orbiting Environmental Satellites) Series - 5th Generation Satellites covering the Baltic Sea area. The satellite data was recorded in the years 2000-2012 directly by the HRPT station installed at the University of Gdańsk. The registration...
-
ADAPTATION OF ENGINEERING FEA-BASED ALGORITHMS TO LCF FAILURE AND MATERIAL DATA PREDICTION IN OFFSHORE DESIGN
PublicationThere is an ever growing industrial demand for quantitative assessment of fatigue endurance of critical structural details. Although FEA-based calculations have become a standard in engineering design, problems involving the Low-To-Medium cycle range (101-104) remain challenging. This paper presents an attempt to optimally choose material data, meshing density and other algorithm settings in the context of recent design of the...
-
Stormwater and snowmelt runoff storage control and flash flood hazard forecasting in the urbanized coastal basin.
PublicationCity of Gdańsk is located in a coastal region where changing climatic conditions increase the frequency of extreme weather events. Developing urbanization affects the hydrology of natural basins by simplification of the drainage system and reduction of infiltration and base flow. Consequently greater runoff rates flow into storm water collection systems, reservoirs and surrounding water bodies. Not only infrastructures of urban...
-
Stormwater runoff in the urbanized coastal basin of Gdańsk Urbanized basin of Gdańsk
PublicationAnthropopressure strongly affects the primal water cycle. Alternation of the natural basins imposes changes of drainage patterns, reduction of bioretention, infiltration and base flow. As a result the overland flow predominates and greater runoff rates flow into storm water collection systems and reservoirs. Moreover changing climatic conditions increase the frequency of rapid extreme weather events. Infrastructures of urban areas...
-
Compatibility of Crude Oil Blends─Processing Issues Related to Asphaltene Precipitation, Methods of Instability Prediction─A Review
PublicationProcessing crude oil of variable composition, especially due to the need to process crude oil blends obtained from various sources, presents a tremendous process challenge. This is mainly due to the destabilization of the colloidal system manifested mostly by the precipitation of the asphaltene fraction. The precipitation of asphaltenes from crude oil is a serious problem during extraction, transport, and processing. In the latter...
-
Accurate Modeling of Frequency Selective Surfaces Using Fully-Connected Regression Model with Automated Architecture Determination and Parameter Selection Based on Bayesian Optimization
PublicationSurrogate modeling has become an important tool in the design of high-frequency structures. Although full-wave electromagnetic (EM) simulation tools provide an accurate account for the circuit characteristics and performance, they entail considerable computational expenditures. Replacing EM analysis by fast surrogates provides a way to accelerate the design procedures. Unfortunately, modeling of microwave passives is a challenging...
-
A subdomain model for armature reaction field and open‐circuit field prediction in consequent pole permanent magnet machines
PublicationIn this paper, the machine quantity, such as electromagnetic torque, self and mutual inductances, and electromotive force, is analytically calculated for non-overlapping winding consequent pole slotted machine for open-circuit field and armature reaction. The sub-domain approach of (2-D) analytical model is developed using Maxwell's equations and divide the problem into slots, slot-openings, airgap and magnets region, the magnet...
-
Optimization-Based Robustness Enhancement of Compact Microwave Component Designs with Response Feature Regression Surrogates
PublicationThe ability to evaluate the effects of fabrication tolerances and other types of uncertainties is a critical part of microwave design process. Improving the immunity of the device to parameter deviations is equally important, especially when the performance specifications are stringent and can barely be met even assuming a perfect manufacturing process. In the case of modern miniaturized microwave components of complex topologies,...
-
Prognozowanie właściwości złączy spawanych pod wodą metodą lokalnej komory suchej
PublicationNiniejsza praca jest poświęcona spawaniu pod wodą metodą lokalnej komory suchej (MLKS) i przedstawia metodologię oraz narzędzia umożliwiające prognozowanie właściwości złączy spawanych wykonanych przy zastosowaniu tej odmiany spawania. Monografia zawiera opis rozwoju spawania pod wodą oraz charakterystykę metod wykorzystywanych do realizacji prac spawalniczych. Zaproponowano nowy podział metod spawania pod wodą, uwzględniający...
-
Prediction of maximum tensile stress in plain-weave composite laminates with interacting holes via stacked machine learning algorithms: A comparative study
PublicationPlain weave composite is a long-lasting type of fabric composite that is stable enough when being handled. Open-hole composites have been widely used in industry, though they have weak structural performance and complex design processes. An extensive number of material/geometry parameters have been utilized for designing these composites, thereby an efficient computational tool is essential for that purpose. Different Machine Learning...
-
An Intelligent Approach to Short-Term Wind Power Prediction Using Deep Neural Networks
PublicationIn this paper, an intelligent approach to the Short-Term Wind Power Prediction (STWPP) problem is considered, with the use of various types of Deep Neural Networks (DNNs). The impact of the prediction time horizon length on accuracy, and the influence of temperature on prediction effectiveness have been analyzed. Three types of DNNs have been implemented and tested, including: CNN (Convolutional Neural Networks), GRU (Gated Recurrent...
-
Enhanced uniform data sampling for constrained data‐driven modeling of antenna input characteristics
PublicationData-driven surrogates are the most popular replacement models utilized in many fields of engineering and science, including design of microwave and antenna structures. The primary practical issue is a curse of dimensionality which limits the number of independent parameters that can be accounted for in the modelling process. Recently, a performance-driven modelling technique has been proposed where the constrained domain of the...
-
Employing flowgraphs for forward route reconstruction in video surveillance system
PublicationPawlak’s flowgraphs were utilized as a base idea and knowledge container for prediction and decision making algorithms applied to experimental video surveillance system. The system is used for tracking people inside buildings in order to obtain information about their appearance and movement. The fields of view of the cameras did not overlap. Therefore, when an object was moving through unsupervised areas, prediction was needed...
-
A Computationally Efficient Model for Predicting Successful Memory Encoding Using Machine-Learning-based EEG Channel Selection
PublicationComputational cost is an important consideration for memory encoding prediction models that use data from dozens of implanted electrodes. We propose a method to reduce computational expense by selecting a subset of all the electrodes to build the prediction model. The electrodes were selected based on their likelihood of measuring brain activity useful for predicting memory encoding better than chance (in terms of AUC). A logistic...
-
MP3vec: A Reusable Machine-Constructed Feature Representation for Protein Sequences
Publication—Machine Learning (ML) methods have been used with varying degrees of success on protein prediction tasks, with two inherent limitations. First, prediction performance often depends upon the features extracted from the proteins. Second, experimental data may be insufficient to construct reliable ML models. Here we introduce MP3vec, a transferable representation for protein sequences that is designed to be used specifically for sequence-to-sequence...
-
Balanced Spider Monkey Optimization with Bi-LSTM for Sustainable Air Quality Prediction
PublicationA reliable air quality prediction model is required for pollution control, human health monitoring, and sustainability. The existing air quality prediction models lack efficiency due to overfitting in prediction model and local optima trap in feature selection. This study proposes the Balanced Spider Monkey Optimization (BSMO) technique for effective feature selection to overcome the local optima trap and overfitting problems....
-
Constrained aerodynamic shape optimization using neural networks and sequential sampling
PublicationAerodynamic shape optimization (ASO) involves computational fluid dynamics (CFD)-based search for an optimal aerodynamic shape such as airfoils and wings. Gradient-based optimization (GBO) with adjoints can be used efficiently to solve ASO problems with many design variables, but problems with many constraints can still be challenging. The recently created efficient global optimization algorithm with neural network (NN)-based prediction...
-
Color prediction from first principle quantum chemistry computations: a case of alizarin dissolved in methanol
PublicationThe electronic spectrum of alizarin (AZ) in methanol solution was measured and used as reference data for color prediction. The visible part of the spectrum was modelled by different DFT functionals within the TD-DFT framework. The results of a broad range of functionals applied for theoretical spectrum prediction were compared against experimental data by a direct color comparison. The tristimulus model of color expressed in terms...
-
Road noise mapping in the city area: measurements compared to model-based estimations
PublicationThe paper presents an approach to the verification of noise prediction models in selected localization in the city of Gdansk. The experiments described include a comparison between environmentalmeasurement results performed in the terrain and the noise level prediction results. The NMPB-96 (Nouvelle Méthode de Prévision du Bruit) and Harmonoise models outcomes provide the subject ofthe analysis. The proposed solution of continuous...
-
Evaluation of Response Amplitude Operator of Ship Roll Motions Based on the Experiments in White Noise Waves
PublicationEvaluation of the response amplitude operator (RAO) function for ship wave frequency motions by means of scale model tests in regular waves is a standard procedure conducted by hydrodynamic model testing institutions. The resulting RAO function allows for evaluating sufficiently reliable seakeeping predictions for low to moderate sea states. However, for standard hull forms, correct prediction of roll motion in irregular wave (and...
-
Improving the prediction of biochar production from various biomass sources through the implementation of eXplainable machine learning approaches
PublicationExamining the game-changing possibilities of explainable machine learning techniques, this study explores the fast-growing area of biochar production prediction. The paper demonstrates how recent advances in sensitivity analysis methodology, optimization of training hyperparameters, and state-of-the-art ensemble techniques have greatly simplified and enhanced the forecasting of biochar output and composition from various biomass...
-
Detection of impulsive disturbances in archive audio signals
PublicationIn this paper the problem of detection of impulsive disturbances in archive audio signals is considered. It is shown that semi-causal/noncausal solutions based on joint evaluation of signal prediction errors and leave-one-out signal interpolation errors, allow one to noticeably improve detection results compared to the prediction-only based solutions. The proposed approaches are evaluated on a set of clean audio signals contaminated...
-
Impact of Low Switching-to-Fundamental Frequency Ratio on Predictive Current Control of PMSM: A simulation study
PublicationPredictive current control algorithms for permanent magnet synchronous (PMSM) drives rely on an assumption that within short intervals motor currents can be approximated with linear functions. This approximation may result either from discretizing the motor model or from simplifications applied to the continuous-time model. As the linear current approximation has been recognized as inaccurate in case when the drive operates with...
-
In silico modelling for predicting the cationic hydrophobicity and cytotoxicity of ionic liquids towards the Leukemia rat cell line, Vibrio fischeri and Scenedesmus vacuolatus based on molecular interaction potentials of ions
PublicationIn this study we present prediction models for estimating in silico the cationic hydrophobicity and the cytotoxicity (log [1/EC50]) of ionic liquids (ILs) towards the Leukemia rat cell line (IPC-81), the marine bacterium Vibrio fischeri and the limnic green algae Scenedesmus vacuolatus using linear free energy relationship (LFER) descriptors computed by COSMO calculations. The LFER descriptors used for the prediction model (i.e....
-
Machine learning-based prediction of residual drift and seismic risk assessment of steel moment-resisting frames considering soil-structure interaction
PublicationNowadays, due to improvements in seismic codes and computational devices, retrofitting buildings is an important topic, in which, permanent deformation of buildings, known as Residual Interstory Drift Ratio (RIDR), plays a crucial role. To provide an accurate yet reliable prediction model, 32 improved Machine Learning (ML) algorithms were considered using the Python software to investigate the best method for estimating Maximum...
-
Prediction based on integration of Decisional DNA and a feature selection algorithm Relief-F
PublicationThe paper presents prediction model based on Decisional DNA and Set of experienced integrated with Relief_F algorithm for feature selection
-
Wireless intelligent audio-video surveillance prototyping system
PublicationThe presented system is based on the Virtex6 FPGA and several supporting devices like a fast DDR3 memory, small HD camera, microphone with A/D converter, WiFi radio communication module, etc. The system is controlled by the Linux operating system. The Linux drivers for devices implemented in the system have been prepared. The system has been successfully verified in a H.264 compression accelerator prototype in which the most demanding...
-
Elimination of impulsive disturbances from archive audio files – comparison of three noise pulse detection schemes
PublicationThe problem of elimination of impulsive disturbances (such as clicks, pops, ticks, crackles, and record scratches) from archive audio recordings is considered and solved using autoregressive modeling. Three classical noise pulse detection schemes are examined and compared: the approach based on open-loop multi-step-ahead signal prediction, the approach based on decision-feedback signal prediction, and the double threshold approach,...
-
Efficient uncertainty quantification using sequential sampling-based neural networks
PublicationUncertainty quantification (UQ) of an engineered system involves the identification of uncertainties, modeling of the uncertainties, and the forward propagation of the uncertainties through a system analysis model. In this work, a novel surrogate-based forward propagation algorithm for UQ is proposed. The proposed algorithm is a new and unique extension of the recent efficient global optimization using neural network (NN)-based...
-
Ship Resistance Prediction with Artificial Neural Networks
PublicationThe paper is dedicated to a new method of ship’s resistance prediction using Artificial Neural Network (ANN). In the initial stage selected ships parameters are prepared to be used as a training and validation sets. Next step is to verify several network structures and to determine parameters with the highest influence on the result resistance. Finally, other parameters expected to impact the resistance are proposed. The research utilizes...