Filtry
wszystkich: 412
wybranych: 238
Wyniki wyszukiwania dla: DYSARTHRIA DETECTION, SPEECH RECOGNITION, SPEECH SYNTHESIS, INTERPRETABLE DEEP LEARNING MODELS
-
Adversarial attack algorithm for traffic sign recognition
PublikacjaDeep learning suffers from the threat of adversarial attacks, and its defense methods have become a research hotspot. In all applications of deep learning, intelligent driving is an important and promising one, facing serious threat of adversarial attack in the meanwhile. To address the adversarial attack, this paper takes the traffic sign recognition as a typical object, for it is the core function of intelligent driving. Considering...
-
THE ROLE OF INFERENCE IN MOBILE MEDICAL APPLICATION DESIGN
PublikacjaIn the early 21st century, artificial intelligence began to be used to process medical information. However, before this happened, predictive models used in healthcare could only consider a limited number of variables, and only in properly structured and organised medical data. Today, advanced tools based on machine learning techniques - which, using artificial neural networks, can explore extremely complex relationships - and...
-
Spatiotemporal Assessment of Satellite Image Time Series for Land Cover Classification Using Deep Learning Techniques: A Case Study of Reunion Island, France
PublikacjaCurrent Earth observation systems generate massive amounts of satellite image time series to keep track of geographical areas over time to monitor and identify environmental and climate change. Efficiently analyzing such data remains an unresolved issue in remote sensing. In classifying land cover, utilizing SITS rather than one image might benefit differentiating across classes because of their varied temporal patterns. The aim...
-
Position Estimation in Mixed Indoor-Outdoor Environment Using Signals of Opportunity and Deep Learning Approach
PublikacjaTo improve the user's localization estimation in indoor and outdoor environment a novel radiolocalization system using deep learning dedicated to work both in indoor and outdoor environment is proposed. It is based on the radio signatures using radio signals of opportunity from LTE an WiFi networks. The measurements of channel state estimators from LTE network and from WiFi network are taken by using the developed application....
-
CNN-CLFFA: Support Mobile Edge Computing in Transportation Cyber Physical System
PublikacjaIn the present scenario, the transportation Cyber Physical System (CPS) improves the reliability and efficiency of the transportation systems by enhancing the interactions between the physical and cyber systems. With the provision of better storage ability and enhanced computing, cloud computing extends transportation CPS in Mobile Edge Computing (MEC). By inspecting the existing literatures, the cloud computing cannot fulfill...
-
Pedestrian detection in low-resolution thermal images
PublikacjaOver one million people die in car accidents worldwide each year. A solution that will be able to reduce situations in which pedestrian safety is at risk has been sought for a long time. One of the techniques for detecting pedestrians on the road is the use of artificial intelligence in connection with thermal imaging. The purpose of this work was to design a system to assist the safety of people and car intelligence with the use...
-
Detection and localization of selected acoustic events in 3D acoustic field for smart surveillance applications
PublikacjaA method for automatic determination of position of chosen sound events such as speech signals and impulse sounds in 3-dimensional space is presented. The events are localized in the presence of sound reflections employing acoustic vector sensors. Human voice and impulsive sounds are detected using adaptive detectors based on modified peak-valley difference (PVD) parameter and sound pressure level. Localization based on signals...
-
Detection and localization of selected acoustic events in acoustic field for smart surveillance applications
PublikacjaA method for automatic determination of position of chosen sound events such as speech signals and impulse sounds in 3-dimensional space is presented. The evens are localized in the presence of sound reflections employing acoustic vector sensors. Human voice and impulsive sounds are detected using adaptive detectors based on modified peak-valley difference (PVD) parameter and sound pressure level. Localization based on signals...
-
Deep Learning-Based Intrusion System for Vehicular Ad Hoc Networks
PublikacjaThe increasing use of the Internet with vehicles has made travel more convenient. However, hackers can attack intelligent vehicles through various technical loopholes, resulting in a range of security issues. Due to these security issues, the safety protection technology of the in-vehicle system has become a focus of research. Using the advanced autoencoder network and recurrent neural network in deep learning, we investigated...
-
Spiral Search Grasshopper Features Selection with VGG19-ResNet50 for Remote Sensing Object Detection
PublikacjaRemote sensing object detection plays a major role in satellite imaging and is required in various scenarios such as transportation, forestry, and the ocean. Deep learning techniques provide efficient performance in remote sensing object detection. The existing techniques have the limitations of data imbalance, overfitting, and lower efficiency in detecting small objects. This research proposes the spiral search grasshopper (SSG)...
-
Detection of the Oocyte Orientation for the ICSI Method Automation
PublikacjaAutomation or even computer assistance of the popular infertility treatment method: ICSI (Intracytoplasmic Sperm Injection) would speed up the whole process and improve the control of the results. This paper introduces a preliminary research for automatic spermatozoon injection into the oocyte cytoplasm. Here, the method for detection a correct orientation of the polar body of the oocyte is presented. Proposed method uses deep...
-
Exploration of the Solubility Hyperspace of Selected Active Pharmaceutical Ingredients in Choline- and Betaine-Based Deep Eutectic Solvents: Machine Learning Modeling and Experimental Validation
PublikacjaDeep eutectic solvents (DESs) are popular green media used for various industrial, pharmaceutical, and biomedical applications. However, the possible compositions of eutectic systems are so numerous that it is impossible to study all of them experimentally. To remedy this limitation, the solubility landscape of selected active pharmaceutical ingredients (APIs) in choline chloride- and betaine-based deep eutectic solvents was...
-
Smartphone application supporting independent movement of the blind
PublikacjaImproving comfort of life of blind people is a problem of great importance. Neither a white canenor a guide dog, although both very useful, can be considered as a tool for achieving fullindependence in everyday movement around the city. On the market there are some navigation toolsinspired by car navigation systems, but they have many flaws, ranging from positioninginaccuracies to high prices. The authors present their own solution...
-
Diagnostic Models and Estimators for LDI in Transmission Pipelines
PublikacjaThis article considers and compares four analytical models of the pipeline flow process for leak detection and location tasks. The synthesis of these models is briefly outlined. Next, the methodology for generating data and diagnosing pipes is described, as well as experimental settings, assumptions and implemented scenarios. Finally, the quality of model-based diagnostic estimators has been evaluated for their bias, standard deviations...
-
Channel State Estimation in LTE-Based Heterogenous Networks Using Deep Learning
PublikacjaFollowing the continuous development of the information technology, the concept of dense urban networks has evolved as well. The powerful tools, like machine learning, break new ground in smart network and interface design. In this paper the concept of using deep learning for estimating the radio channel parameters of the LTE (Long Term Evolution) radio interface is presented. It was proved that the deep learning approach provides...
-
Outlier detection method by using deep neural networks
PublikacjaDetecting outliers in the data set is quite important for building effective predictive models. Consistent prediction can not be made through models created with data sets containing outliers, or robust models can not be created. In such cases, it may be possible to exclude observations that are determined to be outlier from the data set, or to assign less weight to these points of observation than to other points of observation....
-
Voiceless Stop Consonant Modelling and Synthesis Framework Based on MISO Dynamic System
PublikacjaA voiceless stop consonant phoneme modelling and synthesis framework based on a phoneme modelling in low-frequency range and high-frequency range separately is proposed. The phoneme signal is decomposed into the sums of simpler basic components and described as the output of a linear multiple-input and single-output (MISO) system. The impulse response of each channel is a third order quasi-polynomial. Using this framework, the...
-
Enabling Deeper Linguistic-based Text Analytics – Construct Development for the Criticality of Negative Service Experience
PublikacjaSignificant progress has been made in linguistic-based text analytics particularly with the increasing availability of data and deep learning computational models for more accurate opinion analysis and domain-specific entity recognition. In understanding customer service experience from texts, analysis of sentiments associated with different stages of the service lifecycle is a useful starting point. However, when richer insights...
-
Designing acoustic scattering elements using machine learning methods
PublikacjaIn the process of the design and correction of room acoustic properties, it is often necessary to select the appropriate type of acoustic treatment devices and make decisions regarding their size, geometry, and location of the devices inside the room under the treatment process. The goal of this doctoral dissertation is to develop and validate a mathematical model that allows predicting the effects of the application of the scattering...
-
Separability Assessment of Selected Types of Vehicle-Associated Noise
PublikacjaMusic Information Retrieval (MIR) area as well as development of speech and environmental information recognition techniques brought various tools in-tended for recognizing low-level features of acoustic signals based on a set of calculated parameters. In this study, the MIRtoolbox MATLAB tool, designed for music parameter extraction, is used to obtain a vector of parameters to check whether they are suitable for separation of...
-
Study of Multi-Class Classification Algorithms’ Performance on Highly Imbalanced Network Intrusion Datasets
PublikacjaThis paper is devoted to the problem of class imbalance in machine learning, focusing on the intrusion detection of rare classes in computer networks. The problem of class imbalance occurs when one class heavily outnumbers examples from the other classes. In this paper, we are particularly interested in classifiers, as pattern recognition and anomaly detection could be solved as a classification problem. As still a major part of...
-
AffecTube — Chrome extension for YouTube video affective annotations
PublikacjaThe shortage of emotion-annotated video datasets suitable for training and validating machine learning models for facial expression-based emotion recognition stems primarily from the significant effort and cost required for manual annotation. In this paper, we present AffecTube as a comprehensive solution that leverages crowdsourcing to annotate videos directly on the YouTube platform, resulting in ready-to-use emotion-annotated...
-
A Comprehensive Analysis of Deep Neural-Based Cerebral Microbleeds Detection System
PublikacjaMachine learning-based systems are gaining interest in the field of medicine, mostly in medical imaging and diagnosis. In this paper, we address the problem of automatic cerebral microbleeds (CMB) detection in magnetic resonance images. It is challenging due to difficulty in distinguishing a true CMB from its mimics, however, if successfully solved it would streamline the radiologists work. To deal with this complex three-dimensional...
-
OOA-modified Bi-LSTM network: An effective intrusion detection framework for IoT systems
PublikacjaCurrently, the Internet of Things (IoT) generates a huge amount of traffic data in communication and information technology. The diversification and integration of IoT applications and terminals make IoT vulnerable to intrusion attacks. Therefore, it is necessary to develop an efficient Intrusion Detection System (IDS) that guarantees the reliability, integrity, and security of IoT systems. The detection of intrusion is considered...
-
Visual Detection of People Movement Rules Violation in Crowded Indoor Scenes
PublikacjaThe paper presents a camera-independent framework for detecting violations of two typical people movement rules that are in force in many public transit terminals: moving in the wrong direction or across designated lanes. Low-level image processing is based on object detection with Gaussian Mixture Models and employs Kalman filters with conflict resolving extensions for the object tracking. In order to allow an effective event...
-
Classification of Covid-19 using Differential Evolution Chaotic Whale Optimization based Convolutional Neural Network
PublikacjaCOVID-19, also known as the Coronavirus disease-2019, is an transferrable disease that spreads rapidly, affecting countless individuals and leading to fatalities in this worldwide pandemic. The precise and swift detection of COVID-19 plays a crucial role in managing the pandemic's dissemination. Additionally, it is necessary to recognize COVID-19 quickly and accurately by investigating chest x-ray images. This paper proposed a...
-
Autoencoder application for anomaly detection in power consumption of lighting systems
PublikacjaDetecting energy consumption anomalies is a popular topic of industrial research, but there is a noticeable lack of research reported in the literature on energy consumption anomalies for road lighting systems. However, there is a need for such research because the lighting system, a key element of the Smart City concept, creates new monitoring opportunities and challenges. This paper examines algorithms based on the deep learning...
-
MP3vec: A Reusable Machine-Constructed Feature Representation for Protein Sequences
Publikacja—Machine Learning (ML) methods have been used with varying degrees of success on protein prediction tasks, with two inherent limitations. First, prediction performance often depends upon the features extracted from the proteins. Second, experimental data may be insufficient to construct reliable ML models. Here we introduce MP3vec, a transferable representation for protein sequences that is designed to be used specifically for sequence-to-sequence...
-
Quantifying inconsistencies in the Hamburg Sign Language Notation System
PublikacjaThe advent of machine learning (ML) has significantly advanced the recognition and translation of sign languages, bridging communication gaps for hearing-impaired communities. At the heart of these technologies is data labeling, crucial for training ML algorithms on a huge amount of consistently labeled data to achieve models that generalize well. The adoption of language-agnostic annotations is essential to connect different sign...
-
Intelligent Audio Signal Processing − Do We Still Need Annotated Datasets?
PublikacjaIn this paper, intelligent audio signal processing examples are shortly described. The focus is, however, on the machine learning approach and datasets needed, especially for deep learning models. Years of intense research produced many important results in this area; however, the goal of fully intelligent signal processing, characterized by its autonomous acting, is not yet achieved. Therefore, a review of state-of-the-art concerning...
-
Cascade Object Detection and Remote Sensing Object Detection Method Based on Trainable Activation Function
PublikacjaObject detection is an important process in surveillance system to locate objects and it is considered as major application in computer vision. The Convolution Neural Network (CNN) based models have been developed by many researchers for object detection to achieve higher performance. However, existing models have some limitations such as overfitting problem and lower efficiency in small object detection. Object detection in remote...
-
Data Acquisition and Processing for GeoAI Models to Support Sustainable Agricultural Practices
PublikacjaThere are growing opportunities to leverage new technologies and data sources to address global problems related to sustainability, climate change, and biodiversity loss. The emerging discipline of GeoAI resulting from the convergence of AI and Geospatial science (Geo-AI) is enabling the possibility to harness the increasingly available open Earth Observation data collected from different constellations of satellites and sensors...
-
Multiplicative Long Short-Term Memory with Improved Mayfly Optimization for LULC Classification
PublikacjaLand Use and Land Cover (LULC) monitoring is crucial for global transformation, sustainable land control, urban planning, urban growth prediction, and the establishment of climate regulations for long-term development. Remote sensing images have become increasingly important in many environmental planning and land use surveys in recent times. LULC is evaluated in this research using the Sat 4, Sat 6, and Eurosat datasets. Various...
-
Ontology-based text convolution neural network (TextCNN) for prediction of construction accidents
PublikacjaThe construction industry suffers from workplace accidents, including injuries and fatalities, which represent a significant economic and social burden for employers, workers, and society as a whole.The existing research on construction accidents heavily relies on expert evaluations,which often suffer from issues such as low efficiency, insufficient intelligence, and subjectivity.However, expert opinions provided in construction...
-
Efficiency of Artificial Intelligence Methods for Hearing Loss Type Classification: an Evaluation
PublikacjaThe evaluation of hearing loss is primarily conducted by pure tone audiometry testing, which is often regarded as golden standard for assessing auditory function. If the presence of hearing loss is determined, it is possible to differentiate between three types of hearing loss: sensorineural, conductive, and mixed. This study presents a comprehensive comparison of a variety of AI classification models, performed on 4007 pure tone...
-
Bimodal deep learning model for subjectively enhanced emotion classification in films
PublikacjaThis research delves into the concept of color grading in film, focusing on how color influences the emotional response of the audience. The study commenced by recalling state-of-the-art works that process audio-video signals and associated emotions by machine learning. Then, assumptions of subjective tests for refining and validating an emotion model for assigning specific emotional labels to selected film excerpts were presented....
-
How Integration of a Brain-Machine Interface and Obstacle Detection System Can Improve Wheelchair Control via Movement Image
PublikacjaThis study presents a human-computer interaction combined with a brain-machine interface (BMI) and obstacle detection system for remote control of a wheeled robot through movement imagery, providing a potential solution for individuals facing challenges with conventional vehicle operation. The primary focus of this work is the classification of surface EEG signals related to mental activity when envisioning movement and deep relaxation...
-
Graph Representation Integrating Signals for Emotion Recognition and Analysis
PublikacjaData reusability is an important feature of current research, just in every field of science. Modern research in Affective Computing, often rely on datasets containing experiments-originated data such as biosignals, video clips, or images. Moreover, conducting experiments with a vast number of participants to build datasets for Affective Computing research is time-consuming and expensive. Therefore, it is extremely important to...
-
Robust Object Detection with Multi-input Multi-output Faster R-CNN
PublikacjaRecent years have seen impressive progress in visual recognition on many benchmarks, however, generalization to the out-of-distribution setting remains a significant challenge. A state-of-the-art method for robust visual recognition is model ensembling. However, recently it was shown that similarly competitive results could be achieved with a much smaller cost, by using multi-input multi-output architecture (MIMO). In this work,...
-
Robust Object Detection with Multi-input Multi-output Faster R-CNN
PublikacjaRecent years have seen impressive progress in visual recognition on many benchmarks, however, generalization to the out-of-distribution setting remains a significant challenge. A state-of-the-art method for robust visual recognition is model ensembling. However, recently it was shown that similarly competitive results could be achieved with a much smaller cost, by using multi-input multi-output architecture (MIMO). In this work,...
-
Poprawa jakości klasyfikacji głębokich sieci neuronowych poprzez optymalizację ich struktury i dwuetapowy proces uczenia
PublikacjaW pracy doktorskiej podjęto problem realizacji algorytmów głębokiego uczenia w warunkach deficytu danych uczących. Głównym celem było opracowanie podejścia optymalizującego strukturę sieci neuronowej oraz zastosowanie uczeniu dwuetapowym, w celu uzyskania mniejszych struktur, zachowując przy tym dokładności. Proponowane rozwiązania poddano testom na zadaniu klasyfikacji znamion skórnych na znamiona złośliwe i łagodne. W pierwszym...
-
Robustness in Compressed Neural Networks for Object Detection
PublikacjaModel compression techniques allow to significantly reduce the computational cost associated with data processing by deep neural networks with only a minor decrease in average accuracy. Simultaneously, reducing the model size may have a large effect on noisy cases or objects belonging to less frequent classes. It is a crucial problem from the perspective of the models' safety, especially for object detection in the autonomous driving...
-
Music information retrieval—The impact of technology, crowdsourcing, big data, and the cloud in art.
PublikacjaThe exponential growth of computer processing power, cloud data storage, and crowdsourcing model of gathering data bring new possibilities to music information retrieval (mir) field. Mir is no longer music content retrieval only; the area also comprises the discovery of expressing feelings and emotions contained in music, incorporating other than hearing modalities for helping this issue, users’ profiling, merging music with social...
-
Empirical Analysis of Forest Penalizing Attribute and Its Enhanced Variations for Android Malware Detection
PublikacjaAs a result of the rapid advancement of mobile and internet technology, a plethora of new mobile security risks has recently emerged. Many techniques have been developed to address the risks associated with Android malware. The most extensively used method for identifying Android malware is signature-based detection. The drawback of this method, however, is that it is unable to detect unknown malware. As a consequence of this problem,...
-
Multimodal human-computer interfaces based on advanced video and audio analysis
PublikacjaMultimodal interfaces development history is reviewed briefly in the introduction. Examples of applications of multimodal interfaces to education software and for the disabled people are presented, including interactive electronic whiteboard based on video image analysis, application for controlling computers with mouth gestures and the audio interface for speech stretching for hearing impaired and stuttering people. The Smart...
-
Computational Complexity and Its Influence on Predictive Capabilities of Machine Learning Models for Concrete Mix Design
PublikacjaThe design of concrete mixtures is crucial in concrete technology, aiming to produce concrete that meets specific quality and performance criteria. Modern standards require not only strength but also eco-friendliness and production efficiency. Based on the Three Equation Method, conventional mix design methods involve analytical and laboratory procedures but are insufficient for contemporary concrete technology, leading to overengineering...
-
A novel approach exploiting properties of convolutional neural networks for vessel movement anomaly detection and classification
PublikacjaThe article concerns the automation of vessel movement anomaly detection for maritime and coastal traffic safety services. Deep Learning techniques, specifically Convolutional Neural Networks (CNNs), were used to solve this problem. Three variants of the datasets, containing samples of vessel traffic routes in relation to the prohibited area in the form of a grayscale image, were generated. 1458 convolutional neural networks with...
-
Convolutional Neural Networks for C. Elegans Muscle Age Classification Using Only Self-Learned Features
PublikacjaNematodes Caenorhabditis elegans (C. elegans) have been used as model organisms in a wide variety of biological studies, especially those intended to obtain a better understanding of aging and age-associated diseases. This paper focuses on automating the analysis of C. elegans imagery to classify the muscle age of nematodes based on the known and well established IICBU dataset. Unlike many modern classification methods, the proposed...
-
Adaptacyjny system oświetlania dróg oraz inteligentnych miast
PublikacjaPrzedmiotem rozprawy jest zbadanie praktycznej możliwości wykrywania w czasie rzeczywistym anomalii w systemie oświetlenia drogowego w oparciu o analizę danych ze inteligentnych liczników energii. Zastosowanie inteligentnych liczników energii elektrycznej (Smart Meter) w systemach oświetlenia drogowego stwarza nowe możliwości w zakresie automatycznej diagnostyki takich niepożądanych zjawisk jak awarie lamp, odstępstwa od harmonogramu...
-
Multimodal learning application with interactive animated character. [Multimodalna aplikacja edukacyjna wykorzystująca interaktywną animowaną postać]
PublikacjaThe aim of this study is to design a computer application that may assist teachers and therapists in multimodal manner in their work with impaired or disabled children. The application can be operated in many different ways, giving to a child with special educational needs a possibility to learn and train many skills or treat speech disorders. The main stress in this research is on the creation of animated character that will serve...