Wyniki wyszukiwania dla: KINETIC CONSTITUTIVE EQUATION
-
On refined constitutive equations in the six-field theory of elastic shells
PublikacjaWithin the resultant six-field shell theory, the second approximation to the complementary energy density of an isotropic elastic shell undergoing small strains is constructed. In this case, the resultant drilling couples are expressed explicitly by the stress resultants and stress couples as well as by amplitudes of the quadratic and cubic distributions of an intrinsic deviation vector. The refined 2D strain-stress and stress-strain...
-
Constitutive Modelling of Knitted Abdominal Implants in Numerical Simulations of Repaired Hernia Mechanics
PublikacjaThe paper presents a numerical approach to describe mechanical behavior of anisotropic textile material, which is a selected abdominal prosthesis. Two constitutive nonlinear concepts are compared. In the first one the material is considered composed from two families of threads (dense net model) and in the second one the material is homogeneous but anisotropic (as proposed by Gassel, Ogden, Holzapfel). Parameters of both models...
-
A constitutive law for concrete with smooth transition from continuous into discontinuous cracks’ description
PublikacjaPaper presents a constitutive model for concrete that combines a continuous and discontinuous crack’s description to simulate the concrete under tensile dominated loads. In a continuum regime, two different constitutive laws were used. First, a plasticity model with the Rankine failure criterion and an associated flow rule was used. Second, a constitutive law based on isotropic damage mechanics was formulated. Both model alternatives...
-
Straightened characteristics of McKendrick-von Foerster equation
PublikacjaWe study the McKendrick-von Foerster equation with renewal (that is the age-structured model, with total population dependent coefficient and nonlinearity). By using a change of variables, the model is then transformed to a standard age-structured model in which the total population dependent coefficient of the transport term reduces to a constant 1. We use this transformation to get existence, uniqueness of solutions of the problem...
-
Analysis of Crash Computation on a Basis of the Pronciple of Linear Momentum and Kinetic Energy
PublikacjaThe article shows the calculation of a vehicle crash with a fixed pile, modelled by the finite element method. There were compared during the crash simulations changes in kinetic energy, as well as – changes in linear momentum and its derivative, with respect to time. Calculations were made in the HyperWorks CAE software environment. The obtained results show influence of various body parts and devices of the deceleration on...
-
FDTD Method for Electromagnetic Simulations in Media Described by Time-Fractional Constitutive Relations
PublikacjaIn this paper, the finite-difference time-domain (FDTD) method is derived for electromagnetic simulations in media described by the time-fractional (TF) constitutive relations. TF Maxwell’s equations are derived based on these constitutive relations and the Grünwald–Letnikov definition of a fractional derivative. Then the FDTD algorithm, which includes memory effects and energy dissipation of the considered media, is introduced....
-
Geometrically Nonlinear Analysis of Functionally Graded Shells Based on 2-D Cosserat Constitutive Model
PublikacjaIn this paper geometrically nonlinear analysis of functionally graded shells in 6-parameter shell theory is presented. It is assumed that the shell consists of two constituents: ceramic and metal. The mechanical properties are graded through the thickness and are described by power law distribution. Formulation based on 2-D Cosserat constitutive model is used to derive constitutive relation for functionally graded shells. Numerical...
-
KOLMOGOROV EQUATION SOLUTION: MULTIPLE SCATTERING EXPANSION AND PHOTON STATISTICS EVOLUTION MODELING
PublikacjaWe consider a formulation of the Cauchy problem for the Kolmogorov equation which corresponds to a localized source of particles to be scattered by a medium with a given scattering amplitude density. The multiple scattering amplitudes are introduced and the corresponding series solution of the equation is constructed. We investigate the integral representation for the first series terms, its estimations and values of the photon...
-
Thermal ablation modeling via the bioheat equation and its numerical treatment
PublikacjaThe phenomenon of thermal ablation is described by Pennes’ bioheat equation. This model is based on Newton’s law of cooling. Many approximate methods have been considered because of the importance of this issue. We propose an implicit numerical scheme which has better stability properties than other approaches.
-
Database of the illustrative simulations of the nonstandard approximation of the generalized Burgers–Huxley equation
Dane BadawczeThe presented dataset is a result of numerical analysis of a generalized Burgers–Huxley partial differential equation. An analyzed diffusive partial differential equation consist with nonlinear advection and reaction. The reaction term is a generalized form of the reaction law of the Hodgkin–Huxley model, while the advection is a generalized form of...
-
Methods of solving the Atkins equation determine shear angle with taking into consideration a modern fracture mechanics
PublikacjaIn the paper are presented methods of solving nonlinear Atkins equation . The Atkins equation describe shear angle with taking into account properties of material cutting. To solve Atkins equation has been used iterative methods: Newton method and simplified method of simple iteration. Method of simple iteration is presented in the form of Java application.
-
Estimation of a Stochastic Burgers' Equation Using an Ensemble Kalman Filter
PublikacjaIn this work, we consider a difficult problem of state estimation of nonlinear stochastic partial differential equations (SPDE) based on uncertain measurements. The presented solution uses the method of lines (MoL), which allows us to discretize a stochastic partial differential equation in a spatial dimension and represent it as a system of coupled continuous-time ordinary stochastic differential equations (SDE). For such a system...
-
Recent Achievements in Constitutive Equations of Laminates and Functionally Graded Structures Formulated in the Resultant Nonlinear Shell Theory
PublikacjaThe development of constitutive equations formulated in the resultant nonlinear shell theory is presented. The specific features of the present shell theory are drilling rotation naturally included in the formulation and asymmetric measures of strains and stress resultants. The special attention in the chapter is given to recent achievements: progressive failure analysis of laminated shells and elastoplastic constitutive relation...
-
A design framework and a digital toolset supporting the early-stage explorations of responsive kinetic building skin concepts
PublikacjaIn this paper we present the first phase of our research on the development of a framework for early-stage responsive kinetic building skin design. The aims of this study were: to formulate a methodological and instrumental basis for the construction of the framework, to conduct an initial pre-assessment of its features, and finally to provide the first example of how the framework could be applied in practice. Importantly, at...
-
Considerations about the applicability of the Reynolds equation for analyzing high-speed near field levitation phenomena
Publikacjaequation for analyzing near field levitation (NFL) phenomena. Two separate approaches were developed, experimentally verified, and applied to meet the research objective. One was based on the Reynolds equation and the other was based on general conservation equations for fluid flow solved using computational fluid dynamic (CFD). Comparing the calculation results revealed that, for certain operating conditions, differences in the...
-
Some aspects of the constitutive modelling of natural fine grained soils
PublikacjaThe monograph deals with selected problems of the constitutive modelling of natural fine grained soils commonly known as clays. The main idea is not to propose a unified model which is capable of describing all known features of mechanical behaviour of fine grained soils. Instead, separate models are proposed describing the mechanical behaviour of heavily overconsolidated, lightly overconsolidated and normally consolidated clays....
-
Impact of the Finite Element Mesh Structure on the Solution Accuracy of a Two-Dimensional Kinematic Wave Equation
PublikacjaThe paper presents the influence of the finite element mesh structure on the accuracy of the numerical solution of a two-dimensional linear kinematic wave equation. This equation was solved using a two-level scheme for time integration and a modified finite element method with triangular elements for space discretization. The accuracy analysis of the applied scheme was performed using a modified equation method for three different...
-
On some constitutive equations for micropolar plates
PublikacjaW pracy porównano równania konstytutywne dla płyt podane przez Altenbacha i Eremeyeva. Na podstawie ich wyprowadzeń określono zakres zmienności współczynnika momentów owinięcia i jego możliwy wpływ na wyniki otrzymane w rozwiązaniach MES w zakresie liniowym
-
Update a simple hypoplastic constitutive model
PublikacjaW artykule omówiono uproszczona formę hipoplastycznego konstytutywnego prawa materiałowego do opisu zachowania się materiałów granulowanych. Wykonano symulacje testów elementów i porównano wyniki z doświadczeniami.
-
On the convergence of a nonlinear finite-difference discretization of the generalized Burgers–Fisher equation
PublikacjaIn this note, we establish analytically the convergence of a nonlinear finite-difference discretization of the generalized Burgers-Fisher equation. The existence and uniqueness of positive, bounded and monotone solutions for this scheme was recently established in [J. Diff. Eq. Appl. 19, 1907{1920 (2014)]. In the present work, we prove additionally that the method is convergent of order one in time, and of order two in space. Some...
-
Studies of Nonlinear Sound Dynamics in Fluids Based on the Caloric Equation of State
PublikacjaThe sound speed and parameters of nonlinearity B/A, C/A in a fluid are expressed in terms of coefficients in the Taylor series expansion of an excess internal energy, in powers of excess pressure and density. That allows to conclude about features of the sound propagation in fluids, the internal energy of which is known as a function of pressure and density. The sound speed and parameters of nonlinearity in the mixture consisting...
-
Geometrically nonlinear FEM analysis of 6-parameter resultant shell theory based on 2-D Cosserat constitutive model
PublikacjaWe develop the elastic constitutive law for the resultant statically and kinematically exact, nonlinear, 6-parameter shell theory. The Cosserat plane stress equations are integrated through-the- thickness under assumption of the Reissner-Mindlin kinematics. The resulting constitutive equations for stress resultant and couple resultants are expressed in terms of two micropolar constants: the micropolar modulus Gc and the micropolar...
-
Equation of state for Eu-doped SrSi2O2N2
Publikacja -
Approximated boundary conditions of the equation of difussion
PublikacjaProblem podejmowany w pracy dotyczy warunku brzegowego w równaniach fizyki matematycznej, opisujących procesy migracji zanieczyszczeń. W szczególności skoncentrowano się na badaniu wpływu na rozwiązanie przyjmowanych w rozwiązaniach numerycznych aproksymacji ''odpływowego'' warunku brzegowego w jednowymiarowym równaniu adwekcji - dyspersji. Rozważania teoretyczne przeprowadzono w oparciu o rozwiązania analityczne oraz numeryczne...
-
Drilling couples and refined constitutive equations in the resultant geometrically non-linear theory of elastic shells
PublikacjaIt is well known that distribution of displacements through the shell thickness is non-linear, in general. We introduce a modified polar decomposition of shell deformation gradient and a vector of deviation from the linear displacement distribution. When strains are assumed to be small, this allows one to propose an explicit definition of the drilling couples which is proportional to tangential components of the deviation vector....
-
Numerical Solution of the Two-Dimensional Richards Equation Using Alternate Splitting Methods for Dimensional Decomposition
PublikacjaResearch on seepage flow in the vadose zone has largely been driven by engineering and environmental problems affecting many fields of geotechnics, hydrology, and agricultural science. Mathematical modeling of the subsurface flow under unsaturated conditions is an essential part of water resource management and planning. In order to determine such subsurface flow, the two-dimensional (2D) Richards equation can be used. However,...
-
Effective sonophotocatalytic degradation of tetracycline in water: Optimization, kinetic modeling, and degradation pathways
PublikacjaHybrid advanced oxidation processes (AOPs) are gaining interest in degradation of variety of recalcitrant compounds for water and wastewater treatment, due to possible synergistic effects. The present study systematically evaluated the degradation of tetracycline (TC) with a sonophotocatalytic process combining acoustic cavitation (sonocavitation) and photocatalysis based on N-doped TiO2 catalyst. The TC degradation rate constant...
-
Utopian Kinetic Structures and Their Impact on the Contemporary Architecture
PublikacjaThis paper delves into relationships between twentieth century utopian concepts of movable structures and the kinematic solutions implemented in contemporary architectural projects. The reason for conducting this study is to determine the impact of early architectural conceptions on today's solutions. This paper points out close links that stem from the imagination of artists and architects working in 1960s and 70s and the solutions...
-
Application of the Monte Carlo algorithm for solving volume integral equation in light scattering simulations
PublikacjaVarious numerical methods were proposed for analysis of the light scattering phenomenon. Important group of these methods is based on solving the volume integral equation describing the light scattering process. The popular method from this group is the discrete dipole approximation (DDA). DDA uses various numerical algorithms to solve the discretized integral equation. In the recent years, the application of the Monte Carlo (MC)...
-
Analysis of Floodplain Inundation Using 2D Nonlinear Diffusive Wave Equation Solved with Splitting Technique
PublikacjaIn the paper a solution of two-dimensional (2D) nonlinear diffusive wave equation in a partially dry and wet domain is considered. The splitting technique which allows to reduce 2D problem into the sequence of one-dimensional (1D) problems is applied. The obtained 1D equations with regard to x and y are spatially discretized using the modified finite element method with the linear shape functions. The applied modification referring...
-
A Fortran-95 algorithm to solve the three-dimensional Higgs boson equation in the de Sitter space-time
Dane BadawczeA numerically efficient finite-difference technique for the solution of a fractional extension of the Higgs boson equation in the de Sitter space-time is designed. The model under investigation is a multidimensional equation with Riesz fractional derivatives of orders in (0,1)U(1,2], which considers a generalized potential and a time-dependent diffusion...
-
Simulation of unsteady flow over floodplain using the diffusive wave equation and the modified finite element method
PublikacjaWe consider solution of 2D nonlinear diffusive wave equation in a domain temporarily covered by a layer of water. A modified finite element method with triangular elements and linear shape functions is used for spatial discretization. The proposed modification refers to the procedure of spatial integration and leads to a more general algorithm involving a weighting parameter. The standard finite element method and the finite difference...
-
The Lost Kinetic Architecture and How to Reintroduce it in the Landscape – The Case Study of the Drainage Windmills in the Vistula Delta
PublikacjaRecreating the lost kinetic landscape of the Vistula Delta is a considerable challenge. The study aims to propose a method for reproducing windmills and their effect on the landscape. The paper suggests a method based on the transposition of the forms of movement from windmills historically present in the region to modern forms. The method is based on a series of analyses starting with the study of the region and its history followed...
-
On the convergence of a finite-difference discretization à la Mickens of the generalized Burgers–Huxley equation
PublikacjaIn this note, we establish the property of convergence for a finite-difference discretization of a diffusive partial differential equation with generalized Burgers convective law and generalized Hodgkin–Huxley reaction. The numerical method was previously investigated in the literature and, amongst other features of interest, it is a fast and nonlinear technique that is capable of preserving positivity, boundedness and monotonicity....
-
A coupled constitutive model for fracture in plain concrete based on continuum theory with non-local softening and eXtended Finite Element Method
PublikacjaThe paper presents a constitutive model for concrete which combines a continuous and discontinuous fracture description. In a continuum regime, two different constitutive laws were used. First, a plasticity model with a Rankine failure criterion and an associated fl ow rule was used. Second, a constitutive law based on isotropic damage mechanics was formulated. In order to capture the width of a localized zone and to obtain mesh-independent...
-
Kinetic analysis of the reduction of a ternary system of Bi, Sb and Te oxides by hydrogen for BiSbTe3 synthesis
PublikacjaReduction in a hydrogen atmosphere of Bi2O3, Sb2O3 and TeO2 mixes oxides for the synthesis of BiSbTe3 was analysed. The reduction reactions of Sb2O3 and Sb2O4 oxides, as well as Bi2O3+Sb2O3 and Sb2O3+3TeO2 mix- tures, were also evaluated. The reduction of Sb2O4 is investigated for the first time. The reactions of the mixed oxides systems also were not the subject of research so far despite being used for synthesis of the (Bi,Sb)2Te3...
-
2-D constitutive equations for orthotropic Cosserat type laminated shells in finite element analysis
PublikacjaWe propose 2-D Cosserat type orthotropic constitutive equations for laminated shells for the purpose of initial failure estimation in a laminate layer. We use nonlinear 6-parameter shell theory with asymmetric membrane strain measures and Cosserat kinematics as the framework. This theory is specially dedicated to the analysis of irregular shells, inter alia, with orthogonal intersections, since it takes into account the drilling...
-
Simulating propagation of coherent light in random media using the Fredholm type integral equation
PublikacjaStudying propagation of light in random scattering materials is important for both basic and applied research. Such studies often require usage of numerical method for simulating behavior of light beams in random media. However, if such simulations require consideration of coherence properties of light, they may become a complex numerical problems. There are well established methods for simulating multiple scattering of light (e.g....
-
Quantum corections to SG equation solutions and applications
Publikacja -
Aerated grit chambers hydraulic design equation.
PublikacjaW pracy zaproponowano metodę wymiarowania piaskowników napowietrzanych. Jej głównymi elementami są wyznaczanie niezbędnej intensywności aeracji ścieków, pola ich prędkości oraz trajektorii cząstek zawiesiny.
-
Journal of Applied Structural Equation Modeling
Czasopisma -
Structural Equation Modeling: A Multidisciplinary Journal
Czasopisma -
The interpretation of the parameters of the equation used for the extrapolation of apparent molar volumes of the non-electrolyte (solutes) to the infinite dilution
PublikacjaThe paper discusses how to interpret the parameters of the basic equation used for the extrapolation of the apparent molar volume of the solute to infinite dilution. The common misunderstandings and oversimplifications have been pointed out. We present the alternative ways of the data interpretation that can be used to eliminate these obvious but frequent mistakes.
-
Some new soliton solutions to the higher dimensional Burger–Huxley and Shallow water waves equation with couple of integration architectonic
PublikacjaIn this paper, we retrieve some traveling wave, periodic solutions, bell shaped, rational, kink and anti-kink type and Jacobi elliptic functions of Burger’s equation and Shallow water wave equation with the aid of various integration schemes like improved -expansion scheme and Jacobi elliptic function method respectively. We also present our solutions graphically in various dimensions.
-
Kinetic analysis of the stage for a high speed steam turbine
PublikacjaThis article analyzes possibilites of resonances within a control stage for a high speed steam turbine. This stage hase been based on assembling of a single blade to a rotating disk and increasing of rigidity of the system by using of a bandage. In the analysis will be nd a possiblity of resonance frequency, and mistuning by showing safety working ranges. The calculations have bean used the3D modal and harmonic analysis by the...
-
Experimental methods in thermodynamic and kinetic studies on photocatalytic materials
Publikacja -
Computationally Effcient Solution of a 2D Diffusive Wave Equation Used for Flood Inundation Problems
PublikacjaThis paper presents a study dealing with increasing the computational efficiency in modeling floodplain inundation using a two-dimensional diffusive wave equation. To this end, the domain decomposition technique was used. The resulting one-dimensional diffusion equations were approximated in space with the modified finite element scheme, whereas time integration was carried out using the implicit two-level scheme. The proposed...
-
Determination of dryout localization using a five-equation model of annular flow for boiling in minichannels
PublikacjaDetailed studies have suggested that the critical heat flux in the form of dryout in minichannels occurs when the combined effects of entrainment, deposition, and evaporation of the film make the film flow rate go gradually and smoothly to zero. Most approaches so far used the mass balance equation for the liquid film with appropriate formulations for the rate of deposition and entrainment respectively. It must be acknowledged...
-
Database of the convergence analysis results of the nonstandard approximation of the generalized Burgers–Huxley equation for the solution bounded within [0,1].
Dane BadawczeThe presented dataset is a result of the convergence analysis of the Mickens-type, nonlinear, finite-difference discretization of a generalized Burgers–Huxley partial differential equation.
-
Comparative analysis of numerical with optical soliton solutions of stochastic Gross–Pitaevskii equation in dispersive media
PublikacjaThis article deals with the stochastic Gross–Pitaevskii equation (SGPE) perturbed with multiplicative time noise. The numerical solutions of the governing model are carried out with the proposed stochastic non-standard finite difference (SNSFD) scheme. The stability of the scheme is proved by using the Von-Neumann criteria and the consistency is shown in the mean square sense. To seek exact solutions, we applied the Sardar subequation...