Filtry
wszystkich: 244
wybranych: 223
-
Katalog
Filtry wybranego katalogu
Wyniki wyszukiwania dla: NUMERICAL ALGORITHM
-
Numerical algorithms of planning safe ship trajectories for ARPA systems
PublikacjaTeza rozprawy: ''Połączenie odpowiedniej miary ryzyka kolizji obiektów i metody unikania kolizji za pomocą manewru niezbędnego pozwala na opracowanie szybkiej, efektywnej i prostej w implementacji metody planowania bezpiecznych trajektorii statków dla systemów ARPA, uwzględniającej dowolną zadaną domenę obiektu. Dobór kształtu domeny obiektu ma znaczny wpływ na zgodność wynikowej trajektorii z regułami MPDM. Minimalizacja liczby...
-
Numerical Algorithms of Planning Safe Ship Trajectories for ARPA Systems
PublikacjaGłównym celem pracy było zaprojektowanie metody znajdowania bezpiecznych trajektorii statków, która byłaby prosta w implementacji, szybka (niska złożoność obliczeniowa)i deterministyczna, elastyczna (umożliwiałaby zastosowanie dowolnej domeny). Aby zrealizować cel należało zbadać bieżący stan wiedzy w dziedzinie,zaprojektować nową metodę, zaimplementować metodę (wraz ze wszystkimi niezbędnymi algorytmami) w środowisku programistycznym...
-
A COMPUTATIONAL ALGORITHM FOR THE NUMERICAL SOLUTION OF NONLINEAR FRACTIONAL INTEGRAL EQUATIONS
Publikacja -
Efficient Gradient-Based Algorithm with Numerical Derivatives for Expedited Optimization of Multi-Parameter Miniaturized Impedance Matching Transformers
PublikacjaFull-wave electromagnetic (EM) simulation tools have become ubiquitous in the design of microwave components. In some cases, e.g., miniaturized microstrip components, EM analysis is mandatory due to considera¬ble cross-coupling effects that cannot be accounted for otherwise (e.g., by means of equivalent circuits). These effects are particularly pronounced in the structures in¬volving slow-wave compact cells and their numerical...
-
Numerical solution of threshold problems in epidemics and population dynamics
PublikacjaA new algorithm is proposed for the numerical solution of threshold problems in epidemics and population dynamics. These problems are modeled by the delay-differential equations, where the delay function is unknown and has to be determined from the threshold conditions. The new algorithm is based on embedded pair of continuous Runge–Kutta method of order p = 4 and discrete Runge–Kutta method of order q = 3 which is used for the...
-
Application of the Monte Carlo algorithm for solving volume integral equation in light scattering simulations
PublikacjaVarious numerical methods were proposed for analysis of the light scattering phenomenon. Important group of these methods is based on solving the volume integral equation describing the light scattering process. The popular method from this group is the discrete dipole approximation (DDA). DDA uses various numerical algorithms to solve the discretized integral equation. In the recent years, the application of the Monte Carlo (MC)...
-
Balance errors in numerical solutions of shallow water equations
PublikacjaThe analysis of the conservative properties of the shallow water equations is presented in the paper. The work focuses on the consistency of numerical solution of these equations with the conservation laws of mass and momentum. The investigations involve two different conservative forms which are solved by an implicit box scheme. The theoretical analysis supported by numerical experiments is carried out for rectangular channel...
-
Improved maximum power point tracking algorithms by using numerical analysis techniques for photovoltaic systems
PublikacjaSolar photovoltaic (PV) panels generate optimal electricity when operating at the maximum power point (MPP). This study introduces a novel MPP tracking algorithm that leverages the numerical prowess of the predictor-corrector method, tailored to accommodate voltage and current fluctuations in PV panels resulting from variable environmental factors like solar irradiation and temperature. This paper delves into the intricate dynamics...
-
Proximal primal–dual best approximation algorithm with memory
PublikacjaWe propose a new modified primal–dual proximal best approximation method for solving convex not necessarily differentiable optimization problems. The novelty of the method relies on introducing memory by taking into account iterates computed in previous steps in the formulas defining current iterate. To this end we consider projections onto intersections of halfspaces generated on the basis of the current as well as the previous...
-
Complex Root Finding Algorithm Based on Delaunay Triangulation
PublikacjaA simple and flexible algorithm for finding zeros of a complex function is presented. An arbitrary-shaped search region can be considered and a very wide class of functions can be analyzed, including those containing singular points or even branch cuts. The proposed technique is based on sampling the function at nodes of a regular or a self-adaptive mesh and on the analysis of the function sign changes. As a result, a set of candidate points...
-
Numerical Method for Stability Testing of Fractional Exponential Delay Systems
PublikacjaA numerical method for stability testing of fractional exponential systems including delays is presented in this contribution. We propose the numerical test of stability for a very general class of systems with a transfer function, which includes polynomials and exponentials of fractional powers of the Laplace variable s combined with delay terms. Such a system is unstable if any root of its characteristic equation, which usually...
-
Multimodal Genetic Algorithm with Phase Analysis to Solve Complex Equations of Electromagnetic Analysis
PublikacjaIn this contribution, a new genetic-algorithm-based method of finding roots and poles of a complex function of a complex variable is presented. The algorithm employs the phase analysis of the function to explore the complex plane with the use of the genetic algorithm. Hence, the candidate regions of root and pole occurrences are selected and verified with the use of discrete Cauchy's argument principle. The algorithm is evaluated...
-
Numerical crash analysis of the cable barrier
PublikacjaSafety barriers are used to increase road safety. Their basic task is to prevent the errant vehicle from getting off the road in places which are potentially dangerous for vehicle passengers. Barriers, which are used on European roads, must fulfill the requirements of EN 1317 standards by passing appropriate crash tests. Because of their high cost, numerical simulations are increasingly used to evaluate the properties of safety...
-
Modal Adjustment of Rayleigh Based Structural Damping and Coordinate-Partitioning Algorithm Dedicated to Frictionless Contact Constraints between Multibody System and Structure Modelled with Finite Elements
PublikacjaThe paper presents a dedicated numerical algorithm. The algorithm is advantageous during investigations of the dynamics of a hybrid multibody / finite-elements system. We focus our attention on interactions resulting from mechanical contact. Pointwise contact connects a vertex of the multibody structure and a surface of the elastic reference body. Instead of a positive value of the relative penetration factor, constraint equations...
-
Arterial cannula shape optimization by means of the rotational firefly algorithm
PublikacjaThe article presents global optimization results of arterial cannula shapes by means of the newly modified firefly algorithm. The search for the optimal arterial cannula shape is necessary in order to minimize losses and prepare the flow that leaves the circulatory support system of a ventricle (i.e. blood pump) before it reaches the heart. A modification of the standard firefly algorithm, the so-called rotational firefly algorithm,...
-
Expedited antenna optimization with numerical derivatives and gradient change tracking
PublikacjaDesign automation has been playing an increasing role in the development of novel antenna structures for various applications. One of its aspects is electromagnetic (EM)-driven design closure, typically applied upon establishing the antenna topology, and aiming at adjustment of geometry parameters to boost the performance figures as much as possible. Parametric optimization is often realized using local methods given usually reasonable...
-
Solution of the dike-break problem using finite volume method and splitting technique
PublikacjaIn the paper the finite volume method (FVM) is presented for the solution of two-dimensional shallow water equations. These equations are frequently used to simulate the dam-break and dike-break induced flows. The applied numerical algorithm of FVM is based on the wave-propagation algorithm which ensures a stable solution and simultaneously minimizes the numerical errors. The dimensional decomposition according to the coordinate...
-
Task Assignments in Logistics by Adaptive Multi-Criterion Evolutionary Algorithm with Elitist Selection
PublikacjaAn evolutionary algorithm with elitist selection has been developed for finding Pareto-optimal task assignments in logistics. A multi-criterion optimization problem has been formulated for finding a set of Pareto- optimal solutions. Three criteria have been applied for evaluation of task assignment: the workload of a bottleneck machine, the cost of machines, and the numerical performance of system. The machine constraints have...
-
Numerical Test for Stability Evaluation of Discrete-Time Systems
PublikacjaIn this paper, a new numerical test for stability evaluation of discrete-time systems is presented. It is based on modern root-finding techniques at the complex plane employing the Delaunay triangulation and Cauchy's Argument Principle. The method evaluates if a system is stable and returns possible values and multiplicities of unstable zeros of the characteristic equation. For state-space discrete-time models, the developed test...
-
Numerical Solution of the Two-Dimensional Richards Equation Using Alternate Splitting Methods for Dimensional Decomposition
PublikacjaResearch on seepage flow in the vadose zone has largely been driven by engineering and environmental problems affecting many fields of geotechnics, hydrology, and agricultural science. Mathematical modeling of the subsurface flow under unsaturated conditions is an essential part of water resource management and planning. In order to determine such subsurface flow, the two-dimensional (2D) Richards equation can be used. However,...
-
EXPERIMENTAL AND NUMERICAL VALIDATION OF THE IMPROVED VORTEX METHOD APPLIED TO CP745 MARINE PROPELLER MODEL
PublikacjaThe article presents a numerical analysis of the CP745 marine propeller model by means of the improved vortex method and CFD simulations. Both numerical approaches are validated experimentally by comparing with open water characteristics of the propeller. The introduced modification of the vortex method couples the lifting surface approach for the propeller blades and the boundary element method for the hub. What is more, a...
-
The statistical impact of experimental result scatter of asphalt mixtures on their numerical modelling
PublikacjaThe paper presents selected test results of asphalt mixture conducted in low temperatures. The obtained parameters are highly diverse. It concerns ultimate breaking loads, stiffness parameters related to Young's modulus but also the fracture course. Statistical analysis upon the results makes it possible to relevantly estimate the material-defining parameter values. Such a random approach leads to the mean values of breaking and...
-
A novel heterogeneous model of concrete for numerical modelling of ground penetrating radar
PublikacjaThe ground penetrating radar (GPR) method has increasingly been applied in the non-destructive testing of reinforced concrete structures. The most common approach to the modelling of radar waves is to consider concrete as a homogeneous material. This paper proposes a novel, heterogeneous, numerical model of concrete for exhaustive interpretation of GPR data. An algorithm for determining the substitute values of the material constants...
-
Numerical solution analysis of fractional point kinetics and heat exchange in nuclear reactor
PublikacjaThe paper presents the neutron point kinetics and heat exchange models for the nuclear reactor. The models consist of a nonlinear system of fractional ordinary differential and algebraic equations. Two numerical algorithms are used to solve them. The first algorithm is application of discrete Grünwald-Letnikov definition of the fractional derivative in the model. The second involves building an analog scheme in the FOMCON Toolbox...
-
Numerical simulation of temperature distribution of heat flow on reservoir tanks connected in a series
PublikacjaThe flow of temperature distribution through a medium in thermodynamic studies plays an important role in understanding physical phenomena in chemical science and petroleum engineering, while temperature distribution indicates the degree of reaction that must be undergone to obtain the final product. Therefore, this paper aims to present and apply the exponential matrix algorithm (EMA), differential transformation algorithm (DTA),...
-
Vibration of the bridge under moving singular loads - theoretical formulation and numerical solution
PublikacjaThe paper presents the results of the numerical analysis of a simple vehicle passing over a simply supported bridge span. The bridge is modelled by a Euler-Bernoulli beam. The vehicle is modelled as a linear, visco-elastic oscillator, moving at a constant speed. The system is described by a set of differential equations of motion and solved numerically using the Runge-Kutta algorithm. The results are compared with the solution...
-
A Novel Trust-Region-Based Algorithm with Flexible Jacobian Updates for Expedited Optimization of High-Frequency Structures
PublikacjaSimulation-driven design closure is mandatory in the design of contemporary high-frequency components. It aims at improving the selected performance figures through adjustment of the structure’s geometry (and/or material) parameters. The computational cost of this process when employing numerical optimization is often prohibitively high, which is a strong motivation for the development of more efficient methods. This is especially...
-
Non-Least Square GNSS Positioning Algorithm for Densely Urbanized Areas
PublikacjaThe paper introduces an essentially new algorithm for calculating the GNSS position as an alternative to the least-square method. The proposed approach can be widely applied to any positioning method that uses multiple position lines for position calculation and is an example ofhow using a numerical solution can improve position accuracy without access to historical data. In essence, the method is based on the adaptation of the...
-
Flow through a prosthetic mechanical aortic valve: Numerical model and experimental study
PublikacjaThis research presents a numerical model dedicated for virtual patient diagnostics in the field of synthetic valve implantation. The model operates based on computational fluid dynamics solver with implemented rigid body motion solver. Characteristic indicators related to the prosthetic valve were determined to assess the correctness of cardiac system operation after implantation. A novel approach for dynamic time discretization...
-
Numerical Test for Stability Evaluation of Analog Circuits
PublikacjaIn this contribution, a new numerical test for the stability evaluation of analog circuits is presented. Usually, if an analog circuit is unstable then the roots of its characteristic equation are localized on the right half-plane of the Laplace s- plane. Because this region is unbounded, we employ the bilinear transformation to map it into the unit disc on the complex plane. Hence, the existence of any root inside the unit disc...
-
Self-Adaptive Mesh Generator for Global Complex Roots and Poles Finding Algorithm
PublikacjaIn any global method of searching for roots and poles, increasing the number of samples increases the chances of finding them precisely in a given area. However, the global complex roots and poles finding algorithm (GRPF) (as one of the few) has direct control over the accuracy of the results. In addition, this algorithm has a simple condition for finding all roots and poles in a given area: it only requires a sufficiently dense...
-
Global Complex Roots and Poles Finding Algorithm Based on Phase Analysis for Propagation and Radiation Problems
PublikacjaA flexible and effective algorithm for complex roots and poles finding is presented. A wide class of analytic functions can be analyzed, and any arbitrarily shaped search region can be considered. The method is very simple and intuitive. It is based on sampling a function at the nodes of a regular mesh, and on the analysis of the function phase. As a result, a set of candidate regions is created and then the roots/poles are verified...
-
Selection of optimal location and rated power of capacitor banks in distribution network using genetic algorithm
PublikacjaIn this paper, the problem of placement and rated power of capacitor banks in the Distribution Network (DN) is considered. We try to suggest the best places for installing capacitor banks and define their reactive power. The considered formulation requires the optimization of the cost of two different objectives. Therefore the use of properly multiobjective heuristic optimization methods is desirable. To solve this problem we use...
-
An attempt to develop a model selection algorithm of computer simulation during the design process of mechanical response of any mechanical body
Publikacjan the literature, there are algorithms associated with the design of simulations of technological processes, in which the material model has always been defined previously. However, in none of the studies of computer simulation modelling of technological processes known to the authors of this article, is there a detailed description of how the algorithm, or the selection of plastic model used, is subject to this process. This article...
-
An Attempt to Develop a Model Selection Algorithm of Computer Simulation during the Design Process of Mechanical Response of Any Mechanical Body
PublikacjaIn the literature, there are algorithms associated with the design of simulations of technological processes, in which the material model has always been defined previously. However, in none of the studies of computer simulation modelling of technological processes known to the authors of this article, is there a detailed description of how the algorithm, or the selection of plastic model used, is subject to this process. This...
-
Mechanism of Solute and Thermal Characteristics in a Casson Hybrid Nanofluid Based with Ethylene Glycol Influenced by Soret and Dufour Effects
PublikacjaThis article models a system of partial differential equations (PDEs) for the thermal and solute characteristics under gradients (concentration and temperature) in the magnetohydrodynamic flow of Casson liquid in a Darcy porous medium. The modelled problems are highly non-linear with convective boundary conditions. These problems are solved numerically with a finite element approach under a tolerance of 10−8. A numerical algorithm...
-
Reliable Greedy Multipoint Model-Order Reduction Techniques for Finite-Element Analysis
PublikacjaA new greedy multipoint model-order reduction algorithm for fast frequency-domain finite-element method simulations of electromagnetic problems is proposed. The location of the expansion points and the size of the projection basis are determined based on a rigorous error estimator. Compared to previous multipoint methods, the quality of the error estimator is significantly improved by ensuring the orthogonality of the projection...
-
Computationally-efficient design optimisation of antennas by accelerated gradient search with sensitivity and design change monitoring
PublikacjaElectromagnetic (EM) simulation tools are of primary importance in the design of contemporary antennas. The necessity of accurate performance evaluation of complex structures is a reason why the final tuning of antenna dimensions, aimed at improvement of electrical and field characteristics, needs to be based on EM analysis. Design automation is highly desirable and can be achieved by coupling EM solvers with numerical optimisation...
-
Numerical Issues and Approximated Models for the Diagnosis of Transmission Pipelines
PublikacjaThe chapter concerns numerical issues encountered when the pipeline flow process is modeled as a discrete-time state-space model. In particular, issues related to computational complexity and computability are discussed, i.e., simulation feasibility which is connected to the notions of singularity and stability of the model. These properties are critical if a diagnostic system is based on a discrete mathematical model of the flow...
-
Towards an efficient multi-stage Riemann solver for nuclear physics simulations
PublikacjaRelativistic numerical hydrodynamics is an important tool in high energy nuclear science. However, such simulations are extremely demanding in terms of computing power. This paper focuses on improving the speed of solving the Riemann problem with the MUSTA-FORCE algorithm by employing the CUDA parallel programming model. We also propose a new approach to 3D finite difference algorithms, which employ a GPU that uses surface memory....
-
Optimised Robust Placement of Hard Quality Sensors for Robust Monitoring of Quality in Drinking Water Distribution Systems
PublikacjaA problem of optimised robust placement of the hard quality sensors in Drinking Water Distribution Systems under several water demand scenarios for robust quality monitoring is formulated. Numerical algorithms to solve the problem are derived. The optimality is meant as achieving at the same time a desired trade off between the sensor capital and maintenance costs and resulting robust estimation accuracy of the monitoring algorithm...
-
Speed estimation of a car at impact with a W-beam guardrail using numerical simulations and machine learning
PublikacjaThis paper aimed at developing a new method of estimating the impact speed of a passenger car at the moment of a crash into a W-beam road safety barrier. The determination of such a speed based on the accident outcomes is demanding, because often there is no access to full accident data. However, accurate determination of the impact speed is one of the key elements in the reconstruction of road accidents. A machine learning algorithm...
-
Optimised Allocation of Hard Quality Sensors for Robust Monitoring of Quality in Drinking Water Distribution Systems
PublikacjaA problem of optimised placement of the hard quality sensors in Drinking Water Distribution Systems for robust quality monitoring is formulated. Two numerical algorithms to solve the problem are derived. The optimality is meant as achieving a desired trade off between the sensor capital and maintenance costs and resulting robust estimation accuracy of the monitoring algorithm. The robust estimation algorithm recently developed...
-
Locating and Identifying Ferromagnetic Objects
PublikacjaThe new non-iterative method of determining the dipole moment and location is presented in this paper. The algorithm of an object's localization and identification was achieved by using numerical calculations and approximation method. The arbitrary shapes of an object were assumed in the identification algorithm - axially symmetric spheroid (a prolate and an oblate). Several examples of localization and identification of an object's...
-
Locating and Identifying Ferromagnetic Objects
PublikacjaThe new non-iterative method of determining the dipole moment and location is presented in this paper. The algorithm of an object's localization and identification was achieved by using numerical calculations and approximation method. The arbitrary shapes of an object were assumed in the identification algorithm - axially symmetric spheroid (a prolate and an oblate). Several examples of localization and identification of an object's...
-
Neural Networks, Support Vector Machine and Genetic Algorithms for Autonomous Underwater Robot Support
PublikacjaIn this paper, artificial neural networks, a classification technique called support vector machine and meta-heuristics genetic algorithm have been considered for development in autonomous underwater robots. Artificial neural networks have been used for seabed modelling as well as support vector machine has been applied for the obstacles classification to avoid some collision problems. Moreover, genetic algorithm has been applied...
-
Impact of the Finite Element Mesh Structure on the Solution Accuracy of a Two-Dimensional Kinematic Wave Equation
PublikacjaThe paper presents the influence of the finite element mesh structure on the accuracy of the numerical solution of a two-dimensional linear kinematic wave equation. This equation was solved using a two-level scheme for time integration and a modified finite element method with triangular elements for space discretization. The accuracy analysis of the applied scheme was performed using a modified equation method for three different...
-
Multi-objective Tabu-based Differential Evolution for Teleportation of Smart Virtual Machines in Private Computing Clouds
PublikacjaWe propose a multi-objective approach for using differential evolution algorithm with tabu search algorithm as an additional mutation for live migration (teleportation) of virtual machines. This issue is crucial in private computing clouds. Teleportation of virtual machines is supposed to be planned to determine Pareto-optimal solutions for several criteria such as workload of the bottleneck host, communication capacity of the...
-
Expedited Trust-Region-Based Design Closure of Antennas by Variable-Resolution EM Simulations
PublikacjaThe observed growth in the complexity of modern antenna topologies fostered a widespread employment of numerical optimization methods as the primary tools for final adjustment of the system parameters. This is mainly caused by insufficiency of traditional design closure approaches, largely based on parameter sweeping. Reliable evaluation of complex antenna structures requires full-wave electromagnetic (EM) analysis. Yet, EM-driven...
-
FDTD Method for Electromagnetic Simulations in Media Described by Time-Fractional Constitutive Relations
PublikacjaIn this paper, the finite-difference time-domain (FDTD) method is derived for electromagnetic simulations in media described by the time-fractional (TF) constitutive relations. TF Maxwell’s equations are derived based on these constitutive relations and the Grünwald–Letnikov definition of a fractional derivative. Then the FDTD algorithm, which includes memory effects and energy dissipation of the considered media, is introduced....