Publications
Filters
total: 874
Catalog Publications
Year 2022
-
Application of g-C3N4/ZnO nanocomposites for fabrication of anti-fouling polymer membranes with dye and protein rejection superiority
PublicationPolysulfone (PSf) membranes are privileged for water and wastewater treatment, but because of their hydrophobic nature, they suffer from fouling, which lowers their performance and lifetime. In this work, g-C3N4 and g-C3N4/ZnO nanomaterials were synthesized via a hydrothermal method to modify the PSf membrane for effective dye separation and reduction of organic fouling. Since g-C3N4/ZnO possesses –OH and –NH reactive groups, g-C3N4/ZnO/PSf...
-
Bioactive hybrid metal-organic framework (MOF)-based nanosensors for optical detection of recombinant SARS-CoV-2 spike antigen
PublicationFast, efficient, and accurate detection of SARS-CoV-2 spike antigen is pivotal to control the spread and reduce themortality of COVID-19. Nevertheless, the sensitivity of available nanobiosensors to detect recombinant SARS-CoV-2 spike antigen seems insufficient. As a proof-of-concept, MOF-5/CoNi2S4 is developed as a low-cost, safe, and bioactive hybrid nanostructure via the one-pot high-gravity protocol. Then, the porphyrin, H2TMP,...
-
Biocomposites from recycled resources as candidates for laboratory reference material to validate analytical tools used in organic compounds emissions investigation
PublicationA suitably chosen reference material should meet specific criteria like representing one of the compound classes most commonly occurring in indoor materials as well as having optimal long-term stability during storage and transport to its destination point and having a compact size. The described interdisciplinary pilot research was aimed to develop and characterize a polymer-based candidate for the laboratory reference material...
-
Biodegradable Polymer Packaging Materials in Seawater Environment
PublicationIn this chapter, our interest is directed into dea/ocean/lakes biodegradable environment for polymer packaging materials from two different points of view.
-
Bio‑derived polyurethanes obtained by non‑isocyanate route using polyol‑based bis(cyclic carbonate)s—studies on thermal decomposition behavior
PublicationNon-isocyanate polyurethanes (NIPUs) constitute one of the most prospective groups of eco-friendly materials based on their phosgene-free synthesis pathway. Moreover, one of the steps of their obtaining includes the use of carbon dioxide (CO 2 ), which allows for the promotion of the development of carbon dioxide capture and storage technologies. In this work, non- isocyanate polyurethanes were obtained via three-step synthesis...
-
Biomedical engineering of polysaccharide-based tissue adhesives: Recent advances and future direction
PublicationTissue adhesives have been widely used for preventing wound leaks, sever bleeding, as well as for enhancing drug delivery and biosensing. However, only a few among suggested platforms cover the circumstances required for high-adhesion strength and biocompatibility, without toxicity. Antibacterial properties, controllable degradation, encapsulation capacity, detectability by image-guided procedures and affordable price are also...
-
CaZnO-based nanoghosts for the detection of ssDNA, pCRISPR and recombinant SARS-CoV-2 spike antigen and targeted delivery of doxorubicin
PublicationOverexpression of proteins/antigens and other gene-related sequences in the bodies could lead to significant mutations and refractory diseases. Detection and identification of assorted trace concentrations of such proteins/antigens and/or gene-related sequences remain challenging, affecting different pathogens and making viruses stronger. Correspondingly, coronavirus (SARS-CoV-2) mutations/alterations and spread could lead to overexpression...
-
Chitosan-based inks for 3D printing and bioprinting
PublicationThe advent of 3D-printing/additive manufacturing in biomedical engineering field has introduced great potential for the preparation of 3D structures that can mimic native tissues. This technology has accelerated the progress in numerous areas of regenerative medicine, especially led to a big wave of biomimetic functional scaffold developments for tissue engineering demands. In recent years, the introduction of smart bio-inks has...
-
Chlorine-free extraction and structural characterization of cellulose nanofibers from waste husk of millet (Pennisetum glaucum)
PublicationThis study aims to extract cellulose nanofibers (CNFs) from a sustainable source, i.e. millet husk, which is an agro-waste worthy of consideration. Pre-treatments such as mercerisation, steam explosion, and peroxide bleaching (chlorine-free) were applied for the removal of non-cellulosic components. The bleached millet husk pulp was subjected to acid hydrolysis (5% oxalic acid) followed by homogenization to extract CNFs. The extracted...
-
Clickable polysaccharides for biomedical applications: A comprehensive review
PublicationRecent advances in materials science and engineering highlight the importance of designing sophisticated biomaterials with well-defined architectures and tunable properties for emerging biomedical applications. Click chemistry, a powerful method allowing specific and controllable bioorthogonal reactions, has revolutionized our ability to make complex molecular structures with a high level of specificity, selectivity, and yield...
-
Comparative review of piezoelectric biomaterials approach for bone tissue engineering
PublicationBone as a minerals’ reservoir and rigid tissue of the body generating red and white blood cells supports various organs. Although the self-regeneration property of bone, it cannot regenerate spontaneously in severe damages and still remains as a challenging issue. Tissue engineering offers several techniques for regenerating damaged bones, where various biomaterials are examined to fabricate scaffolds for bone repair. Piezoelectric...
-
Comprehensive analysis of low-temperature methods for reclaiming of ground tire rubber
PublicationManagement of waste tires has become an important topic for decades. The lack of an effective method to manage the materials as mentioned above leads to illegal landfills. This problematic waste can be divided into two main categories depending on the physical condition of the waste: (i) partially used tires; (ii) end-of-life tires. While the first group can be reused or retreaded, the second group requires special measures to...
-
Comprehensive Enhancement of Prepolymer-Based Flexible Polyurethane Foams’ Performance by Introduction of Cost-Effective Waste-Based Ground Tire Rubber Particles
PublicationMaterial innovations in polyurethane (PU) foams should ideally combine performance enhancement, environmental impact limitation, and cost reduction. These goals can be achieved by applying recycled or waste-based materials without broader industrial applications, implicating their low price. Herein, from 5 to 20 parts by weight of ground tire rubber (GTR) particles originated from the recycling of postconsumer car tires were incorporated...
-
Comprehensive Investigation of Stoichiometry–Structure–Performance Relationships in Flexible Polyurethane Foams
PublicationPolyurethane (PU) foams are versatile materials with a broad application range. Their performance is driven by the stoichiometry of polymerization reaction, which has been investigated in several works. However, the analysis was often limited only to selected properties and compared samples differing in apparent density, significantly influencing their performance. In the bigger picture, there is still a lack of comprehensive studies...
-
COVID‐19: A systematic review and update on prevention, diagnosis, and treatment
PublicationSince the rapid onset of the COVID-19 or SARS-CoV-2 pandemic in the world in 2019, extensive studies have been conducted to unveil the behavior and emission pattern of the virus in order to determine the best ways to diagnosis of virus and thereof formulate effective drugs or vaccines to combat the disease. The emergence of novel diagnostic and therapeutic techniques considering the multiplicity of reports from one side and contradictions...
-
Customizing nano-chitosan for sustainable drug delivery
PublicationChitosan is a natural polymer with acceptable biocompatibility, biodegradability, and mechanical stability; hence, it has been widely appraised for drug and gene delivery applications. However, there has been no comprehensive assessment to tailor-make chitosan cross-linkers of various types and functionalities as well as complex chitosan-based semi- and full-interpenetrating networks for drug delivery systems (DDSs). Herein, various...
-
Divulging the anti-acetylcholinesterase activity of Colletotrichum lentis strain KU1 extract as sustainable AChE active site inhibitors
PublicationAlzheimer’s disease (AD), also called senile dementia is a neurodegenerative disease seen commonly in the elderly and is characterised by the formation of β-amyloid plaques and neurofbrillary tangles (NFT). Though a complete understanding of the disease is lacking, recent studies showed the role of the enzyme acetylcholinesterase (AChE) in pathogenesis. Finding new lead compounds from natural sources has always been a quest for...
-
Dynamics of Antimicrobial Peptide Encapsulation in Carbon Nanotubes: The Role of Hydroxylation
PublicationIntroduction: Carbon nanotubes (CNTs) have been widely employed as biomolecule carriers, but there is a need for further functionalization to broaden their therapeutic application in aqueous environments. A few reports have unraveled biomolecule–CNT interactions as a measure of response of the nanocarrier to drug-encapsulation dynamics. Methods: Herein, the dynamics of encapsulation of the antimicrobial peptide HA-FD-13 (accession...
-
Elucidating the impact of enzymatic modifications on the structure, properties, and applications of cellulose, chitosan, starch and their derivatives: a review
PublicationPolysaccharides, as one of the most prominent natural biopolymers, display numerous biological activities and industrial applications. Nevertheless, some polysaccharides lack biological properties or display weak biological activities. Besides, practical usages of polysaccharides still remain challenging because of their poor solubility and inappropriate hydrophilic/hydrophobic balance. Hence, enzymatic or chemical modifications...
-
Emission Profiles of Volatiles during 3D Printing with ABS, ASA, Nylon, and PETG Polymer Filaments
PublicationIn this short communication we characterize the emission of volatile organic compounds (VOCs) from fused filament fabrication (FFF) 3D printing using four polymer materials, namely polyethylene terephthalate glycol-modified (PETG), acrylonitrile styrene acrylate (ASA), Nylon, and acrylonitrile butadiene styrene (ABS). Detailed emission profiles are obtained during thermal degradation of the polymers as a function of temperature...
-
Enhanced aging resistance of poly(ε-caprolactone)/brewers’ spent grain composites
PublicationThe presented paper investigated the influence of brewers’ spent grain (BSG) extrusion pa-rameters on the photo-oxidative resistance of poly(ε-caprolactone)-based wood polymer composites. Filler samples characterized by the higher melanoidin content were more efficient in hindering of poly-mer degradation, inhibiting the decomposition of the polymer amorphous phase. As aresult, deteriora-tion of mechanical performance was limited,...
-
Fire Protection and Materials Flammability Control by Artificial Intelligence
PublicationFire safety has become a major challenge of materials developers because of the massive production of organic materials, often combustibles, and their use for different purposes. In this sense, fire safety is critically considered in the development of engineering materials [1, 2]. The multiplicity of parameters contributing to the development of formulation of flame-retardant materials from one side and the sustainability concerns...
-
Flame-Retardant Polymer Materials Developed by Reactive Extrusion: Present Status and Future Perspectives
PublicationThe development of flame retardant polymer materials has two roots, one in materials design, and the other in materials processing. Over recent decades, different types and classes of flame retardant polymer materials have been commercialized to meet safety requirements in the construction, automotive, and coatings industries. In the vast majority of cases, the design and fabrication of new materials presenting low fire hazards...
-
Grafting and reactive extrusion technologies for compatibilization of ground tyre rubber composites: Compounding, properties, and applications
PublicationChemical modification of ground tyre rubber (GTR) to compatibilize it with the matrix is a well-known approach. Based on our recent review of the surface etching methods used in GTR modification, the purpose of the current work is to take a deeper look into more advanced methods such as grafting and reactive extrusion. While grafting is more efficient in achieving compatibility, however, it usually involves multi-step synthesis...
-
Graphene Reinforced Phenolic Foams
PublicationPhenolic foams (PF) belong to the polymeric materials, which are very attractive from the point of many possible applications such as insulation or fire protection materials. This chapter attempts to explain the influence of graphene and graphene derivatives on the phenolic foams. This work briefly presents different graphene nanoparticles introduced to the phenolic foams matrix, in terms of impact on the thermal, mechanical, and...
-
Green Polymer Nanocomposites for Skin Tissue Engineering
PublicationFabrication of an appropriate skin scaffold needs to meet several standards related to the mechanical and biological properties. Fully natural/green scaffolds with acceptable biodegradability, biocompatibility, and physiological properties quite often suffer from poor mechanical properties. Therefore, for appropriate skin tissue engineering and to mimic the real functions, we need to use synthetic polymers and/or additives as complements...
-
Green porous benzamide-like nanomembranes for hazardous cations detection, separation, and concentration adjustment
PublicationGreen biomaterials play a crucial role in the diagnosis and treatment of diseases as well as health-related problem-solving. Typically, biocompatibility, biodegradability, and mechanical strength are requirements centered on biomaterial engineering. However, in-hospital therapeutics require an elaborated synthesis of hybrid and complex nanomaterials capable of mimicking cellular behavior. Accumulation of hazardous cations like...
-
Green products from herbal medicine wastes by subcritical water treatment
PublicationHerbal medicine wastes (HMWs) are byproducts of medicine factories, which are mainly landfilled for their environmental problems. Only bearing in mind the contamination and concerns caused by the COVID-19 pandemic and environmental emissions, the worth of herbal medicine wastes management and conversion to green products can be understood. In this work, subcritical water treatment was carried out batch-wise in a stainless tube...
-
Ground tire rubber functionalization as a promising approach for the production of sustainable adsorbents of environmental pollutants
PublicationWaste tires management and further utilization are currently one of the biggest concerns regarding the environment and human health protection. At present, shredding, grinding, or pulverization of waste tires are the most popular options for industrial recycling. Although many solutions for ground tire rubber (GTR) applications were checked and verified so far, their further implementation at an industrial scale is still very limited....
-
Ground Tire Rubber Modified by Elastomers via Low-Temperature Extrusion Process: Physico-Mechanical Properties and Volatile Organic Emission Assessment
PublicationIn this paper, low-temperature extrusion of ground tire rubber was performed as a proecological waste tires recycling method. During this process, ground tire rubber was modified with constant content of dicumyl peroxide and a variable amount of elastomer (in the range: 2.5–15 phr). During the studies, three types of elastomers were used: styrene-butadiene rubber, styreneethylene/butylene-styrene grafted with maleic anhydride and...
-
GTR/Thermoplastics Blends: How Do Interfacial Interactions Govern Processing and Physico-Mechanical Properties?
PublicationIn this work, GTR/thermoplastics blends (in ratio 50/50 and 75/25 wt.%) were prepared by melt-compounding in an internal mixer. During research, trans-polyoctenamer rubber (TOR), ethylene-vinyl acetate copolymer (EVA), ethylene-octene copolymer (EOC), and linear low-density polyethylene (LLDPE), were used in their thermoplastic phase. Microstructure and processing-performance property interrelationships of the studied materials...
-
High-density Polyethylene - Expanded Perlite Composites: Structural Oriented Analysis of Mechanical and Thermomechanical Properties
PublicationAs part of this work, research was carried out on the effect of the addition of expanded perlite (PR) on the mechanical and thermomechanical properties of high-density polyethylene (PE) composites. Composites containing from 1 to 10 wt% of the inorganic filler were produced. Polyethylene-based composites manufactured by twin-screw extrusion and formed in the compression molding process were subjected to mechanical, thermomechanical,...
-
High-density polyethylene/EPDM rubber blend composites of boron compounds for neutron shielding application
PublicationNovel materials with neutron shielding property were fabricated by incorporating boron compounds into highdensity polyethylene (HDPE)/Ethylene propylene diene monomer rubber (EPDM) blends. A detailed investigation on the morphological, thermal, mechanical, and neutron attenuation properties of suitable proportion of HDPE/EPDM blend with boric acid (BA), boron carbide (BC), and nano boron carbide (NBC) were performed. Morphology...
-
Highly antifouling polymer-nanoparticle-nanoparticle/polymer hybrid membranes
PublicationWe introduce highly antifouling Polymer-Nanoparticle-Nanoparticle/Polymer (PNNP) hybrid membranes as multi-functional materials for versatile purification of wastewater. Nitrogen-rich polyethylenimine (PEI)-functionalized halloysite nanotube (HNT-SiO2-PEI) nanoparticles were developed and embedded in polyvinyl chloride (PVC) membranes for protein and dye filtration. Bulk and surface characteristics of the resulting HNT-SiO2-PEI...
-
Highly sensitive large strain cellulose/multiwalled carbon nanotubes (MWCNTs)/thermoplastic polyurethane (TPU) nanocomposite foams: From design to performance evaluation
PublicationAerogel-based polymer composite foams are promising for large strain piezoresistive sensors, but their aerogel skeleton is partially destroyed during the foaming process, limiting their sensitivity. Herein, the thermoplastic polyurethane was synthesized on the aerogel skeleton to obtain cellulose/multiwalled carbon nanotubes (MWCNTs)/thermoplastic polyurethane (TPU) nanocomposite materials foamed with the aid of supercritical carbon...
-
Hydrogels Based on Natural Polymers for Cardiac Applications
PublicationIn this work agar- and borax-based hydrogels with and without the addition of poly(vinyl alcohol) (PVA) at different concentrations were synthesized. Hydrogels were modified by the same amount of acetylsalicylic acid (ASA) which exhibits antithrombotic properties. The effect of modification by ASA on the properties of hydrogels was analyzed.
-
Hyperbranched polyethylenimine functionalized silica/polysulfone nanocomposite membranes for water purification
PublicationHyperbranched polyethyleneimine functionalized silica (PEI-SiO2) nanoparticles with considerable hydrophilicity were synthesized and incorporated into a polysulfone (PSF)/dimethylacetamide (DMA)/polyvinylpyrrolidone (PVP) membrane casting solution in five different ratios to fabricate PEI-SiO2/PSF nanocomposite membranes using nonsolvent-induced phase separation. The hydrophilic PEI-SiO2 nanoparticles were characterized by TEM,...
-
Impact and stretching standardized tests as useful tools for assessment of viscoelastic behavior for highly rubberized asphalt binder
PublicationAsphalt binder is generally identified as a brittle material at low service temperature or under high-speed load, and the brittleness becomes serious after weathering aging. Improving the toughness of asphalt binder through adding high-content of crumb tire rubber is an efficient method to solve this problem. Devulcanized rubber modified asphalt binder (DRMA) with different contents (15–40%) of devulcanized rubber (DR) were prepared...
-
Insights into Stoichiometry Adjustments Governing the Performance of Flexible Foamed Polyurethane/Ground Tire Rubber Composites
PublicationPolyurethanes (PU) are widely applied in the industry due to their tunable performance adjusted by changes in the isocyanate index—stoichiometric balance between isocyanate and hydroxyl groups. This balance is affected by the incorporation of modifiers of fillers into the PU matrix and is especially crucial for PU foams due to the additional role of isocyanates—foaming of the material. Despite the awareness of the issue underlined...
-
Integration of antifouling properties into epoxy coatings: a review
Publicationhe need for nontoxic antifouling coatings has encouraged material scientists to develop a class of organic coatings for diverse applications. As a versatile thermosetting resin and well known for coating application, antifouling characteristics have been integrated into epoxy along with anticorrosion and adhesive functions. Accordingly, both micro- and macro-biofoulings have been successfully controlled by using epoxy-based antifouling...
-
Layer-by-layer polymer deposited fabrics with superior flame retardancy and electrical conductivity
PublicationSmart and multifunctional textiles and fabrics are progressively developing, such that multifunctional fabrics are becoming more widespread. We elaborated herein multi-layered flax fabrics with superior flame retardancy and conductivity, which revealed fireproof feature while keeping conductivity during burning. The flax fabric was reinforced by layer-by-layer (LbL) deposition of sodium polyacrylate (SPA), polyethylenimine (PEI),...
-
Magnetic nanocomposites for biomedical applications
PublicationTissue engineering and regenerative medicine have solved numerous problems related to the repair and regeneration of damaged organs and tissues arising from aging, illnesses, and injuries. Nanotechnology has further aided tissue regeneration science and has provided outstanding opportunities to help disease diagnosis as well as treat damaged tissues. Based on the most recent findings, magnetic nanostructures (MNSs), in particular,...
-
Mater-Bi/Brewers’ Spent Grain Biocomposites—Novel Approach to Plant-Based Waste Filler Treatment by Highly Efficient Thermomechanical and Chemical Methods
PublicationThermoplastic starch (TPS) is a homogenous material prepared from native starch and water or other plasticizers subjected to mixing at a temperature exceeding starch gelatinization temperature. It shows major drawbacks like high moisture sensitivity, poor mechanical properties, and thermal stability. To overcome these drawbacks without significant cost increase, TPS could be blended with bio-based or biodegradable polymers and...
-
Metal nanoparticles-assisted early diagnosis of diseases
PublicationEarly diagnosis is essential for the effective illness treatment, but traditional diagnostic approaches inevitably have major downsides. Recent advancements in nanoparticle-based biosensors have created new opportunities for accelerating diagnosis. High surface area, exceptional sensitivity, high specificity, and optical characteristics of metal and metal oxide nanoparticles have made it possible to detect a variety of health conditions...
-
Metal-organic frameworks (MOF) based heat transfer: A comprehensive review
PublicationHigher than a standard level, the humidity provides a suitable environment for the pathogenic microorganisms to grow and increases energy consumption for cooling, increasing greenhouse gas emissions. Desiccant air-conditioning (DAC) is an effective method to reduce humidity and energy simultaneously. Conventional desiccants are not suitable for use as a desiccant in building air conditioners, mainly because of high regeneration...
-
Methods for biomaterials printing: A short review and perspective
PublicationPrinting technologies have opened larger windows of innovation and creativity to biomaterials engineers by providing them with the ability to fabricate complex shapes in a reasonable time, cost, and weight. However, there has always been a trouble with function adjusting in printing technologies in view of the multiplicity of materials and apparatus parameters. 3D printing, also known as additive manufacturing, revolutionized biomaterials...
-
Mission impossible for cellular internalization: When porphyrin alliance with UiO-66-NH2 MOF gives the cell lines a ride
PublicationIs it possible to accelerate cell internalization by hybridization of nanomaterials? Herein we support the realization of using metal-organic frameworks (MOFs) with the assistance of rigid porphyrin structure (H2TMP) aimed at drug loading, drug release, relative cell viability, and targeted in vitro drug delivery. There are several MOFs, i.e., UiO-66-NH2 (125 ± 12.5 nm), UiO-66-NH2 @H2TMP (160 ± 14 nm), UiO-66-NH2 @H2TMP@DOX, and...
-
Mussel‐inspired biomaterials: From chemistry to clinic
PublicationAfter several billions of years, nature still makes decisions on its own to identify, develop, and direct the most effective material for phenomena/challenges faced. Likewise, and inspired by the nature, we learned how to take steps in developing new technologies and materials innovations. Wet and strong adhesion by Mytilidae mussels (among which Mytilus edulis—blue mussel and Mytilus californianus—California mussel are the most...
-
Nanomaterials for photothermal and photodynamic cancer therapy
PublicationIn recent years, the role of optically sensitive nanomaterials has become powerful moieties in therapeutic techniques and has become particularly emphasized. Currently, by the extraordinary development of nanomaterials in different fields of medicine, they have found new applications. Phototherapy modalities, such as photothermal therapy (PTT) by toxic heat generation and photodynamic therapy (PDT) by reactive oxygen species, are...
-
Non-Isocyanate-Based Waterborne Polyurethanes
PublicationNon-isocyanate polyurethanes (NIPUs) are a greener alternative for the conventional polyurethanes synthesized using toxic and moisture-sensitive di- or polyisocyanates. The most often described method of NIPU synthesis involves the reaction of five-membered cyclic carbonates with amines, and resulting polymers containing primary and secondary hydroxyl groups (so they are also known as polyhydroxyurethanes), which can be further...