wyświetlamy 1000 najlepszych wyników Pomoc
Wyniki wyszukiwania dla: DELAY-DIFFERENTIAL EQUATIONS
-
The modelling method of discrete-continuous systems
PublikacjaThe paper introduces a method of discrete-continuous systems modelling. In the proposed method a three-dimensional system is divided into finite elements in only two directions, with the third direction remaining continuous. The thus obtained discrete-continuous model is described by a set of partial differential equations. General difference equations of discrete system are obtained using the rigid finite element method. The limit...
-
Fractional problems with advanced arguments
PublikacjaThis paper concerns boundary fractional differential problems with advanced arguments. We investigate the existence of initial value problems when the initial point is given at the end point of an interval. Nonhomogeneous linear fractional differential equations are also studied. The existence of solutions for fractional differential equations with advanced arguments and with boundary value problems has been investigated by using...
-
A significance of multi slip condition for inclined MHD nano-fluid flow with non linear thermal radiations, Dufuor and Sorrot, and chemically reactive bio-convection effect
PublikacjaThe aim of this research is to discuss the significance of slip conditions for magnetized nanofluid flow with the impact of nonlinear thermal radiations, activation energy, inclined MHD, sorrot and dufour, and gyrotactic micro motile organisms over continuous stretching of a two-dimensional sheet. The governing equations emerge in the form of partial differential equations. Since the resultant governing differential equations...
-
Robust output prediction of differential – algebraic systems – application to drinking water distribution system
PublikacjaThe paper presents the recursive robust output variable prediction algorithm, applicable for systems described in the form of nonlinear algebraic-differential equations. The algorithm bases on the uncertainty interval description, the system model, and the measurements. To improve the algorithm efficiency, nonlinear system models are linearised along the nominal trajectory. The effectiveness of the algorithm is demonstrated on...
-
Dataset of phase portraits of the fractional prey-predator model with Holling type-II interaction (without predator harvesting)
Dane BadawczeThe need for a fractional generalization of a given classical model is often due to new behaviors which cannot be taken into account by the model. In this situation, it can be useful to look for a fractional deformation of the initial system, trying to fit the fractional exponent of differentiation in order to catch properly the data.
-
Numerical Methods
Kursy OnlineNumerical Methods: for Electronics and Telecommunications students, Master's level, semester 1 Instructor: Michał Rewieński, Piotr Sypek Course description: This course provides an introduction to computational techniques for the simulation and modeling of a broad range of engineering and physical systems. Concepts and methods discussed are widely illustrated by various applications including modeling of integrated circuits,...
-
A DISCRETE-CONTINUOUS METHOD OF MECHANICAL SYSTEM MODELLING
PublikacjaThe paper describes a discrete-continuous method of dynamic system modelling. The presented approach is hybrid in its nature, as it combines the advantages of spatial discretization methods with those of continuous system modelling methods. In the proposed method, a three-dimensional system is discretised in two directions only, with the third direction remaining continuous. The thus obtained discrete-continuous model is described...
-
Dyskretno-ciągła metoda modelowania układów dynamicznych
PublikacjaW artykule przedstawiono oryginalną metodę modelowania układów dyskretno-ciągłych. Metoda polega na dyskretyzowaniu układu trójwymiarowego jedynie w dwóch wybranych kierunkach. W trzecim z kierunków układ pozostaje ciągły. Otrzymany w ten sposób model jest modelem dyskretno-ciągłym. Opisany jest za pomocą równań różniczkowych cząstkowych. Ogólne równania różnicowe układu dyskretnego otrzymano, wykorzystując metodę sztywnych elementów...
-
Modelling of joining route segments of differential curvature
PublikacjaThe paper presents a new general method of modelling route segments curvature using differential equations. The method enables joining of route segments of different curvature. Transitional curves of linear and nonlinear curvatures have been identified in the case of joining two circular arcs by S-shaped and C-oval transitions. The obtained S-shaped curves have been compared to the cubic C-Bezier curves and to the Pythagorean hodograph...
-
Dynamic modeling of non-cylindrical curved viscoelastic single-walled carbon nanotubes based on the second gradient theory
PublikacjaThis paper is devoted to the theoretical study of the dynamic response of non-cylindrical curved viscoelastic single-walled carbon nanotubes (SWCNTs). The curved nanotubes are largely used in many engineering applications, but it is challenging in understanding mechanically the dynamic response of these curved SWCNTs when considering the influences of the material viscosity. The viscoelastic damping effect on the dynamic response...
-
Estimation of a Stochastic Burgers' Equation Using an Ensemble Kalman Filter
PublikacjaIn this work, we consider a difficult problem of state estimation of nonlinear stochastic partial differential equations (SPDE) based on uncertain measurements. The presented solution uses the method of lines (MoL), which allows us to discretize a stochastic partial differential equation in a spatial dimension and represent it as a system of coupled continuous-time ordinary stochastic differential equations (SDE). For such a system...
-
Significant Production of Thermal Energy in Partially Ionized Hyperbolic Tangent Material Based on Ternary Hybrid Nanomaterials
PublikacjaNanoparticles are frequently used to enhance the thermal performance of numerous materials. This study has many practical applications for activities that have to minimize losses of energy due to several impacts. This study investigates the inclusion of ternary hybrid nanoparticles in a partially ionized hyperbolic tangent liquid passed over a stretched melting surface. The fluid motion equation is presented by considering the...
-
Balance errors generated by numerical diffusion in the solution of non-linear open channel flow equations
PublikacjaThe paper concerns the untypical aspect of application of the dissipative numerical methods to solve nonlinear hyperbolic partial differential equations used in open channel hydraulics. It is shown that in some cases the numerical diffusion generated by the applied method of solution produces not only inaccurate solution but as well as a balance error. This error may occur even for an equation written in the conservative form not...
-
Anita Maria Dąbrowicz-Tlałka dr
OsobyUzyskała, z wynikiem bardzo dobrym, tytuł magistra na kierunku matematyka na Wydziale Matematyki Uniwersytetu Gdańskiego. Praca magisterska pt. „Zbiory swojskie i dzikie w R3” była z dziedziny topologia geometryczna. Równolegle ukończyła na Uniwersytecie Gdańskim „Podyplomowe Studium Podstaw Informatyki”. W 2001 roku uzyskała na Politechnice Poznańskiej tytuł doktora nauk matematycznych. Praca doktorska pt. „Iteracje monotoniczne...
-
Numerical Analysis of Steady Gradually Varied Flow in Open Channel Networks with Hydraulic Structures
PublikacjaIn this paper, a method for numerical analysis of steady gradually varied fl ow in channel networks with hydraulic structures is considered. For this purpose, a boundary problem for the system of ordinary differential equations consisting of energy equation and mass conservation equations is formulated. The boundary problem is solved using fi nite difference technique which leads to the system of non-linear algebraic equations....
-
Nonlinear Interaction of Modes in a Planar Flow of a Gas with Viscous and Thermal Attenuation
PublikacjaThe nonlinear interaction of wave and non-wave modes in a gas planar flow are considered. Attention is mainly paid to the case when one sound mode is dominant and excites the counter-propagating sound mode and the entropy mode. The modes are determined by links between perturbations of pressure, density, and fluid velocity. This definition follows from the linear conservation equations in the differential form and thermodynamic...
-
N-point estimators of the Instantaneous Complex Frequency
PublikacjaIn this paper estimators of the instantaneous complex frequency (ICF) are presented and discussed. The differential approach for the estimation of the ICF is used, therefore the estimators are based on maximally flat N-point FIR filters: differential and delay. The investigation of the filter performance includes static characteristics of ICF estimation and the error of the ICF estimation in the discrete frequency domain.W pracy...
-
Krzywa przejściowa z wygładzoną krzywizną dla dróg kolejowych
PublikacjaW pracy przedstawiono koncepcję nowej postaci krzywej przejściowej, o liniowym przebiegu krzywizny na długości i wygładzonymi rejonami skrajnymi. Może ona stanowić alternatywę dla tzw. gładkich krzywych przejściowych, o nieliniowym przebiegu krzywizny na całej długości. Została tutaj wykorzystana uniwersalna metoda identyfikacji krzywych przejściowych za pomocą równań różniczkowych. Wyznaczono ogólne równania krzywizny oraz odpowiednie...
-
Acoustic Heating Produced in the Thermoviscous Flow of a Shear-Thinning Fluid
PublikacjaThis study is devoted to the instantaneous acoustic heating of a shear-thinningfluid. Apparent viscosity of a shear-thinning fluid depends on the shear rate. Thatfeature distinguishes it from a viscous Newtonian fluid. The special linear combi-nation of conservation equations in the differential form makes it possible to derivedynamic equations governing both the sound and non-wave entropy mode inducedin the field of sound. These...
-
Numerical Investigation of Nuclear Reactor Kinetic and Heat Transfer Fractional Model with Temperature Feedback
PublikacjaAbstract—In the paper, the numerical results concerning the kinetics and proposed heat exchange models in nuclear reactor based on fractional calculus are presented for typical inputs. Two fractional models are proposed and compared with the model based on ordinary derivative. The first fractional model is based on one of the generalized Cattaneo equations. The second one is based on replacing the ordinary to fractional order of...
-
Application of the distributed transfer function method and the rigid finite element method for modelling of 2-D and 3-D systems
PublikacjaIn the paper application of the Distributed Transfer Function Method and the Rigid Finite Element Method for modelling of 2-D and 3-D systems is presented. In this method an elastic body is divided into 1-D distributed parameter elements (strips or prisms). The whole body (divided into strips or prism) is described by a set of coupled partial differential equations. Solving this equations in the state space form it is possible...
-
Integrable zero-range potentials in a plane
PublikacjaWe examine general statements in the Wronskian representation of Darboux transformations for plane zero-range potentials. Such expressions naturally contain scattering problem solution. We also apply Abel theorem to Wronskians for differential equations and link it to chain equations for Darboux transforms to fix conditions for further development of the underlying distribution concept. Moutard transformations give a convenient...
-
Thermal Buckling Analysis of Circular Bilayer Graphene sheets Resting on an Elastic Matrix Based on Nonlocal Continuum Mechanics
PublikacjaIn this article, the thermal buckling behavior of orthotropic circular bilayer graphene sheets embedded in the Winkler–Pasternak elastic medium is scrutinized. Using the nonlocal elasticity theory, the bilayer graphene sheets are modeled as a nonlocal double–layered plate that contains small scale effects and van der Waals (vdW) interaction forces. The vdW interaction forces between the layers are simulated as a set of linear springs...
-
Application of muscle model to the musculoskeletal modeling
PublikacjaThe purpose of this paper is to investigate new fusiform muscle models. Each of these models treats a muscle as a system composedof parts characterized by different mechanical properties. These models explain the influence of differences in the stiffness of lateral parts and the degree of muscle model discretization. Each muscle model is described by a system of differential equations and a single integro-differential equation....
-
The impact of methods the stochastic analysis on swimming safety of multihull floating units (Part1)
PublikacjaThe presented article concerns the application of the methods of the stochastic analysis to solve differential equations for multihull catamaran-type floating unit. There was described the continuous process of Markov and the method of equations of Focker-Planck-Kolmogorov. The analysis of dynamics of the multihull unit was carried out with the assumption that the system model is the linear model with six degrees of freedom, on...
-
Fractional Spectral and Fractional Finite Element Methods: A Comprehensive Review and Future Prospects
PublikacjaIn this article, we will discuss the applications of the Spectral element method (SEM) and Finite element Method (FEM) for fractional calculusThe so-called fractional Spectral element method (f-SEM) and fractional Finite element method (f-FEM) are crucial in various branches of science and play a significant role. In this review, we discuss the advantages and adaptability of FEM and SEM, which provide the simulations of fractional...
-
Differential Quadrature Method for Dynamic Buckling of Graphene Sheet Coupled by a Viscoelastic Medium Using Neperian Frequency Based on Nonlocal Elasticity Theory
PublikacjaIn the present study, the dynamic buckling of the graphene sheet coupled by a viscoelastic matrix was studied. In light of the simplicity of Eringen's non-local continuum theory to considering the nanoscale influences, this theory was employed. Equations of motion and boundary conditions were obtained using Mindlin plate theory by taking nonlinear strains of von Kármán and Hamilton's principle into account. On the other hand, a...
-
Database of the illustrative simulations of the nonstandard approximation of the generalized Burgers–Huxley equation
Dane BadawczeThe presented dataset is a result of numerical analysis of a generalized Burgers–Huxley partial differential equation. An analyzed diffusive partial differential equation consist with nonlinear advection and reaction. The reaction term is a generalized form of the reaction law of the Hodgkin–Huxley model, while the advection is a generalized form of...
-
Application of the Boundary Element Method for the Simulation of Two-dimensional Viscous Incompressible Flow
PublikacjaThe paper presents the application of an indirect variant of the boundary element method (BEM) to solve the two-dimensional steady flow of a Stokes liquid. In the BEM, a system of differential equations is transformed into integral equations. Thi smakes it possible to limit discretization to the border of the solution. Numerical discretization of the computational domain was performed with linear boundary elements, for which a...
-
Introduction to Numerical Simulation
Kursy OnlineCourse description: This interdisciplinary course provides an introduction to computational techniques for the simulation of a broad range of engineering and physical systems. Concepts and methods discussed are widely illustrated by applications drawn from electrical, mechanical, and chemical engineering. Topics include: mathematical formulations of simulation problems; sparse direct and iterative linear system solution techniques,...
-
Positive solutions to Sturm–Liouville problems with non-local boundary conditions
PublikacjaIn this paper, the existence of at least three non-negative solutions to non-local boundary-value problems for second-order differential equations with deviating arguments α and ζ is investigated. Sufficient conditions, which guarantee the existence of positive solutions, are obtained using the Avery–Peterson theorem. We discuss our problem for both advanced and delayed arguments. An example is added to illustrate the results.
-
An inclination in Thermal Energy Using Nanoparticles with Casson Liquid Past an Expanding Porous Surface
PublikacjaPhysical aspects of inclined MHD nanofluid towards a stretching sheet embedded in a porous medium are visualized. Two types of nanoparticles are used named as copper and alumna dioxide with water as base fluid. Similarity transformations are used to convert the partial differential equations into the set of ordinary differential equation. Closed solutions are found to examine the velocity and the temperature profiles. It is examined...
-
Electromagnetic Control and Dynamics of Generalized Burgers’ Nanoliquid Flow Containing Motile Microorganisms with Cattaneo–Christov Relations: Galerkin Finite Element Mechanism
PublikacjaIn our research work, we have developed a model describing the characteristics of the bio-convection and moving microorganisms in the flows of a magnetized generalized Burgers’ nanoliquid with Fourier’s and Fick’s laws in a stretchable sheet. Considerations have been made to Cattaneo–Christov mass and heat diffusion theory. According to the Cattaneo–Christov relation, the Buongiorno phenomenon for the motion of a nanoliquid in...
-
A Novel Approach to Fully Nonlinear Mathematical Modeling of Tectonic Plates
PublikacjaThe motion of the Earth's layers due to internal pressures is simulated in this research with an efficient mathematical model. The Earth, which revolves around its axis of rotation and is under internal pressure, will change the shape and displacement of the internal layers and tectonic plates. Applied mathematical models are based on a new approach to shell theory involving both two and three-dimensional approaches. It is the...
-
Efficiency of acoustic heating in the Maxwell fluid
PublikacjaThe nonlinear effects of sound in a fluid describing by the Maxwell model of the viscous stress tensor is the subject of investigation. Among other, viscoelastic biological media belong to this non-newtonian type of fluids. Generation of heating of the medium caused by nonlinear transfer of acoustic energy, is discussed in details. The governing equation of acoustic heating is derived by means of the special linear combination...
-
Analytical method of determining dynamic properties of thermocouples used in measurements of quick – changing temperatures of exhaust gases in marine diesel engines
PublikacjaThe article presents selected issues of mathematical modeling of heat exchange between the thermocouple and the exhaust gas flowing them, in unsteady conditions. On the way of energy balancing consideration of thermodynamic processes developed differential equations describing the dynamic properties for three versions of the design sheathed thermocouples: with weld isolated from the sheath, with weld welded the sheath and with...
-
Efficiency of acoustic heating in the Maxwell fluid
PublikacjaThe nonlinear effects of sound in a fluid describing by the Maxwell model of the viscous stress tensor is the subject of investigation. Among other, viscoelastic biological media belong to this non-newtonian type of fluids. Generation of heating of the medium caused by nonlinear transfer of acoustic energy, is discussed in details. The governing equation of acoustic heating is derived by means of the special linear combination...
-
Precise Point Positioning Method Based on Wide-lane and Narrow-lane Phase Observations and Between Satellites Single Differencing
PublikacjaThe issue of using PPP method in position determination was formed in 1997. In most developed methods, ionospheric-free linear combination is used in order to eliminate the impact of the ionospheric delay. However, this approach does not provide the directly determination of the total value of the ambiguities, and the ambiguities for the individual signals. Therefore, in many publications methods of avoiding these deficiencies...
-
Transition curve with smoothed curvature at its ends for railway roads
PublikacjaIn the paper, in view of a railway ballasted track, a new concept of transition curve of linear form of curvature along its length and smoothed extreme regions is presented. For this purpose use has been made of an original, universal method for identifying transition curves by means of differential equations. Some general curvature equations for three regions investigated have been determined to be followed by appropriate parametric...
-
A new approach to determination of the two-mass model parameters of railway current collector
PublikacjaThe paper presents two mathematical models of railway current collectors both with two degrees of freedom. The first one, hereinafter Pantograph Articulated Model (PAM), has one degree of freedom in rotational motion and the second degree of freedom in translational motion. The second model, called henceforth as Pantograph Reference Model (PRM), has both degrees of freedom in translational motion. Differential equations of the...
-
A new approach to determination of the two-mass model parameters of railway current collector
PublikacjaThe paper presents two mathematical models of railway current collectors both with two degrees of freedom. The first one, hereinafter Pantograph Articulated Model (PAM), has one degree of freedom in rotational motion and the second degree of freedom in translational motion. The second model, called henceforth as Pantograph Reference Model (PRM), has both degrees of freedom in translational motion. Differential equations of the...
-
ORF Approximation in Numerical Analysis of Fractional Point Kinetics and Heat Exchange Model of Nuclear Reactor
PublikacjaThis paper presents results concerning numerical solutions of the fractional point kinetics (FPK) and heat exchange (HE) model for a nuclear reactor. The model consists of a nonlinear system of fractional and ordinary differential equations. Two methods to solve the model are compared. The first one applies Oustaloup Recursive Filter (ORF) and the second one applies Refined Oustaloup Recursive Filter (RORF). Simulation tests have...
-
ORF Approximation in Numerical Analysis of Fractional Point Kinetics and Heat Exchange Model of Nuclear Reactor
PublikacjaThis paper presents results concerning numerical solutions of the fractional point kinetics (FPK) and heat exchange (HE) model for a nuclear reactor. The model consists of a nonlinear system of fractional and ordinary differential equations. Two methods to solve the model are compared. The first one applies Oustaloup Recursive Filter (ORF) and the second one applies Refined Oustaloup Recursive Filter (RORF). Simulation tests have...
-
Fractional Problems with Right-Handed Riemann-Liouville Fractional Derivatives
PublikacjaIn this paper, we investigate the existence of solutions for advanced fractional differential equations containing the right-handed Riemann-Liouville fractional derivative both with nonlinear boundary conditions and also with initial conditions given at the end point T of interval [0,T ]. We use both the method of successive approximations, the Banach fixed point theorem and the monotone iterative technique, as well. Linear problems...
-
Experimental and numerical studies on the mechanical response of a piezoelectric nanocomposite-based functionally graded materials
PublikacjaThis work presents an experimental study of piezoelectric structures reinforced by graphene platelets, based on the concept of the functionally graded materials (FGMs). The assumed model is a rectangular beam/plate and the composition is due to the Halpin-Tsai rule. The model is also simulated in the Abaqus software which is the first time that such a structure has been modelled in an FEM package. In addition, a mathematical model...
-
Identification of transition curves in vehicular roads and railways
PublikacjaIn the paper attention is focused on the necessity to systematize the procedure for determining the shape of transition curves used in vehicular roads and railway routes. There has been presented a universal method of identifying curvature in transition curves by using differential equations. Curvature equations for such known forms of transition curves as clothoid, quartic parabola, the Bloss curve, cosinusoid and sinusoid, have...
-
On forced vibrations of piezo-flexomagnetic nano-actuator beams
PublikacjaThe effect of excitation frequency on the piezomagnetic Euler-Bernoulli nanobeam taking the flexomagnetic material phenomenon into consideration is investigated in this chapter. The magnetization with strain gradients creates flexomagneticity. We couple simultaneously the piezomagnetic and flexomagnetic properties in an inverse magnetization. Resemble the flexoelectricity, the flexomagneticity is also size-dependent. So, it has...
-
Ultrashort Opposite Directed Pulses Dynamics with Kerr Effect and Polarization Account
PublikacjaWe present the application of projection operator methods to solving the problem of the propagation and interaction of short optical pulses of different polarizations and directions in a nonlinear dispersive medium. We restrict ourselves by the caseof one-dimensional theory, taking into account material dispersion and Kerr nonlinearity. The construction of operators is delivered in two variants: for the Cauchy problem and for the...
-
Analytical method of modelling the geometric system of communication route
PublikacjaThe paper presents a new analytical approach to modelling the curvature of a communication route by making use of differential equations. The method makes it possible to identify both linear and nonlinear curvature. It enables us to join curves of the same or opposite signs of curvature. Solutions of problems for linear change of curvature and selected variants of nonlinear curvature in polynomial and trigonometric form were analyzed....
-
Bending and buckling formulation of graphene sheets based on nonlocal simple first-order shear deformation theory
PublikacjaThis paper presents a formulation based on simple first-order shear deformation theory (S-FSDT) for large deflection and buckling of orthotropic single-layered graphene sheets (SLGSs). The S-FSDT has many advantages compared to the classical plate theory (CPT) and conventional FSDT such as needless of shear correction factor, containing less number of unknowns than the existing FSDT and strong similarities with the CPT. Governing...