Wyniki wyszukiwania dla: Nonlocal strain gradient theory
-
On existence and uniqueness of weak solutions for linear pantographic beam lattices models
PublikacjaIn this paper, we discuss well-posedness of the boundary-value problems arising in some “gradientincomplete” strain-gradient elasticity models, which appear in the study of homogenized models for a large class ofmetamaterials whosemicrostructures can be regarded as beam lattices constrained with internal pivots. We use the attribute “gradient-incomplete” strain-gradient elasticity for a model in which the considered strain energy...
-
Limits of enhanced of macro- and meso-scale continuum models for studying size effect in concrete under tension
PublikacjaThe paper investigates a mechanical quasi-static size effect in concrete during splitting tension at the macro- and meso-level. In experiments, five different diameters of cylindrical concrete specimens were tested. Twodimensional plane strain finite element (FE) simulations were carried out to reproduce the experimental size effect. The size effect in experiments by Carmona et al. was also simulated. Two enhanced continuum concrete...
-
An isogeometric finite element formulation for boundary and shell viscoelasticity based on a multiplicative surface deformation split
PublikacjaThis work presents a numerical formulation to model isotropic viscoelastic material behavior for membranes and thin shells. The surface and the shell theory are formulated within a curvilinear coordinate system,which allows the representation of general surfaces and deformations. The kinematics follow from Kirchhoff–Love theory and the discretization makes use of isogeometric shape functions. A multiplicative split of the surface...
-
On thermal stability of piezo-flexomagnetic microbeams considering different temperature distributions
PublikacjaBy relying on the Euler–Bernoulli beam model and energy variational formula, we indicate critical temperature causes in the buckling of piezo-flexomagnetic microscale beams. The corresponding size-dependent approach is underlying as a second strain gradient theory. Small deformations of elastic solids are assessed, and the mathematical discussion is linear. Regardless of the pyromagnetic effects, the thermal loading of the thermal...
-
Drilling couples and refined constitutive equations in the resultant geometrically non-linear theory of elastic shells
PublikacjaIt is well known that distribution of displacements through the shell thickness is non-linear, in general. We introduce a modified polar decomposition of shell deformation gradient and a vector of deviation from the linear displacement distribution. When strains are assumed to be small, this allows one to propose an explicit definition of the drilling couples which is proportional to tangential components of the deviation vector....
-
On the peculiarities of anti-plane surface waves propagation for media with microstructured coating
PublikacjaWe discuss new type of surface waves which exist in elastic media with surface energy. Here we present the model of a coating made of polymeric brush. From the physical point of view the considered model of surface elasticity describes a highly anisotropic surface coating. Here the surface energy model could be treated as 2D reduced strain gradient continuum as surface strain energy depends on few second spatial derivatives of...
-
Deformation of an elastic second gradient spherical body under equatorial line density of dead forces
PublikacjaWe consider deformations of an elastic body having initially a spherical shape. Assumed deformation energy depends on the first and second gradient of displacements. We apply an equatorial line density of dead loads, that are forces per unit line length directed in radial direction and applied along the equator of the sphere. We restrict ourselves our analysis to the case of linearized second strain gradient isotropic elasticity...
-
Resonances and Dissociative Electron Attachment in HNCO
PublikacjaIn a combined experimental and theoretical study, we probe the dissociative electron attachment in isocyanic acid HNCO. The experimental absolute cross section for the NCO− fragment shows a sharp onset and fine structures near the threshold. The autoionizing state responsible for the dissociative attachment is found in both the R-matrix calculation and using analytic continuation in the coupling constant. The involved A' resonance...
-
On the Buckling Response of Axially Pressurized Nanotubes Based on a Novel Nonlocal Beam Theory
PublikacjaIn the present study, the buckling analysis of single-walled carbon nanotubes (SWCNT) on the basis of a new refined beam theory is analyzed. The SWCNT is modeled as an elastic beam subjected to unidirectional compressive loads. To achieve this aim, the new proposed beam theory has only one unknown variable which leads to one equation similar to Euler beam theory and is also free from any shear correction factors. The equilibrium...
-
Bending and buckling formulation of graphene sheets based on nonlocal simple first-order shear deformation theory
PublikacjaThis paper presents a formulation based on simple first-order shear deformation theory (S-FSDT) for large deflection and buckling of orthotropic single-layered graphene sheets (SLGSs). The S-FSDT has many advantages compared to the classical plate theory (CPT) and conventional FSDT such as needless of shear correction factor, containing less number of unknowns than the existing FSDT and strong similarities with the CPT. Governing...
-
On a 3D material modelling of smart nanocomposite structures
PublikacjaSmart composites (SCs) are utilized in electro-mechanical systems such as actuators and energy harvesters. Typically, thin-walled components such as beams, plates, and shells are employed as structural elements to achieve the mechanical behavior desired in these composites. SCs exhibit various advanced properties, ranging from lower order phenomena like piezoelectricity and piezomagneticity, to higher order effects including flexoelectricity...
-
Thermodynamically consistent gradient theory of damage coupled with gradient plasticity
PublikacjaPrzedstawiono termodynamicznie zgodną teorię plastycznego zniszczenia w zakresie mechaniki Newtona-Eshelbego. Poza klasycznymi równaniami ruchu w przestrzeni fizycznej sformułowano dynamiczne równania równowagi sił powiązanych z defektami w przestrzeni materialnej oraz pierwsze i drugie prawo termodynamiki w przestrzeni fizycznej i materialnej. Ogólne równania konstytutywne przyjęto jako funkcję gradientu deformacji, jego składników...
-
Thermodynamically consistent nonlocal theory of ductile damage
PublikacjaPrzedstawiono termodynamicznie zgodną, słabo-nielokalną teorię zniszczenia plastycznego. Wykorzystano klasyczne dynamiczne zasady zachowania pędu i momentu pędu w przestrzeni fizycznej i materialnej. Przyjęto równania konstytutywne i zdefiniowano ich niezmienniczą formę i termodynamicznie dopuszczalną postać. Wykazano, że fizyczne i materialne siły i naprężenia składają się z dwóch części, niedyssypatywnego składnika otrzymanego...
-
Nonlocal three-dimensional theory of elasticity for buckling behavior of functionally graded porous nanoplates using volume integrals
PublikacjaIn this paper, the buckling of rectangular functionally graded (FG) porous nanoplates based on threedimensional elasticity is investigated. Since, similar researches have been done in two-dimensional analyses in which only large deflections with constant thickness were studied by using various plate theories; therefore, discussion of large deformations and change in thickness of plates after deflection in this study is examined....
-
Equivalent 4-node enhanced assumed strain and hybrid stress shell elements in 6-parameter theory
PublikacjaWe discuss the equivalence of semi-enhanced assumed strain (EAS) and semi-hybrid stress (SEM) shell finite elements. We use the general nonlinear 6-field shell theory with kinematics composed of generalized displacements composed of the translation field and the rotation field. Due to the presence of rotation tensor the elements have naturally six nodal engineering degrees of freedom. We propose interpolation for a strain field...
-
A novel one-variable first-order shear deformation theory for biaxial buckling of a size-dependent plate based on Eringen’s nonlocal differential law
PublikacjaPurpose – This paper aims to present a new one-variable first-order shear deformation theory (OVFSDT) using nonlocal elasticity concepts for buckling of graphene sheets. Design/methodology/approach – The FSDT had errors in its assumptions owing to the assumption of constant shear stress distribution along the thickness of the plate, even though by using the shear correction factor (SCF), it has been slightly corrected, the errors...
-
Analysis of strain localization in reinforced concrete elements with explicit second-gradient strain damage approach
PublikacjaArtykuł omawia obliczanie elementów żelbetowych przy zastosowaniu modelu zniszczeniowego z degradacją sztywności z uwzględnieniem lokalizacji odkształceń. Obliczenia wykonano dla belek żelbetowych.
-
Vibration and buckling characteristics of nonlocal beam placed in a magnetic field embedded in Winkler–Pasternak elastic foundation using a new refined beam theory: an analytical approach
PublikacjaIn this article, a new refined beam theory, namely one variable first-order shear deformation theory, has been employed to study the vibration and buckling characteristics of nonlocal beam. The beam is exposed to an axial magnetic field and embedded in Winkler–Pasternak foundation. The von Kármán hypothesis along with Hamilton’s principle has been implemented to derive the governing equations for both the vibration and buckling...
-
Fatigue life prediction of notched components under size effect using strain energy reformulated critical distance theory
PublikacjaNotch and size effects show significant impact on the fatigue performance of engineering components, which deserves special attention. In this work, a strain energy reformulated critical distance theory was developed for fatigue life prediction of notched components under size effect. Experimental data of different notched specimens manufactured from GH4169, TC4, TC11 alloys and low carbon steel En3B were used for model validation...
-
pH gradient high-performance liquid chromatography: theory and applications
Publikacja -
On the use of enhanced strain formulation in 6-field nonlinear shell theory with asymetric strain measures
PublikacjaW pracy zbadano możliwość zastosowania techniki wzbogaconych odkształceń do usunięcia zjawiska blokady w elementach skończonych opracowanych w ramach 6-parametrowej nieliniowej teorii powłok z niesymetrycznymi miarami odkształceń membranowych. Przedstawiono i porównano 4 warianty pol wzogacających odkształcenia
-
Surface effects of network materials based on strain gradient homogenized media
PublikacjaThe asymptotic homogenization of periodic network materials modeled as beam networks is pursued in this contribution, accounting for surface effects arising from the presence of a thin coating on the surface of the structural beam elements of the network. Cauchy and second gradient effective continua are considered and enhanced by the consideration of surface effects. The asymptotic homogenization technique is here extended to...
-
Mixed 4-node shell element with assumed strain and stress in 6-parameter theory
PublikacjaWe propose a mixed hybrid 4-node shell elements based on Hu-Washizu principle. Apart from displacements both strains and stress fields are treated as independent fields. The element is derived in the framework of a general nonlinear 6-field shell theory with drilling rotation which is dedicated to the analysis of multifold irregular shells with intersections. The novelty of the presented results stems from the fact that the measures...
-
Mixed 4-node shell element with assumed strain and stress in 6-parameter theory
PublikacjaWe propose a mixed hybrid 4-node shell elements based on Hu-Washizu principle. Apart from displacements both strains and stress fields are treated as independent fields. The element is derived in the framework of a general nonlinear 6-field shell theory with drilling rotation which is dedicated to the analysis of multifold irregular shells with intersections. The novelty of the presented results stems from the fact that the measures...
-
Differential Quadrature Method for Dynamic Buckling of Graphene Sheet Coupled by a Viscoelastic Medium Using Neperian Frequency Based on Nonlocal Elasticity Theory
PublikacjaIn the present study, the dynamic buckling of the graphene sheet coupled by a viscoelastic matrix was studied. In light of the simplicity of Eringen's non-local continuum theory to considering the nanoscale influences, this theory was employed. Equations of motion and boundary conditions were obtained using Mindlin plate theory by taking nonlinear strains of von Kármán and Hamilton's principle into account. On the other hand, a...
-
Marek Czachor prof. dr hab.
Osoby -
Thermal Buckling Analysis of Circular Bilayer Graphene sheets Resting on an Elastic Matrix Based on Nonlocal Continuum Mechanics
PublikacjaIn this article, the thermal buckling behavior of orthotropic circular bilayer graphene sheets embedded in the Winkler–Pasternak elastic medium is scrutinized. Using the nonlocal elasticity theory, the bilayer graphene sheets are modeled as a nonlocal double–layered plate that contains small scale effects and van der Waals (vdW) interaction forces. The vdW interaction forces between the layers are simulated as a set of linear springs...
-
Generalized Gradient Equivariant Multivalued Maps, Approximation and Degree
PublikacjaConsider the Euclidean space Rn with the orthogonal action of a compact Lie group G. We prove that a locally Lipschitz G-invariant mapping f from Rn to R can be uniformly approximated by G-invariant smooth mappings g in such a way that the gradient of g is a graph approximation of Clarke’s generalized gradient of f . This result enables a proper development of equivariant gradient degree theory for a class of set-valued gradient...
-
Elastoplastic material law in 6-parameter nonlinear shell theory
PublikacjaWe develop the elastoplastic constitutive relations for nonlinear exact 6-parameter shell theory. A J2-type theory with strain hardening is formulated that takes into account asymmetric membrane strain measures. The incremental equations are solved using implicit Euler scheme with closest point projection algorithm. The presented test example shows the correctness of the proposed approach. Influence of micropolar material parameters...
-
Analytical Buckling of FG Nanobeams on The Basis of A New One Variable First-Order Shear Deformation Beam Theory
PublikacjaIn this work, buckling analysis of functionally graded (FG) nanobeams based on a new refined beam theory has been analyzed. The beam is modeled as an elastic beam subjected to unidirectional compressive loads. To achieve this aim, the new obtained beam theory has only one variable which leads to one equation similar to the Euler beam theory and also is free of any shear correction factor. The equilibrium equation has been...
-
Non-linear static stability of bi-layer carbon nanosheets resting on an elastic matrix under various types of in-plane shearing loads in thermo-elasticity using nonlocal continuum
PublikacjaIn this research, the shear and thermal buckling of bi-layer rectangular orthotropic carbon nanosheets embedded on an elastic matrix using the nonlocal elasticity theory and non-linear strains of Von-Karman was studied. The bi-layer carbon sheets were modeled as a double-layered plate, and van der Waals forces between layers were considered. The governing equations and boundary conditions were obtained using the first order shear...
-
Progressive failure analysis of laminates in the framework of 6-field nonlinear shell theory
PublikacjaThe paper presents the model of progressive failure analysis of laminates incorporated into the 6-field non-linear shell theory with non-symmetrical strain measures of Cosserat type. Such a theory is specially recommended in the analysis of shells with intersections due to its specific kinematics including the so-called drilling rotation. As a consequence of asymmetry of strain measures, modified laminates failure criteria must...
-
Extending loophole-free nonlocal correlations to arbitrarily large distances
PublikacjaQuantum theory allows spatially separated observers to share nonlocal correlations, which enable them to accomplish classically inconceivable information processing and cryptographic feats. However, the distances over which nonlocal correlations can be realized remain severely limited due to their high fragility to noise and high threshold detection efficiencies. To enable loophole- free nonlocality across large distances, we introduce...
-
Elastoplastic law of Cosserat type in shell theory with drilling rotation
PublikacjaWithin the framework of six-parameter non-linear shell theory, with strain measures of the Cosserat type, we develop small-strain J2-type elastoplastic constitutive relations. The relations are obtained from the Cosserat plane stress relations assumed in each shell layer, by through-the-thickness integration employing the first-order shear theory. The formulation allows for unlimited translations and rotations. The constitutive...
-
On the effective properties of foams in the framework of the couple stress theory
PublikacjaIn the framework of the couple stress theory, we discuss the effective elastic properties of a metal open-cell foam. In this theory, we have the couple stress tensor, but the microrotations are fully described by displacements. To this end, we performed calculations for a representative volume element which give the matrices of elastic moduli relating stress and stress tensors with strain and microcurvature tensors.
-
Wiktoria Wojnicz dr hab. inż.
OsobyDSc in Mechanics (in the field of Biomechanics) - Lodz Univeristy of Technology, 2019 PhD in Mechanics (in the field of Biomechanics) - Lodz Univeristy of Technology, 2009 (with distinction) Publikacje z listy MNiSW (2009 - ) Wojnicz W., Wittbrodt E., Analysis of muscles' behaviour. Part I. The computational model of muscle. Acta of Bioengineering and Biomechanics, Vol. 11, No.4, 2009, p. 15-21 Wojnicz W., Wittbrodt E.,...
-
Analytical Buckling of FG Nanobeams on The Basis of A New One Variable First-Order Shear Deformation Beam Theory
PublikacjaIn this work, buckling analysis of functionally graded (FG) nanobeams based on a new refined beam theory has been analyzed. The beam is modeled as an elastic beam subjected to unidirectional compressive loads. To achieve this aim, the new obtained beam theory has only one variable which lead to one equation similar to Euler beam theory and also is free of any shear correction factor. The...
-
Modeling of Composite Shells in 6-Parameter Nonlinear Theory with Drilling Degree of Freedom
PublikacjaWithin the framework of a 6-parameter nonlinear shell theory, with strain measures of Cosserat type, constitutive relations are proposed for thin elastic composite shells. The material law is expressed in terms of five engineering constants of classical anisotropic continuum plus an additional parameter accounting for drilling stiffness. The theory allows for unlimited displacements and rotations. A number of examples are presented...
-
On refined constitutive equations in the six-field theory of elastic shells
PublikacjaWithin the resultant six-field shell theory, the second approximation to the complementary energy density of an isotropic elastic shell undergoing small strains is constructed. In this case, the resultant drilling couples are expressed explicitly by the stress resultants and stress couples as well as by amplitudes of the quadratic and cubic distributions of an intrinsic deviation vector. The refined 2D strain-stress and stress-strain...
-
Density functional LCAO calculations of vibrational modes and phonon density of states in the strained single-layer phosphorene
PublikacjaThe paper presents an investigation of phosphorene under axial strain on the phonon density of states and vibrational modes. The studies were performed by means of density functional theory (DFT) within the linear combination of atomic orbitals (LCAO). The strained models were constructed using optimised supercell techniques. The vibrational mode spectra were estimated for strains applied for both the zigzag and armchair directions...
-
Effects of Surface Energy and Surface Residual Stresses on Vibro-Thermal Analysis of Chiral, Zigzag, and Armchair Types of SWCNTs Using Refined Beam Theory
PublikacjaIn this article, vibration characteristics of three different types of Single-Walled Carbon Nanotubes (SWCNTs) such as armchair, chiral, and zigzag carbon nanotubes have been investigated considering the effects of surface energy and surface residual stresses. The nanotubes are embedded in the elastic substrate of the Winkler type and are also exposed to low and high-temperature environments. A new refined beam theory namely, one-variable...
-
Analytical predictions for the buckling of a nanoplate subjected to non-uniform compression based on the four-variable plate theory
PublikacjaIn the present study, the buckling analysis of the rectangular nanoplate under biaxial non-uniform compression using the modified couple stress continuum theory with various boundary conditions has been considered. The simplified first order shear deformation theory (S-FSDT) has been employed and the governing differential equations have been obtained using the Hamilton’s principle. An analytical approach has been applied to obtain...
-
Nonlinear Free and Forced Vibrations of a Hyperelastic Micro/Nanobeam Considering Strain Stiffening Effect
PublikacjaIn recent years, the static and dynamic response of micro/nanobeams made of hyperelasticity materials received great attention. In the majority of studies in this area, the strain-stiffing effect that plays a major role in many hyperelastic materials has not been investigated deeply. Moreover, the influence of the size effect and large rotation for such a beam that is important for the large deformation was not addressed. This...
-
Buckling Analysis of a Micro Composite Plate with Nano Coating Based on the Modified Couple Stress Theory
PublikacjaThe present study investigates the buckling of a thick sandwich plate under the biaxial non-uniform compression using the modified couple stress theory with various boundary conditions. For this purpose, the top and bottom faces are orthotropic graphene sheets and for the central core the isotropic soft materials are investigated. The simplified first order shear deformation theory (S-FSDT) is employed and the governing differential...
-
Nonlocalized thermal behavior of rotating micromachined beams under dynamic and thermodynamic loads
PublikacjaRotating micromachined beams are one of the most practical devices with several applications from power generation to aerospace industries. Moreover, recent advances in micromachining technology have led to huge interests in fabricating miniature turbines, gyroscopes and microsensors thanks to their high quality/reliability performances. To this end, this article is organized to examine the axial dynamic reaction of a rotating...
-
FEM analysis of composite materials failure in nonlinear six field shell theory
PublikacjaThe monography deals with the problem of failure initiation in thin laminated composites. Known techniques of laminate structures modelling are briefly characterised. Eventually, shell based approach is chosen for the purpose of the description of the composite structures behaviour, as it predicts their deformation and states of stress effectively in a global sense. The nonlinear six parameter shell theory (6p theory) with asymmetric...
-
Estimation of Failure Initiation in Laminated Composites by means of Nonlinear Six-Field Shell Theory and FEM
PublikacjaThe monography deals with the problem of failure initiation in thin laminated composites. Known techniques of laminate structures modelling are briefly characterised. Eventually, shell based approach is chosen for the purpose of the description of the composite structures behaviour, as it predicts their deformation and states of stress effectively in a global sense. The nonlinear six parameter shell theory (6p theory) with asymmetric...
-
Vibro-Electrical Behavior of a Viscoelastic Piezo-Nanowire in an Elastic Substrate Considering Stress Nonlocality and Microstructural Size-Dependent Effects
PublikacjaThis research deals with dynamics response of a Pol/BaTiO3 nanowire including viscosity influences. The wire is also impressed by a longitudinal electric field. Hamilton's principle and Lagrangian strains are employed in conjunction with a refined higher-order beam theory in order to derive equations of motion. By combining nonlocality and small size...
-
Green function diagonal for a class of heat equations
PublikacjaA construction of the heat kernel diagonal is considered as element of generalized zeta function theory, which gradient at the origin defines determinant of a differential operator in a technique for regularizing quadratic path integral. Some classes of explicit expressions of the Green function in the case of finite-gap potential coefficient of the heat equation are constructed. An algorithm and program for Mathematica are presented...
-
Study of Slip Effects in Reverse Roll Coating Process Using Non-Isothermal Couple Stress Fluid
PublikacjaThe non-isothermal couple stress fluid inside a reverse roll coating geometry is considered. The slip condition is considered at the surfaces of the rolls. To develop the flow equations, the mathematical modelling is performed using conservation of momentum, mass, and energy. The LAT (lubrication approximation theory) is employed to simplify the equations. The closed form solution for velocity, temperature, and pressure gradient...