Filtry
wszystkich: 2363
-
Katalog
- Publikacje 2102 wyników po odfiltrowaniu
- Czasopisma 17 wyników po odfiltrowaniu
- Konferencje 8 wyników po odfiltrowaniu
- Osoby 115 wyników po odfiltrowaniu
- Projekty 5 wyników po odfiltrowaniu
- Kursy Online 38 wyników po odfiltrowaniu
- Wydarzenia 5 wyników po odfiltrowaniu
- Dane Badawcze 73 wyników po odfiltrowaniu
wyświetlamy 1000 najlepszych wyników Pomoc
Wyniki wyszukiwania dla: MACHINE LEARNING, COMPATIBILITY TESTING, NEW PRODUCT DEVELOPMENT, SMART PRODUCTS
-
Tuning Ferulic Acid Solubility in Choline-Chloride- and Betaine-Based Deep Eutectic Solvents: Experimental Determination and Machine Learning Modeling
PublikacjaDeep eutectic solvents (DES) represent a promising class of green solvents, offering particular utility in the extraction and development of new formulations of natural compounds such as ferulic acid (FA). The experimental phase of the study undertook a systematic investigation of the solubility of FA in DES, comprising choline chloride or betaine as hydrogen bond acceptors and six different polyols as hydrogen bond donors....
-
International Journal of Product Development
Czasopisma -
SMART AND RESILIENT CITIES – NEW CHALLENGES FOR POLISH CITIES IN TERMS OF 2020 BUILDING ENERGY EFFICIENCY AND CLIMATE CHANGE ACTION.
PublikacjaGlobal climate change action along with energy efficiency optimizations are becoming increasingly pressing principles in terms of moving towards sustainable development. As a member of EU and UN Poland is also obliged to follow restricted rules concerning energy efficiency of buildings which come to force in 2020. To meet new goals, innovative approaches - like moving towards smart and resilient cities -may be required. Through...
-
A new approach to visual system testing
PublikacjaOpisano budowę laboratoryjnego stanowiska prac bawczych nad perymetrią obiektywną. Przedstawiono zasadę działania algorytmu VEPDA oraz wyniki działania VEPDA na danych eksperymentalnych.
-
From Data to Decision: Interpretable Machine Learning for Predicting Flood Susceptibility in Gdańsk, Poland
PublikacjaFlood susceptibility prediction is complex due to the multifaceted interactions among hydrological, meteorological, and urbanisation factors, further exacerbated by climate change. This study addresses these complexities by investigating flood susceptibility in rapidly urbanising regions prone to extreme weather events, focusing on Gdańsk, Poland. Three popular ML techniques, Support Vector Machine (SVM), Random Forest (RF), and...
-
Machine learning-based seismic fragility and seismic vulnerability assessment of reinforced concrete structures
PublikacjaMany studies have been performed to put quantifying uncertainties into the seismic risk assessment of reinforced concrete (RC) buildings. This paper provides a risk-assessment support tool for purpose of retrofitting and potential design strategies of RC buildings. Machine Learning (ML) algorithms were developed in Python software by innovative methods of hyperparameter optimization, such as halving search, grid search, random...
-
Machine-Learning-Powered EM-Based Framework for Efficient and Reliable Design of Low Scattering Metasurfaces
PublikacjaPopularity of metasurfaces has been continuously growing due to their attractive properties including the ability to effectively manipulate electromagnetic (EM) waves. Metasurfaces comprise optimized geometries of unit cells arranged as a periodic lattice to obtain a desired EM response. One of their emerging application areas is the stealth technology, in particular, realization of radar cross section (RCS) reduction. Despite...
-
Using Isolation Forest and Alternative Data Products to Overcome Ground Truth Data Scarcity for Improved Deep Learning-based Agricultural Land Use Classification Models
PublikacjaHigh-quality labelled datasets represent a cornerstone in the development of deep learning models for land use classification. The high cost of data collection, the inherent errors introduced during data mapping efforts, the lack of local knowledge, and the spatial variability of the data hinder the development of accurate and spatially-transferable deep learning models in the context of agriculture. In this paper, we investigate...
-
Selected papers from the Smart Engineering of New Materials Conference, 22-25 June 2015, Lodz, Poland
PublikacjaEditorial to the special issue is a collection of the articles presented at Smart Engineering of New Materials (SENM2015) Conference, held in Lodz, Poland on June 22-25, 2015 (SENM 2015).
-
Exploration of the Solubility Hyperspace of Selected Active Pharmaceutical Ingredients in Choline- and Betaine-Based Deep Eutectic Solvents: Machine Learning Modeling and Experimental Validation
PublikacjaDeep eutectic solvents (DESs) are popular green media used for various industrial, pharmaceutical, and biomedical applications. However, the possible compositions of eutectic systems are so numerous that it is impossible to study all of them experimentally. To remedy this limitation, the solubility landscape of selected active pharmaceutical ingredients (APIs) in choline chloride- and betaine-based deep eutectic solvents was...
-
Precise Identification of Different Cervical Intraepithelial Neoplasia (CIN) Stages, Using Biomedical Engineering Combined with Data Mining and Machine Learning
PublikacjaCervical cancer (CC) is one of the most common female cancers worldwide. It remains a significant global health challenge, particularly affecting women in diverse regions. The pivotal role of human papillomavirus (HPV) infection in cervical carcinogenesis underscores the critical importance of diagnostic strategies targeting both HPV infection and cervical...
-
Prediction of energy consumption and evaluation of affecting factors in a full-scale WWTP using a machine learning approach
PublikacjaTreatment of municipal wastewater to meet the stringent effluent quality standards is an energy-intensive process and the main contributor to the costs of wastewater treatment plants (WWTPs). Analysis and prediction of energy consumption (EC) are essential in designing and operating sustainable energy-saving WWTPs. In this study, the effect of wastewater, hydraulic, and climate-based parameters on the daily consumption of EC by...
-
New product practices and performance of German appliances companies
PublikacjaArtykuł prezentuje wyniki badań odnośnie stosowanych praktyk i wyników uzyskiwanych w rozwoju nowych produktów. Badania dotyczyły niemieckich producentów sprzętu gospodarstwa domowego, zaś podstawową metodą gromadzenie danych była ankieta pocztowa. Rezultaty badań wskazują, że wysokie wyniki rozwoju nowych produktów uzyskują producenci, którzy stosują: strategię pioniera, badania koncepcji, przegląd koncepcji, plan marketingowy...
-
Experimental verification of a new method of loop resistance testing in low voltage systems with residual current devices
PublikacjaA periodical verification of the effectiveness of protection against electric shock shall be performed in low voltage systems. The scope of this verification includes loop impedance/resistance testing. If a residual current device is installed in a tested circuit, this testing is problematic. A residual current device trips out during the test, because of the high value of measurement current. This precludes the execution of the...
-
PERFORMANCE COMPARISON OF MACHINE LEARNING ALGORITHMS FOR PREDICTIVE MAINTENANCE
Publikacja -
Machine Learning for Sensorless Temperature Estimation of a BLDC Motor
Publikacja -
Stacking-Based Integrated Machine Learning with Data Reduction
Publikacja -
Data Reduction Algorithm for Machine Learning and Data Mining
Publikacja -
Machine Learning Modelling and Feature Engineering in Seismology Experiment
Publikacja -
Machine learning applied to bi-heterocyclic drugs recognition
Publikacja -
Personal bankruptcy prediction using machine learning techniques
Publikacja -
Machine learning system for estimating the rhythmic salience of sounds.
PublikacjaW artykule przedstawiono badania dotyczące wyszukiwania danych rytmicznych w muzyce. W pracy przedstawiono postać funkcji rankingujacej poszczególnych dźwięków frazy muzycznej. Opracowano metodę tworzenia wszystkich możliwych hierarchicznych struktur rytmicznych, zwanych hipotezami rytmicznymi. Otrzymane hipotezy są następnie porządkowane w kolejności malejącej wartości funkcji rankingującej, aby ustalić, która ze znalezionych...
-
MACHINE LEARNING–BASED ANALYSIS OF ENGLISH LATERAL ALLOPHONES
PublikacjaAutomatic classification methods, such as artificial neural networks (ANNs), the k-nearest neighbor (kNN) and selforganizing maps (SOMs), are applied to allophone analysis based on recorded speech. A list of 650 words was created for that purpose, containing positionally and/or contextually conditioned allophones. For each word, a group of 16 native and non-native speakers were audio-video recorded, from which seven native speakers’...
-
The use of machine learning for face regions detection in thermograms
PublikacjaThe aim of this study is to analyse the methods of detecting characteristic points of the face in thermographic images. As part of the implementation an extensive analysis of scientific publications covering similar issues both for the analysis of images made in visible light and thermographic images was carried out. On the basis of this analysis, 3 models were selected and then they were implemented and tested on the basis of...
-
INVESTIGATION OF THE LOMBARD EFFECT BASED ON A MACHINE LEARNING APPROACH
PublikacjaThe Lombard effect is an involuntary increase in the speaker’s pitch, intensity, and duration in the presence of noise. It makes it possible to communicate in noisy environments more effectively. This study aims to investigate an efficient method for detecting the Lombard effect in uttered speech. The influence of interfering noise, room type, and the gender of the person on the detection process is examined. First, acoustic parameters...
-
MACHINE LEARNING SYSTEM FOR AUTOMATED BLOOD SMEAR ANALYSIS
PublikacjaIn this paper the authors propose a decision support system for automatic blood smear analysis based on microscopic images. The images are pre-processed in order to remove irrelevant elements and to enhance the most important ones - the healthy blood cells (erythrocytes) and the pathologic (echinocytes). The separated blood cells are analyzed in terms of their most important features by the eigenfaces method. The features are the...
-
An algorithm for selecting a machine learning method for predicting nitrous oxide emissions in municipal wastewater treatment plants
PublikacjaThis study presents an advanced algorithm for selecting machine learning (ML) models for nitrous oxide (N2O) emission prediction in wastewater treatment plants (WWTPs) employing the activated sludge process. The examined ML models comprised multivariate adaptive regression spline (MARS), support vector machines (SVM), and extreme gradient boosting (XGboost). The study explores the concept that involves new criteria to select the...
-
Rapid Surrogate-Aided Multi-Criterial Optimization of Compact Microwave Passives Employing Machine Learning and ANNs
PublikacjaThis article introduces an innovative method for achieving low-cost and reliable multi-objective optimization (MO) of microwave passive circuits. The technique capitalizes on the attributes of surrogate models, specifically artificial neural networks (ANNs), and multi-resolution electromagnetic (EM) analysis. We integrate the search process into a machine learning (ML) framework, where each iteration produces multiple infill points...
-
Olgun Aydin dr
OsobyOlgun Aydin finished his PhD by publishing a thesis about Deep Neural Networks. He works as a Principal Machine Learning Engineer in Nike, and works as Assistant Professor in Gdansk University of Technology in Poland. Dr. Aydin is part of editorial board of "Journal of Artificial Intelligence and Data Science" Dr. Aydin served as Vice-Chairman of Why R? Foundation and is member of Polish Artificial Intelligence Society. Olgun is...
-
New trends in a development of the contemporary lighting forms within the urban environment
PublikacjaThis paper presents selected issues on the design of urban lighting forms including street luminaires within the urban environment. The purpose of this paper is to show the evolution of urban lighting forms, in terms of their performance, character, and in the context of the progression of new lighting technologies. The authors discuss chosen aspects related to the development of lighting forms and the changing role of lighting...
-
The New Chinese Civil Code and its contribution to Sustainable Development
PublikacjaThe first civil code of the People’s Republic of China in the history was adopted by the 13th National People’s Congress in Beijing on 28 May 2020 and will enter into effect on 1 January 2021. The new civil code puts much more emphasis on the sustainable development and protection of the environment and because of that, the Chinese private law has begun to respond to ecological problems as well. The...
-
Smart Urban Growth - Myth or New Paradigm?
PublikacjaArtykuł prezentuje wizję 'smart growth' na przykładzie miast regionu morza Bałtyckiego.
-
Predicting seismic response of SMRFs founded on different soil types using machine learning techniques
PublikacjaPredicting the Maximum Interstory Drift Ratio (M-IDR) of Steel Moment-Resisting Frames (SMRFs) is a useful tool for designers to approximately evaluate the vulnerability of SMRFs. This study aims to explore supervised Machine Learning (ML) algorithms to build a surrogate prediction model for SMRFs to reduce the need for complex modeling. For this purpose, twenty well-known ML algorithms implemented in Python software are trained...
-
Systemy z Uczeniem Maszynowym / Systems with Machine Learning 2022/2023
Kursy Online -
Experimental and Machine-Learning-Assisted Design of Pharmaceutically Acceptable Deep Eutectic Solvents for the Solubility Improvement of Non-Selective COX Inhibitors Ibuprofen and Ketoprofen
PublikacjaDeep eutectic solvents (DESs) are commonly used in pharmaceutical applications as excellent solubilizers of active substances. This study investigated the tuning of ibuprofen and ketoprofen solubility utilizing DESs containing choline chloride or betaine as hydrogen bond acceptors and various polyols (ethylene glycol, diethylene glycol, triethylene glycol, glycerol, 1,2-propanediol, 1,3-butanediol) as hydrogen bond donors. Experimental...
-
Experimental and Machine-Learning-Assisted Design of Pharmaceutically Acceptable Deep Eutectic Solvents for the Solubility Improvement of Non-Selective COX Inhibitors Ibuprofen and Ketoprofen
PublikacjaDeep eutectic solvents (DESs) are commonly used in pharmaceutical applications as excellent solubilizers of active substances. This study investigated the tuning of ibuprofen and ketoprofen solubility utilizing DESs containing choline chloride or betaine as hydrogen bond acceptors and various polyols (ethylene glycol, diethylene glycol, triethylene glycol, glycerol, 1,2-propanediol, 1,3-butanediol) as hydrogen bond donors. Experimental...
-
New products of reaction of Lawesson's reagent with diols.
PublikacjaW artykule przedstawiono syntezę i szczegółową charakterystykę strukturalną i konformacyjną 8-, 9- i 10-członowych pierścieniowych związków heterocyklicznych o unikatowym układzie atomów O-P-S-S. W wyniku reakcji a,w-dioli z odczynnikiem Lawessona wobec zasad powstają odpowiednie sole kwasów bisditiofosfonowych, które po utlenieniu dają w/w pierścieniowe disulfidy. Kwasy bisditiofosfonowe przekształcono także w trwałe diestry S-metylowe,...
-
Testing motional accuracy of a manufacturing machine - a task imposed on modern maintenance
PublikacjaArtykuł dotyczy zagadnień utrzymania ruchu maszyn w powiązaniu z problemami parametryzacji zautomatyzowanych napędów. Przedstawiono krótki przegląd i kierunki rozwoju wspomagania komputerowego w ramach zakładowych systemów utrzymania ruchu. Zwrócono uwagę na pomijanie w popularnie publikowanych graficznych modelach systemów informatycznych CIM, ich podsystemów dedykowanych dla wspomagania utrzymania ruchu maszyn, podczas gdy takie...
-
Wiktoria Wojnicz dr hab. inż.
OsobyDSc in Mechanics (in the field of Biomechanics) - Lodz Univeristy of Technology, 2019 PhD in Mechanics (in the field of Biomechanics) - Lodz Univeristy of Technology, 2009 (with distinction) Publikacje z listy MNiSW (2009 - ) Wojnicz W., Wittbrodt E., Analysis of muscles' behaviour. Part I. The computational model of muscle. Acta of Bioengineering and Biomechanics, Vol. 11, No.4, 2009, p. 15-21 Wojnicz W., Wittbrodt E., Analysis...
-
Cost-Efficient Measurement Platform and Machine-Learning-Based Sensor Calibration for Precise NO2 Pollution Monitoring
PublikacjaAir quality significantly impacts human health, the environment, and the economy. Precise real-time monitoring of air pollution is crucial for managing associated risks and developing appropriate short- and long-term measures. Nitrogen dioxide (NO2) stands as a common pollutant, with elevated levels posing risks to the human respiratory tract, exacerbating respiratory infections and asthma, and potentially leading to chronic lung...
-
Chained machine learning model for predicting load capacity and ductility of steel fiber–reinforced concrete beams
PublikacjaOne of the main issues associated with steel fiber–reinforced concrete (SFRC) beams is the ability to anticipate their flexural response. With a comprehensive grid search, several stacked models (i.e., chained, parallel) consisting of various machine learning (ML) algorithms and artificial neural networks (ANNs) were developed to predict the flexural response of SFRC beams. The flexural performance of SFRC beams under bending was...
-
Wojciech Wojnowski dr inż.
OsobyUkończył V Liceum Ogólnokształcące w Gdańsku w klasie o profilu matematyczno-fizycznym z wykładowym językiem angielskim. W 2009 roku rozpoczął studia na Wydziale Chemicznym PG na kierunku technologia chemiczna, uzyskując w 2012 roku tytuł inżyniera, a w 2013 tytuł magistra. W latach 2013–2015 studiował sinologię na Uniwersytecie w Nankinie dzięki uzyskaniu Stypendium Rządu ChRL. Po powrocie do Polski w 2015 roku rozpoczął studia...
-
Seismic response and performance prediction of steel buckling-restrained braced frames using machine-learning methods
PublikacjaNowadays, Buckling-Restrained Brace Frames (BRBFs) have been used as lateral force-resisting systems for low-, to mid-rise buildings. Residual Interstory Drift (RID) of BRBFs plays a key role in deciding to retrofit buildings after seismic excitation; however, existing formulas have limitations and cannot effectively help civil engineers, e.g., FEMA P-58, which is a conservative estimation method. Therefore, there is a need to...
-
Energy consumption optimization in wastewater treatment plants: Machine learning for monitoring incineration of sewage sludge
PublikacjaBiomass management in terms of energy consumption optimization has become a recent challenge for developed countries. Nevertheless, the multiplicity of materials and operating parameters controlling energy consumption in wastewater treatment plants necessitates the need for sophisticated well-organized disciplines in order to minimize energy consumption and dissipation. Sewage sludge (SS) disposal management is the key stage of...
-
Playback detection using machine learning with spectrogram features approach
PublikacjaThis paper presents 2D image processing approach to playback detection in automatic speaker verification (ASV) systems using spectrograms as speech signal representation. Three feature extraction and classification methods: histograms of oriented gradients (HOG) with support vector machines (SVM), HAAR wavelets with AdaBoost classifier and deep convolutional neural networks (CNN) were compared on different data partitions in respect...
-
Product diversification, relative specialisation and economic development: Import–export analysis
Publikacja -
Forecasting energy consumption and carbon dioxide emission of Vietnam by prognostic models based on explainable machine learning and time series
PublikacjaThis study assessed the usefulness of algorithms in estimating energy consumption and carbon dioxide emissions in Viet- nam, in which the training dataset was used to train the models linear regression, random forest, XGBoost, and AdaBoost, allowing them to comprehend the patterns and relationships between population, GDP, and carbon dioxide emissions, energy consumption. The results revealed that random forest, XGBoost, and AdaBoost...
-
Polymeric Bearings as a new base isolation system suitable for mitigating machine-induced vibrations
PublikacjaThe present paper summarizes the preliminary results of the experimental shaking table investigation conducted in order to verify the effectiveness of a new base isolation system consisting of Polymeric Bearings in reducing strong horizontal machine-induced vibrations. Polymeric Bearing considered in the present study is a prototype base isolation system, which was constructed with the use of a specially prepared flexible polymer...
-
Cost-Efficient Multi-Objective Design of Miniaturized Microwave Circuits Using Machine Learning and Artificial Neural Network
PublikacjaDesigning microwave components involves managing multiple objectives such as center frequencies, impedance matching, and size reduction for miniaturized structures. Traditional multi-objective optimization (MO) approaches heavily rely on computationally expensive population-based methods, especially when exe-cuted with full-wave electromagnetic (EM) analysis to guarantee reliability. This paper introduces a novel and cost-effective...
-
Szymon Zaporowski mgr inż.
Osoby