Search results for: COMPUTATIONAL TECHNIQUES
-
Design specification management with automated decision-making for reliable optimization of miniaturized microwave components
PublicationThe employment of numerical optimization techniques for parameter tuning of microwave components has nowadays become a commonplace. In pursuit of reliability, it is most often carried out at the level of full-wave electromagnetic (EM) simulation models, incurring considerable computational expenses. In the case of miniaturized microstrip circuits, densely arranged layouts with strong cross-coupling effects make EM-driven tuning...
-
Domain segmentation for low-cost surrogate-assisted multi-objective design optimisation of antennas
PublicationAbstract: Information regarding the best possible design trade-offs of an antenna structure can be obtained through multiobjective optimisation (MO). Unfortunately, MO is extremely challenging if full-wave electromagnetic (EM) simulation models are used for performance evaluation. Yet, for the majority of contemporary antennas, EM analysis is the only tool that ensures reliability. This study introduces a procedure for accelerated...
-
Recent advances in rapid multiobjective optimization of expensive simulation models in microwave and antenna engineering by Pareto front exploration
PublicationPractical engineering design problems are inherently multiobjective, that is, require simultaneous control of several (and often conflicting) criteria. In many situations, genuine multiobjective optimization is required to acquire comprehensive information about the system of interest. The most popular solution techniques are populationbased metaheuristics, however, they are not practical for handling expensive electromagnetic...
-
Reduced-Cost Microwave Design Closure by Multi-Resolution EM Simulations and Knowledge-Based Model Management
PublicationParameter adjustment through numerical optimization has become a commonplace of contemporary microwave engineering. Although circuit theory methods are ubiquitous in the development of microwave components, the initial designs obtained with such tools have to be further tuned to improve the system performance. This is particularly pertinent to miniaturized structures, where the cross-coupling effects cannot be adequately accounted...
-
Efficient knowledge-based optimization of expensive computational models using adaptive response correction
PublicationComputer simulation has become an indispensable tool in engineering design as they allow an accurate evaluation of the system performance. This is critical in order to carry out the design process in a reliable manner without costly prototyping and physical measurements. However, high-fidelity computer simulations are computationally expensive. This turns to be a fundamental bottleneck when it comes to design automation using numerical...
-
Antenna Modeling Using Variable-Fidelity EM Simulations and Constrained Co-Kriging
PublicationUtilization of fast surrogate models has become a viable alternative to direct handling of fullwave electromagnetic (EM) simulations in EM-driven design. Their purpose is to alleviate the difficulties related to high computational cost of multiple simulations required by the common numerical procedures such as parametric optimization or uncertainty quantification. Yet, conventional data-driven (or approximation) modeling techniques...
-
Inverse surrogate modeling for low-cost geometry scaling of microwave and antenna structures
PublicationPurpose–The purpose of this paper is to investigate strategies for expedited dimension scaling ofelectromagnetic (EM)-simulated microwave and antenna structures, exploiting the concept of variable-fidelity inverse surrogate modeling.Design/methodology/approach–A fast inverse surrogate modeling technique is described fordimension scaling of microwave and antenna structures. The model is established using referencedesigns obtained...
-
Artificial Intelligence Aided Architectural Design
PublicationTools and methods used by architects always had an impact on the way building were designed. With the change in design methods and new approaches towards creation process, they became more than ever before crucial elements of the creation process. The automation of architects work has started with computational functions that were introduced to traditional computer-aided design tools. Nowadays architects tend to use specified tools...
-
Low-Cost Unattended Design of Miniaturized 4 × 4 Butler Matrices with Nonstandard Phase Differences
PublicationDesign of Butler matrices dedicated to Internet of Things and 5th generation (5G) mobile systems—where small size and high performance are of primary concern—is a challenging task that often exceeds capabilities of conventional techniques. Lack of appropriate, unified design approaches is a serious bottleneck for the development of Butler structures for contemporary applications. In this work, a low-cost bottom-up procedure for...
-
Resource constrained neural network training
PublicationModern applications of neural-network-based AI solutions tend to move from datacenter backends to low-power edge devices. Environmental, computational, and power constraints are inevitable consequences of such a shift. Limiting the bit count of neural network parameters proved to be a valid technique for speeding up and increasing efficiency of the inference process. Hence, it is understandable that a similar approach is gaining...
-
COVID‐19: A systematic review and update on prevention, diagnosis, and treatment
PublicationSince the rapid onset of the COVID-19 or SARS-CoV-2 pandemic in the world in 2019, extensive studies have been conducted to unveil the behavior and emission pattern of the virus in order to determine the best ways to diagnosis of virus and thereof formulate effective drugs or vaccines to combat the disease. The emergence of novel diagnostic and therapeutic techniques considering the multiplicity of reports from one side and contradictions...
-
Modeling of Passive and Forced Convection Heat Transfer in Channels with Rib Turbulators
PublicationThe main goal of the research presented in this paper was the experimental and numerical analysis of heat enhancement and aerodynamic phenomena during air flow in a channel equipped with flow turbulators in the form of properly configured ribs. The use of ribs intensifies the heat transfer and at the same time increases not only the flow resistance but also the energy costs. Therefore, designing modern heat exchangers with optimal...
-
Inverse Modeling and Optimization of CSRR-based Microwave Sensors for Industrial Applications
PublicationDesign optimization of multivariable resonators is a challenging topic in the area of microwave sensors for industrial applications. This paper proposes a novel methodology for rapid re-design and parameter tuning of complementary split-ring resonators (CSRRs). Our approach involves inverse surrogate models established using pre-optimized resonator data as well as analytical correction techniques to enable rapid adjustment of geometry...
-
Non-Gaussian Resistance Fluctuations in Gold-Nanoparticle-Based Gas Sensors: An Appraisal of Different Evaluation Techniques
PublicationVolatile organic compounds, such as formaldehyde, can be used as biomarkers in human exhaled breath in order to non-invasively detect various diseases, and the same compounds are of much interest also in the context of environmental monitoring and protection. Here, we report on a recently-developed gas sensor, based on surface-functionalized gold nanoparticles, which is able to generate voltage noise with a distinctly non-Gaussian...
-
Synteza i badania strukturalne związków kompleksowych miedzi(I) i rtęci(II) z wybranymi ligandami tioamidowymi
PublicationPrzedstawiona rozprawa doktorska poświęcona jest związkom tiokarbonylowym (wybranym tioamidom i tiomocznikom) oraz ich połączeniom kompleksowym z halogenkami miedzi(I) i rtęci(II). Istota i cel takich badań przedstawione są we wstępie pracy. W części teoretycznej opisane zostały kluczowe pierwiastki wchodzące w skład syntezowanych związków kompleksowych (siarka, miedź i rtęć), jak również tioamidy i tiomoczniki. Szczególna uwaga...
-
Machine learning-based prediction of seismic limit-state capacity of steel moment-resisting frames considering soil-structure interaction
PublicationRegarding the unpredictable and complex nature of seismic excitations, there is a need for vulnerability assessment of newly constructed or existing structures. Predicting the seismic limit-state capacity of steel Moment-Resisting Frames (MRFs) can help designers to have a preliminary estimation and improve their views about the seismic performance of the designed structure. This study improved data-driven decision techniques in...
-
Cost-Efficient Surrogate Modeling of High-Frequency Structures Using Nested Kriging with Automated Adjustment of Model Domain Lateral Dimensions
PublicationSurrogate models are becoming popular tools of choice in mitigating issues related to the excessive cost of electromagnetic (EM)-driven design of high-frequency structures. Among available techniques, approximation modeling is by far the most popular due to its versatility. In particular, the surrogates are exclusively based on the sampled simulation data with no need to involve engineering insight or problem-specific knowledge....
-
Expedited Optimization of Passive Microwave Devices Using Gradient Search and Principal Directions
PublicationOver the recent years, utilization of numerical optimization techniques has become ubiquitous in the design of high-frequency systems, including microwave passive components. The primary reason is that the circuits become increasingly complex to meet ever growing performance demands concerning their electrical performance, additional functionalities, as well as miniaturization. Nonetheless, as reliable evaluation of microwave device...
-
Reduced-Cost Two-Level Surrogate Antenna Modeling using Domain Confinement and Response Features
PublicationElectromagnetic (EM) simulation tools have become indispensable in the design of contemporary antennas. Still, the major setback of EM-driven design is the associated computational overhead. This is because a single full-wave simulation may take from dozens of seconds up to several hours, thus, the cost of solving design tasks that involve multiple EM analyses may turn unmanageable. This is where faster system representations (surrogates)...
-
Taking advantage of symmetries: Gathering of many asynchronous oblivious robots on a ring
PublicationOne of the recently considered models of robot-based computing makes use of identical, memoryless mobile units placed in nodes of an anonymous graph. The robots operate in Look-Compute-Move cycles; in one cycle, a robot takes a snapshot of the current configuration (Look), takes a decision whether to stay idle or to move to one of the nodes adjacent to its current position (Compute), and in the latter case makes an instantaneous...
-
Multi-objective design optimization of antenna structures using sequential domain patching with automated patch size deter-mination
PublicationIn this paper, a simple yet efficient and reliable technique for fully automated multi-objective design optimization of antenna structures using sequential domain patching (SDP) is discussed. The optimization procedure according to SDP is a two-step process: (i) obtaining the initial set of Pareto-optimal designs representing the best possible trade-offs between considered conflicting objectives, and (ii) Pareto set refinement...
-
A GPU Solver for Sparse Generalized Eigenvalue Problems with Symmetric Complex-Valued Matrices Obtained Using Higher-Order FEM
PublicationThe paper discusses a fast implementation of the stabilized locally optimal block preconditioned conjugate gradient (sLOBPCG) method, using a hierarchical multilevel preconditioner to solve nonHermitian sparse generalized eigenvalue problems with large symmetric complex-valued matrices obtained using the higher-order finite-element method (FEM), applied to the analysis of a microwave resonator. The resonant frequencies of the low-order...
-
Improved Efficacy Behavioral Modeling of Microwave Circuits through Dimensionality Reduction and Fast Global Sensitivity Analysis
PublicationBehavioral models have garnered significant interest in the realm of high-frequency electronics. Their primary function is to substitute costly computational tools, notably electromagnetic (EM) analysis, for repetitive evaluations of the structure under consideration. These evaluations are often necessary for tasks like parameter tuning, statistical analysis, or multi-criterial design. However, constructing reliable surrogate models...
-
Reduced-Cost Microwave Modeling Using Constrained Domains and Dimensionality Reduction
PublicationDevelopment of modern microwave devices largely exploits full-wave electromagnetic (EM) simulations. Yet, simulation-driven design may be problematic due to the incurred CPU expenses. Addressing the high-cost issues stimulated the development of surrogate modeling methods. Among them, data-driven techniques seem to be the most widespread owing to their flexibility and accessibility. Nonetheless, applicability of approximation-based...
-
Tolerance-Aware Optimization of Microwave Circuits by Means of Principal Directions and Domain-Restricted Metamodels
PublicationPractical microwave design is most often carried out in the nominal sense. Yet, in some cases, performance degradation due to uncertainties may lead to the system failing to meet the prescribed specifications. Reliable uncertainty quantification (UQ) is therefore important yet intricate from numerical standpoint, especially when the circuit at hand is to be evaluated using electromagnetic (EM) simulation tools. Tolerance-aware...
-
Unique agreement of experimental and computational infrared spectroscopy: a case study of lithium bromide solvation in an important electrochemical solvent
PublicationInfrared (IR) spectroscopy is a widely used and invaluable tool in the studies of solvation phenomena in electrolyte solutions. Using state-of-the-art chemometric analysis of a spectral series measured in a concentration-dependent manner, the spectrum of the solute-affected solvent can be extracted, providing a detailed view of the structural and energetic states of the solvent molecules influenced by the solute. Concurrently,...
-
Low-Cost and Highly-Accurate Behavioral Modeling of Antenna Structures by Means of Knowledge-Based Domain-Constrained Deep Learning Surrogates
PublicationThe awareness and practical benefits of behavioral modeling methods have been steadily growing in the antenna engineering community over the last decade or so. Undoubtedly, the most important advantage thereof is a possibility of a dramatic reduction of computational expenses associated with computer-aided design procedures, especially those relying on full-wave electromagnetic (EM) simulations. In particular, the employment of...
-
Low-Cost Yield-Driven Design of Antenna Structures Using Response-Variability Essential Directions and Parameter Space Reduction
PublicationQuantifying the effects of fabrication tolerances and uncertainties of other types is fundamental to improve antenna design immunity to limited accuracy of manufacturing procedures and technological spread of material parameters. This is of paramount importance especially for antenna design in the industrial context. Degradation of electrical and field properties due to geometry parameter deviations often manifests itself as, e.g.,...
-
Mitigation effect of face shield to reduce SARS-CoV-2 airborne transmission risk: Preliminary simulations based on computed tomography
PublicationWe aimed to develop a model to quantitatively assess the potential effectiveness of face shield (visor) in reducing airborne transmission risk of the novel coronavirus SARS-CoV-2 during the current COVID-19 pandemic using the computational fluid dynamics (CFD) method. The studies with and without face shield in both an infected and healthy person have been considered in indoor environment simulation. In addition to the influence...
-
Synthesis, structural characterization and reactivity of new trisubstituted N1-acylamidrazones: solid state and solution studies
PublicationA series of new linear trisubstituted N1-acylamidrazones have been investigated using a variety of analytical techniques and theoretical calculations to check the influence of the type of N1-acyl substituent on the resonance forms and conformational behavior in the solid state and in solution. The 1D- and 2D-NMR experiments, supported by computational studies, revealed that in solution all amidrazones exhibit conformational syn/anti...
-
Unusual Influence of Fluorinated Anions on the Stretching Vibrations of Liquid Water
PublicationInfrared (IR) spectroscopy is a commonly used and invaluable tool in the studies of solvation phenomena in aqueous solutions. Concurrently, ab initio molecular dynamics (AIMD) simulations deliver the solvation shell picture at a molecular detail level and allow for a consistent decomposition of the theoretical IR spectrum into underlying spatial correlations. Here, we demonstrate how the novel spectral decomposition techniques...
-
Synthesis and biological evaluation of fluorinated N-benzoyl and N-phenylacetoyl derivatives of 3-(4-aminophenyl)-coumarin-7-O-sulfamate as steroid sulfatase inhibitors
PublicationIn the present work, we report convenient methods for the synthesis of 3-(4-aminophenyl)-coumarin-7-O-sulfamate derivatives N-acylated with fluorinated analogues of benzoic or phenylacetic acid as steroid sulfatase (STS) inhibitors. The design of these potential STS inhibitors was supported by molecular modeling techniques. Additionally, computational docking methods were used to determine the binding modes of the synthesized inhibitors...
-
Mitigation effect of face shield to reduce SARS-CoV-2 airborne transmission risk: Preliminary simulations based on computed tomography
PublicationWe aimed to develop a model to quantitatively assess the potential effectiveness of face shield (visor) in reducing airborne transmission risk of the novel coronavirus SARS-CoV-2 during the current COVID-19 pandemic using the computational fluid dynamics (CFD) method. The studies with and without face shield in both an infected and healthy person have been considered in indoor environment simulation. In addition to the influence...
-
The Metal-Free Regioselective Deuteration of 2-Methylquinolin-8-ol and 2,5-Dimethylquinolin-8-ol, Spectroscopic and Computational Studies
PublicationAbstract: Aim and Background: Introducing deuterium to a molecule is of interest to a wide variety of research, including investigation of reaction mechanisms or kinetics, analysis of drug metabolism, structural elucidation of molecules, and syntheses of isotopically labeled materials used for NMR spectroscopy and medicinal research. Objective: The transition-metal-free regioselective deuteration of 2-methylquinolin-8-ol...
-
Computational analysis of substituent effects on proton affinity and gas-phase basicity of TEMPO derivatives and their hydrogen bonding interactions with water molecules
PublicationThe study investigates the molecular structure of 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) and its derivatives in the gas phase using B3LYP and M06-2X functional methods. Intermolecular interactions are analyzed using natural bond orbital (NBO) and atoms in molecules (AIM) techniques. NO2-substituted TEMPO displays high reactivity, less stability, and softer properties. The study reveals that the stability of TEMPO derivatives...
-
Low-cost performance-driven modelling of compact microwave components with two-layer surrogates and gradient kriging
PublicationUtilization of electromagnetic (EM) simulation tools has become indispensable for reliable evaluation of microwave components. As the cost of an individual analysis may already be considerable, the computational overhead associated with EM-driven tasks that require massive simulations (e.g., optimization) may turn prohibitive. One of mitigation methods is the employment of equivalent network models. Yet, they are incapable of accounting...
-
Molecular level interpretation of excess infrared spectroscopy
PublicationInfrared (IR) spectroscopy is an invaluable tool in studying intermolecular interactions in solvent mixtures. The deviation of the IR spectrum of a mixture from the spectra of its pure components is a sensitive measure of the non-ideality of solutions and the modulation of intermolecular interactions introduced by mutual influence of the components. Excess IR spectroscopy, based on the established notion of excess thermodynamic...
-
Novel steroid sulfatase inhibitors based on N ‐thiophosphorylated 3‐(4‐aminophenyl)‐coumarin‐7‐O‐sulfamates
PublicationIn the present work, we described convenient methods for the synthesis ofN-thiophosphorylated 3-(4-aminophenyl)-coumarin-7-O-sulfamates as steroid sulfatase(STS) inhibitors. To design the structures of the potential STS inhibitors, molecularmodeling techniques were used. A computational docking method was used to deter-mine the binding modes of the synthesized inhibitors as well as to identify potentialinteractions between specified...
-
High-speed multi-stage gas-steam turbine with flow bleeding in a novel thermodynamic cycle for decarbonizing power generation
PublicationIn the global pursuit of sustainable energy and reduced carbon footprints, advances in power generation techniques play a crucial role, not only in meeting the ever-increasing energy demands but also in ensuring that environmental standards are maintained and that the health of our planet is prioritized for future generations. In the ongoing quest for sustainable energy solutions, novel high-speed multi-stage gas-steam turbine...
-
Rapid Design Centering of Multi-Band Antennas Using Knowledge-Based Inverse Models and Response Features
PublicationAccounting for manufacturing tolerances as well as uncertainties concerning operating conditions and material parameters is one of the important yet often neglected aspects of antenna development. Appropriate quantification of uncertainties allows for estimating the fabrication yield but also to carry out robust design (e.g., yield maximization). For reliability reasons, statistical analysis should be executed at the accuracy level...
-
Processing of Satellite Data in the Cloud
PublicationThe dynamic development of digital technologies, especially those dedicated to devices generating large data streams, such as all kinds of measurement equipment (temperature and humidity sensors, cameras, radio-telescopes and satellites – Internet of Things) enables more in-depth analysis of the surrounding reality, including better understanding of various natural phenomenon, starting from atomic level reactions, through macroscopic...
-
Data-driven Models for Predicting Compressive Strength of 3D-printed Fiber-Reinforced Concrete using Interpretable Machine Learning Algorithms
Publication3D printing technology is growing swiftly in the construction sector due to its numerous benefits, such as intricate designs, quicker construction, waste reduction, environmental friendliness, cost savings, and enhanced safety. Nevertheless, optimizing the concrete mix for 3D printing is a challenging task due to the numerous factors involved, requiring extensive experimentation. Therefore, this study used three machine learning...
-
Adam Władziński
PeopleAdam Władziński, a PhD Candidate at Gdansk University of Technology, specializes in Biomedical Engineering with a focus on machine learning for image processing and blockchain technology. Holding a BEng and MSc in Electronics, Adam Władziński has developed a keen interest in applying advanced computational techniques to biological systems. During their master’s program, Adam Władziński explored laser spectroscopy, building a database...
-
Accurate Modeling of Antenna Structures by Means of Domain Confinement and Pyramidal Deep Neural Networks
PublicationThe importance of surrogate modeling techniques has been gradually increasing in the design of antenna structures over the recent years. Perhaps the most important reason is a high cost of full-wave electromagnetic (EM) analysis of antenna systems. Although imperative in ensuring evaluation reliability, it entails considerable computational expenses. These are especially pronounced when carrying out EM-driven design tasks such...
-
On Accelerated Metaheuristic-Based Electromagnetic-Driven Design Optimization of Antenna Structures Using Response Features
PublicationDevelopment of present-day antenna systems is an intricate and multi-step process requiring, among others, meticulous tuning of designable (mainly geometry) parameters. Concerning the latter, the most reliable approach is rigorous numerical optimization, which tends to be re-source-intensive in terms of computing due to involving full-wave electromagnetic (EM) simu-lations. The cost-related issues are particularly pronounced whenever...
-
Prediction of Overall In Vitro Microsomal Stability of Drug Candidates Based on Molecular Modeling and Support Vector Machines. Case Study of Novel Arylpiperazines Derivatives
PublicationOther than efficacy of interaction with the molecular target, metabolic stability is the primary factor responsible for the failure or success of a compound in the drug development pipeline. The ideal drug candidate should be stable enough to reach its therapeutic site of action. Despite many recent excellent achievements in the field of computational methods supporting drug metabolism studies, a well-recognized procedure to model...
-
Empirical analysis of tree-based classification models for customer churn prediction
PublicationCustomer churn is a vital and reoccurring problem facing most business industries, particularly the telecommunications industry. Considering the fierce competition among telecommunications firms and the high expenses of attracting and gaining new subscribers, keeping existing loyal subscribers becomes crucial. Early prediction of disgruntled subscribers can assist telecommunications firms in identifying the reasons for churn and...
-
Buried Object Characterization by Data-Driven Surrogates and Regression-Enabled Hyperbolic Signature Extraction
PublicationThis work addresses artificial-intelligence-based buried object characterization using FDTD-based electromagnetic simulation toolbox of a Ground Penetrating Radar (GPR) to generate B-scan data. In data collection, FDTD-based simulation tool, gprMax is used. The task is to estimate geophysical parameters of a cylindrical shape object of various radii, buried at different positions in the dry soil medium simultaneously and independently...
-
Mariusz Figurski prof. dr hab. inż.
PeopleMariusz Józef Figurski (born 27 April 1964 in Łasinie, Poland) - Polish geodesist, professor of technical sciences, professor at the Gdańsk University of Technology. Early life and education He passed the matriculation examination in 1983 after he had finished Jan III Sobieski High school in Grudziądz. He graduated the Military University of Technology on an individual mode at the Faculty of Electromechanics and Civil Engineering...
-
A Review: Applications of the Spectral Finite Element Method
PublicationThe Spectral Finite Element Technique (SFEM) has Several Applications in the Sciences, Engineering, and Mathematics, which will be Covered in this Review Article. The Spectral Finite Element Method (SFEM) is a Variant of the Traditional Finite Element Method FEM that Makes use of Higher Order Basis Functions (FEM). One of the most Fundamental Numerical Techniques Employed in the Numerical Simulation is the SFEM, which Outperforms...