Search results for: support vector machine (svm)
-
Machine learning applied to acoustic-based road traffic monitoring
PublicationThe motivation behind this study lies in adapting acoustic noise monitoring systems for road traffic monitoring for driver’s safety. Such a system should recognize a vehicle type and weather-related pavement conditions based on the audio level measurement. The study presents the effectiveness of the selected machine learning algorithms in acoustic-based road traffic monitoring. Bases of the operation of the acoustic road traffic...
-
Machine learning applied to acoustic-based road traffic monitoring
PublicationThe motivation behind this study lies in adapting acoustic noise monitoring systems for road traffic monitoring for driver’s safety. Such a system should recognize a vehicle type and weather-related pavement conditions based on the audio level measurement. The study presents the effectiveness of the selected machine learning algorithms in acoustic-based road traffic monitoring. Bases of the operation of the acoustic road traffic...
-
A Simplified SVPWM Technique for Five-leg Inverter with Dual Three-phase Output
PublicationThis article proposes a simplified space vector pulse-width modulation (SVPWM) technique five-leg inverter with dual three-phase output. An idea to fed the dual tree-phase machine by the multiphase voltage source inverters (VSIs) is not new. Dual- and multi-motor drive systems are widely used in the industry applications. The most popular fields are: electric vehicles (EVs) and traction systems. Moreover, the specific characteristic...
-
Experimental and Theoretical Insights into the Intermolecular Interactions in Saturated Systems of Dapsone in Conventional and Deep Eutectic Solvents
PublicationSolubility is not only a crucial physicochemical property for laboratory practice but also provides valuable insight into the mechanism of saturated system organization, as a measure of the interplay between various intermolecular interactions. The importance of these data cannot be overstated, particularly when dealing with active pharmaceutical ingredients (APIs), such as dapsone. It is a commonly used anti-inflammatory and...
-
Sylwester Kaczmarek dr hab. inż.
PeopleSylwester Kaczmarek received his M.Sc in electronics engineering, Ph.D. and D.Sc. in switching and teletraffic science from the Gdansk University of Technology, Gdansk, Poland, in 1972, 1981 and 1994, respectively. His research interests include: IP QoS and GMPLS and SDN networks, switching, QoS routing, teletraffic, multimedia services and quality of services. Currently, his research is focused on developing and applicability...
-
Improving automatic surveillance by sound analysis
PublicationAn automatic surveillance system, based on event detection in the video image can be improved by implementing algorithms for audio analysis. Dangerous or illegal actions are often connected with distinctive sound events like screams or sudden bursts of energy. A method for detection and classification of alarming sound events is presented. Detection is based on the observation of sudden changes in sound level in distinctive sub-bands...
-
Behavioral state classification in epileptic brain using intracranial electrophysiology
PublicationOBJECTIVE: Automated behavioral state classification can benefit next generation implantable epilepsy devices. In this study we explored the feasibility of automated awake (AW) and slow wave sleep (SWS) classification using wide bandwidth intracranial EEG (iEEG) in patients undergoing evaluation for epilepsy surgery. APPROACH: Data from seven patients (age [Formula: see text], 4 women) who underwent intracranial depth electrode...
-
Sensorless Field Oriented Control of Five Phase Induction Motor with Third Harmonic Injection
PublicationIn this paper, a sensorless field oriented control system of five-phase induction machine with the 3rd harmonic rotor flux is presented. Two vector models, α1-β1 and α3-β3, were transformed into d1-q1, d3-q3 models oriented in rotating frames, which correspond to the 1st and 3rd harmonic plane respectively. The authors proposed the linearization of the model in d-q coordinate frames by introducing a new variable “x” which is proportional...
-
Fault detection in the marine engine using a support vector data description method
PublicationFast detection and correct diagnosis of any engine condition changes are essential elements of safety andenvironmental protection. Many diagnostic algorithms significantly improve the detection of malfunctions.Studies on diagnostic methods are rarely reported and even less implemented in the marine engine industry.To fill this gap, this paper presents the Support Vector Data Description (SVDD) method as applied to thefault detection...
-
State and control system variables sensitivity to rotor asymmetry in the induction motor drive
PublicationThe aim of this paper is to undertake analysis and comparison of the closed-loop and sensorless control systems sensitivity to the broken rotor for diagnostic purposes. For the same vector control system induction motor drive analysis concerning operation with the asymmetric motor, broken rotor fault handling and operation were investigated. Reliability, range of stable operation, fault symptoms and application of diagnosis methods...
-
Text Documents Classification with Support Vector Machines
Publication -
Support Vector Machines in Biomedical and Biometrical Applications
Publication -
Sensorless field oriented control for five-phase induction motors with third harmonic injection and fault insensitive feature
PublicationThe paper presents a solution for sensorless field oriented control (FOC) system for five-phase induction motors with improved rotor flux pattern. In order to obtain the advantages of a third harmonic injection with a quasi-trapezoidal flux shape, two vector models, α1–β1 and α3–β3, were transformed into d1– q1, d3– q3 rotating frames, which correlate to the 1st and 3rd harmonic plane respectively. A linearization approach of the...
-
Ireneusz Czarnowski Prof.
PeopleIRENEUSZ CZARNOWSKI is a graduate of the Faculty of Electrical Engineering at Gdynia Maritime University. He gained a doctoral degree in the field of computer science at Poznan University of Technology and a postdoctoral degree in the field of computer science at Wroclaw University of Science and Technology. Since 1998 is associated with Gdynia Maritime University, currently is a professor of computer science in the Department...
-
Bearing testing machine with rotating load vector.
PublicationW pracy przedstawiono koncepcję konstrukcyjną i prototyp stanowiska badawczego z wirująca reakcją łożyskową przeznaczonego do testowania wytrzymałości zmęczeniowej warstw ślizgowych w łożyskach poprzecznych. Konstrukcja i przeznaczenie maszyny zbudowanej w laboratorium tribologicznym Politechniki Gdańskiej jest zgodna z zaleceniami normy ISO 7905. Przeanalizowano zalety i wady maszyny badawczej o takim wzorcu obciążenia testującego.
-
Speed observer of induction machine based on backstepping and sliding mode for low‐speed operation
PublicationThis paper presents a speed observer design based on backstepping and slidingmode approaches. The inputs to the observer are the stator current and thevoltage vector components. This observer structure is extended to the integra-tors. The observer stabilizing functions contain the appropriate sliding surfaceswhich result from the Lyapunov function. The rotor angular speed is obtainedfrom the non‐adaptive formula with a sliding...
-
Sounding Mechanism of a Flue Organ Pipe—A Multi-Sensor Measurement Approach
PublicationThis work presents an approach that integrates the results of measuring, analyzing, and modeling air flow phenomena driven by pressurized air in a flue organ pipe. The investigation concerns a Bourdon organ pipe. Measurements are performed in an anechoic chamber using the Cartesian robot equipped with a 3D acoustic vector sensor (AVS) that acquires both acoustic pressure and air particle velocity. Also, a high-speed camera is employed...
-
Tuning Ferulic Acid Solubility in Choline-Chloride- and Betaine-Based Deep Eutectic Solvents: Experimental Determination and Machine Learning Modeling
PublicationDeep eutectic solvents (DES) represent a promising class of green solvents, offering particular utility in the extraction and development of new formulations of natural compounds such as ferulic acid (FA). The experimental phase of the study undertook a systematic investigation of the solubility of FA in DES, comprising choline chloride or betaine as hydrogen bond acceptors and six different polyols as hydrogen bond donors....
-
Rotor flux and EEMF observer for interior permanent magnet synchronous machine
PublicationIn recent years, the use of the interior permanent magnet synchronous machine (IPMSM) in various applications has grown significantly due to numerous benefits. Sensors are used to achieve high efficiency and good dynamic response in IPMSM drives but due to their high cost and reduced overall size of the system, sensorless control techniques are preferred. Non-sinusoidal distribution of rotor flux and slot harmonics are present...
-
Buried Object Characterization by Data-Driven Surrogates and Regression-Enabled Hyperbolic Signature Extraction
PublicationThis work addresses artificial-intelligence-based buried object characterization using FDTD-based electromagnetic simulation toolbox of a Ground Penetrating Radar (GPR) to generate B-scan data. In data collection, FDTD-based simulation tool, gprMax is used. The task is to estimate geophysical parameters of a cylindrical shape object of various radii, buried at different positions in the dry soil medium simultaneously and independently...
-
Predicting seismic response of SMRFs founded on different soil types using machine learning techniques
PublicationPredicting the Maximum Interstory Drift Ratio (M-IDR) of Steel Moment-Resisting Frames (SMRFs) is a useful tool for designers to approximately evaluate the vulnerability of SMRFs. This study aims to explore supervised Machine Learning (ML) algorithms to build a surrogate prediction model for SMRFs to reduce the need for complex modeling. For this purpose, twenty well-known ML algorithms implemented in Python software are trained...
-
Core loss resistance impact on sensorless speed control of an induction motor using hybrid adaptive sliding mode observer
PublicationInduction motors (IMs) experience power losses when a portion of the input power is converted to heat instead of driving the load. The combined effect of copper losses, core losses, and mechanical losses results in IM power losses. Unfortunately, the core losses in the motor, which have a considerable impact on its energy efficiency, are not taken into account by the generally employed dynamic model in the majority of the studies. Due...
-
The adaptive backstepping control of PMSM supplied by current source inverter for the field weakening region
PublicationThe sensorless control system of permanent magnet synchronous motor PMSM supplied by current source inverter for field weakening operation is presented in this paper. The adaptive backstepping control system and the backstepping speed observer are presented. The control system is based on multi-scalar variables. The control variables are: dc-link voltage and the output current vector pulsation. The control system was named voltage...
-
Detection of anomalies in bee colony using transitioning state and contrastive autoencoders
PublicationHoneybees plays vital role for the environmental sustainability and overall agricultural economy. Assisting bee colonies within their proper functioning brings the attention of researchers around the world. Electronics systems and machine learning algorithms are being developed for classifying specific undesirable bee behaviors in order to alert about upcoming substantial losses. However, classifiers could be impaired when used...
-
Nonlinear control of five phase induction motor with synchronized third harmonic flux injection
PublicationThe paper deals with the novel control system for five phase induction motor (IM) that enables the injection of the rotor flux 3rd harmonic component. Two multiscalar models are transformed from the 1-1 and 2-2 vector models developed in the 1st and 3rd harmonic planes. Based on the obtained multiscalar models the synthesis of dual multiscalar control is established. The obtained two multiscalar control systems can independently...
-
Nonlinear Control of a Doubly Fed Generator Supplied by a Current Source Inverter
PublicationNowadays, wind turbines based on a doubly fed induction generator (DFIG) are a commonly used solution in the wind industry. The standard converter topology used in these systems is the voltage source inverter (VSI). The use of reverse-blocking insulated gate bipolar transistor (RB-IGBT) in the current source inverter topology (CSI), which is an alternative topology, opens new possibilities of control methods. This paper presents...
-
Real-Time Facial Features Detection from Low Resolution Thermal Images with Deep Classification Models
PublicationDeep networks have already shown a spectacular success for object classification and detection for various applications from everyday use cases to advanced medical problems. The main advantage of the classification models over the detection models is less time and effort needed for dataset preparation, because classification networks do not require bounding box annotations, but labels at the image level only. Yet, after passing...
-
Michał Grochowski dr hab. inż.
PeopleProfessor and a Head of the Department of Intelligent Control and Decision Support Systems at Gdansk University of Technology (GUT). He is also a Member of the Board of the Digital Technologies Center of GUT. He received his M.Sc. degree in Control Engineering in 2000 from the Electrical and Control Engineering Faculty at the GUT. In 2004 he received a Ph.D. degree in Automatic Control and Robotics from this...
-
Source code - AI models (MLM1-5 - series I-III - QNM opt)
Open Research DataSource code - AI models (MLM1-5 - series I-III - QNM opt) for the paper "Computational Complexity and Its Influence on Concrete Compressive Strength Prediction Capabilities of Machine Learning Models for Concrete Mix Design Support" accepted for publication.
-
Liniowe i nieliniowe modele wielowymiarowej kalibracji do predykcji stężenia substancji z pomiarów woltamperometrycznych
PublicationPomiary woltamperometryczne znajdują zastosowanie w wielu dziedzinach nauki i techniki, np. w przemyśle farmaceutycznym. Dane uzyskane w wyniku takich pomiarów zawierają informację odnośnie rodzaju i stężenia badanej substancji, jednakże są one często kłopotliwe w bezpośredniej interpretacji. Z tego powodu, istnieje konieczność wykorzystania odpowiednich metod matematycznych, które umożliwiają uzyskanie bezpośredniej i precyzyjnej...
-
Klasyfikator SVM w zastosowaniu do synchronizacji sygnału OFDM zniekształconego przez kanał wielodrogowy
PublicationW pracy przedstawiono analizę przydatności klasyfikatora SVM bazującego na uczeniu maszynowym do estymacji przesunięcia czasowego odebranego symbolu OFDM. Przedstawione wyniki wykazują, że ten klasyfikator potrafi zapewnić synchronizację dla różnych kanałów wielodrogowych o wysokim poziomie szumu. Eksperymenty przeprowadzone w Matlabie z użyciem modeli modulatora i demodulatora wykazały, że w większości przypadków klasyfikator...
-
Integrating Experience-Based Knowledge Representation and Machine Learning for Efficient Virtual Engineering Object Performance
PublicationMachine learning and Artificial Intelligence have grown significant attention from industry and academia during the past decade. The key reason behind interest is such technologies capabilities to revolutionize human life since they seamlessly integrate classical networks, networked objects and people to create more efficient environments. In this paper, the Knowledge Representation technique of Set of Experience...
-
The Influence of Limiters UEL and OEL (The power angle, stator's current and excitation current) ot the possibility of voltage collapse development
PublicationVoltage stability has been a major concern for power system utilities because of event of voltage collapses in the recent past. Sometimes, power system events have shown the need for generators to operate in the overexcited and underexcited region to support stable operation. Modern excitation systems include devices for controlling or limiting machine terminal voltage (overvoltage limiters), volts per hertz ratio (V/Hz limiters),...
-
Semantic rules representation in controlled natural language in FluentEditor
PublicationThis paper presents a way of representation of semantic rules (SWRL) in controlled English in order to facilitate understanding the rules by humans interacting with a machine. This approach (implemented in FluentEditor) may be applied in many domains, where the understandability of the rules used to support a decision process is of great importance.
-
Synteza bezczujnikowego sterowania maszyną indukcyjną klatkową zasilaną z falownika prądu
PublicationSynteza bezczujnikowego sterowania maszyną indukcyjną klatkową zasilaną z falownika prądu stanowi cel niniejszej monografii. Praca zawiera podstawowe informacje na temat modelowania układu napędowego z maszyną indukcyjną klatkową zasilaną z falownika prądu. Przedstawiono informacje na temat linearyzacji nieliniowych obiektów. Na pod-stawie metody syntezy strukturalnej opracowano nowe transformacje do postaci zmien-nych multiskalarnych,...
-
Artificial intelligence support for disease detection in wireless capsule endoscopy images of human large bowel
PublicationIn the work the chosen algorithms of disease recognition in endoscopy images were described and compared for theirs efficiency. The algorithms were estimated with regard to utility for application in computer system's support for digestive system's diagnostics. Estimations were achieved in an advanced testing environment, which was built with use of the large collection of endoscopy movies received from Medical University in Gdańsk....
-
Sztuczne sieci neuronowe oraz metoda wektorów wspierających w bankowych systemach informatycznych
PublicationW artykule zaprezentowano wybrane metod sztucznej inteligencji do zwiększania efektywności bankowych systemów informatycznych. Wykorzystanie metody wektorów wspierających czy sztucznych sieci neuronowych w połączeniu z nowoczesną technologią mikroprocesorową umożliwia znaczący wzrost konkurencyjności banku poprzez dodanie nowych funkcjonalności. W rezultacie możliwe jest także złagodzenie skutków kryzysu finansowego.
-
Adam Władziński
PeopleAdam Władziński, a PhD Candidate at Gdansk University of Technology, specializes in Biomedical Engineering with a focus on machine learning for image processing and blockchain technology. Holding a BEng and MSc in Electronics, Adam Władziński has developed a keen interest in applying advanced computational techniques to biological systems. During their master’s program, Adam Władziński explored laser spectroscopy, building a database...
-
Przegląd metod szybkiego prototypowania algorytmów uczenia maszynowego w FPGA
PublicationW artykule opisano możliwe do wykorzystania otwarte narzędzia wspomagające szybkie prototypowanie algorytmów uczenia maszynowego (ML) i sztucznej inteligencji (AI) przy użyciu współczesnych platform FPGA. Przedstawiono przykład szybkiej ścieżki przy realizacji toru wideo wraz z implementacją przykładowego algorytmu prze-twarzania w trybie na żywo.
-
Wave propagation signals in concrete beams under 3-point bending
Open Research DataThe DataSet contains the results of the mechanical behaviour of a concrete beams with dimensions 40 x 40 x 160 cm3under the 3-point bending. The beams were made of concrete with the following ingredients: CEM I 42.5R (450 kg/m3), water (177 kg/m3), sand 0-2 (675 kg/m3) and gravel 2-8 (675 kg/m3). The bending test was performed using a Zwick/Roell Z10...
-
Efficiency comparison of selected endoscopic video analysis algorithms
PublicationIn the paper, selected image analysis algorithms were examined and compared in the task of identifying informative frames, blurry frames, colorectal cancer and healthy tissue on endoscopic videos. In order to standardize the tests, the algorithms were modified by removing from them parts responsible for the classification, and replacing them with Support Vector Machines and Artificial Neural Networks. The tests were performed in...
-
The Neural Knowledge DNA Based Smart Internet of Things
PublicationABSTRACT The Internet of Things (IoT) has gained significant attention from industry as well as academia during the past decade. Smartness, however, remains a substantial challenge for IoT applications. Recent advances in networked sensor technologies, computing, and machine learning have made it possible for building new smart IoT applications. In this paper, we propose a novel approach: the Neural Knowledge DNA based Smart Internet...
-
Active Annotation in Evaluating the Credibility of Web-Based Medical Information: Guidelines for Creating Training Data Sets for Machine Learning
PublicationMethods Results Discussion References Abbreviations Copyright Abstract Background: The spread of false medical information on the web is rapidly accelerating. Establishing the credibility of web-based medical information has become a pressing necessity. Machine learning offers a solution that, when properly deployed, can be an effective tool in fighting medical misinformation on the web. Objective: The aim of this study is to...
-
Asking Data in a Controlled Way with Ask Data Anything NQL
PublicationWhile to collect data, it is necessary to store it, to understand its structure it is necessary to do data-mining. Business Intelligence (BI) enables us to make intelligent, data-driven decisions by the mean of a set of tools that allows the creation of a potentially unlimited number of machine-generated, data-driven reports, which are calculated by a machine as a response to queries specified by humans. Natural Query Languages...
-
Comparison of selected electroencephalographic signal classification methods
PublicationA variety of methods exists for electroencephalographic (EEG) signals classification. In this paper, we briefly review selected methods developed for such a purpose. First, a short description of the EEG signal characteristics is shown. Then, a comparison between the selected EEG signal classification methods, based on the overview of research studies on this topic, is presented. Examples of methods included in the study are: Artificial...
-
Julita Wasilczuk dr hab.
PeopleBorn on 5th of April, 1965 in Gdansk. In 1987-1991 studied the economics of transport, at the University of Gdansk. At 1993 she started to work at the Faculty of Management and Economics. In 1997 received a PhD at the faculty, in 2006 habilitation at the Faculty of Management, University of Gdansk. Since 2009 Associate Professor at Gdansk University of Technology. In 2010-2012 Associate Professor of Humanistic High School at Gdansk. The...
-
Two Stage SVM and kNN Text Documents Classifier
PublicationThe paper presents an approach to the large scale text documents classification problem in parallel environments. A two stage classifier is proposed, based on a combination of k-nearest neighbors and support vector machines classification methods. The details of the classifier and the parallelisation of classification, learning and prediction phases are described. The classifier makes use of our method named one-vs-near. It is...
-
Predictions of cervical cancer identification by photonic method combined with machine learning
PublicationCervical cancer is one of the most commonly appearing cancers, which early diagnosis is of greatest importance. Unfortunately, many diagnoses are based on subjective opinions of doctors—to date, there is no general measurement method with a calibrated standard. The problem can be solved with the measurement system being a fusion of an optoelectronic sensor and machine learning algorithm to provide reliable assistance for doctors...
-
Ontology clustering by directions algorithm to expand ontology queries
PublicationThis paper concerns formulating ontology queries. It describes existing languages in which ontologies can be queried. It focuses on languages which are intended to be easily understood by users who are willing to retrieve information from ontologies. Such a language can be, for example, a type of controlled natural language (CNL). In this paper a novel algorithm called Ontology Clustering by Directions is presented. The algorithm...
-
Selecting Features with SVM
PublicationA common problem with feature selection is to establish how many features should be retained at least so that important information is not lost. We describe a method for choosing this number that makes use of Support Vector Machines. The method is based on controlling an angle by which the decision hyperplane is tilt due to feature selection. Experiments were performed on three text datasets generated from a Wikipedia dump. Amount...