Wyniki wyszukiwania dla: training methods
-
Video Classification Technology in a Knowledge-Vision-Integration Platform for Personal Protective Equipment Detection: An Evaluation
PublikacjaThis work is part of an effort for the development of a Knowledge-Vision Integration Platform for Hazard Control (KVIP-HC) in industrial workplaces, adaptable to a wide range of industrial environments. This paper focuses on hazards resulted from the non-use of personal protective equipment (PPE), and examines a few supervised learning techniques to compose the proposed system for the purpose of recognition of three protective...
-
Engineering education for smart grid systems in the quasi-industrial environment of the LINTE^2 laboratory
PublikacjaSmart grid systems are revolutionising the electric power sector, integrating advanced technologies to enhance efficiency, reliability and sustainability. It is important for higher education to equip the prospective smart grid professional with the competencies enabling them to navigate through the related complexities and drive innovation. To achieve this, interdisciplinary education programmes are necessary, addressing inter...
-
Investigating Noise Interference on Speech Towards Applying the Lombard Effect Automatically
PublikacjaThe aim of this study is two-fold. First, we perform a series of experiments to examine the interference of different noises on speech processing. For that purpose, we concentrate on the Lombard effect, an involuntary tendency to raise speech level in the presence of background noise. Then, we apply this knowledge to detecting speech with the Lombard effect. This is for preparing a dataset for training a machine learning-based...
-
NLITED - New Level of Integrated Techniques for Daylighting Education: Preliminary Data on the Use of an E-learning Platform
PublikacjaProject NLITED – New Level of Integrated Techniques for Daylighting Education - is an educational project for students and professionals. The project's objective is to create and develop an online eLearning platform with 32 eModules dedicated to daylight knowledge. The project also offers e-learners two summer school training where the theory is put into practice. The platform was launched on January 31, 2022. The paper...
-
Performance‐driven modeling of compact couplers in restricted domains
PublikacjaFast surrogate models can play an important role in reducing the cost of EM-driven design closure of miniaturized microwave components. Unfortunately, construction of such models is challenging due to curse of dimensionality and wide range of geometry parameters that need to be included in order to make it practically useful. In this letter, a novel approach to design-oriented modeling of compact couplers is presented. Our method...
-
Reduced-cost surrogate modeling of input characteristics and design optimization of dual-band antennas using response features
PublikacjaIn this article, a procedure for low-cost surrogate modeling of input characteristics of dual-band antennas has been discussed. The number of training data required for construction of an accurate model has been reduced by representing the antenna reflection response to the level of suitably defined feature points. The points are allocated to capture the critical features of the reflection characteristic, such as the frequencies...
-
From Knowledge based Vision Systems to Cognitive Vision Systems: A Review
PublikacjaComputer vision research and applications have their origins in 1960s. Limitations in computational resources inherent of that time, among other reasons, caused research to move away from artificial intelligence and generic recognition goals to accomplish simple tasks for constrained scenarios. In the past decades, the development in machine learning techniques has contributed to noteworthy progress in vision systems. However,...
-
Performance-Driven Inverse/Forward Modeling of Antennas in Variable-Thickness Domains
PublikacjaDesign of contemporary antenna systems is a challenging endeavor. The difficulties are partially rooted in stringent specifications imposed on both electrical and field characteristics, demands concerning various functionalities, but also constraints imposed upon the physical size of the radiators. Furthermore, conducting the design process at the level of full-wave electromagnetic (EM) simulations, otherwise dictated by reliability,...
-
Neural Network-Based Sequential Global Sensitivity Analysis Algorithm
PublikacjaPerforming global sensitivity analysis (GSA) can be challenging due to the combined effect of the high computational cost, but it is also essential for engineering decision making. To reduce this cost, surrogate modeling such as neural networks (NNs) are used to replace the expensive simulation model in the GSA process, which introduces the additional challenge of finding the minimum number of training data samples required to...
-
Predictions of cervical cancer identification by photonic method combined with machine learning
PublikacjaCervical cancer is one of the most commonly appearing cancers, which early diagnosis is of greatest importance. Unfortunately, many diagnoses are based on subjective opinions of doctors—to date, there is no general measurement method with a calibrated standard. The problem can be solved with the measurement system being a fusion of an optoelectronic sensor and machine learning algorithm to provide reliable assistance for doctors...
-
On Reduced-Cost Design-Oriented Constrained Surrogate Modeling of Antenna Structures
PublikacjaDesign of contemporary antenna structures heavily relies on full-wave electromagnetic (EM) simulation models. Such models are essential to ensure reliability of evaluating antenna characteristics, yet, they are computationally expensive and therefore unsuitable for handling tasks that require multiple analyses, e.g., parametric optimization. The cost issue can be alleviated by using fast surrogate models. Conventional data-driven...
-
Real-time simulator of agricultural biogas plant
PublikacjaThis article presents a real-time simulator of an agricultural biogas plant. The project contains biogas and biomass circuits simulation, as well as heating circuit simulation with a complete control system and visualization interface of the whole process. The software tool used to simulate the plant work is CFD (Computational Fluid Dynamics), which enables a user to create and test simulation objects based on fundamental physical...
-
Trust triggers and barriers in intercultural teams
PublikacjaIntercultural teams are more and more popular nowadays — they constitute a serious challenge in terms of effective cooperation and trust building, however. The article presents the potential problems that can affect intercultural cooperation and stresses the power of trust in cultural diversity conditions. The ten-factor model of intercultural team trust is presented. The main aim was to answer the questions: what are the differences...
-
Labeler-hot Detection of EEG Epileptic Transients
PublikacjaPreventing early progression of epilepsy and sothe severity of seizures requires effective diagnosis. Epileptictransients indicate the ability to develop seizures but humansoverlook such brief events in an electroencephalogram (EEG)what compromises patient treatment. Traditionally, trainingof the EEG event detection algorithms has relied on groundtruth labels, obtained from the consensus...
-
A Comprehensive Analysis of Deep Neural-Based Cerebral Microbleeds Detection System
PublikacjaMachine learning-based systems are gaining interest in the field of medicine, mostly in medical imaging and diagnosis. In this paper, we address the problem of automatic cerebral microbleeds (CMB) detection in magnetic resonance images. It is challenging due to difficulty in distinguishing a true CMB from its mimics, however, if successfully solved it would streamline the radiologists work. To deal with this complex three-dimensional...
-
Inclusive Communication Model Supporting the Employment Cycle of Individuals with Autism Spectrum Disorders
PublikacjaDifficulties with interpersonal communication experienced by individuals with autism spectrum disorders (ASD) significantly contribute to their underrepresentation in the workforce as well as problems experienced while in employment. Consistently, it is vital to understand how communication within the employment cycle of this group can be improved. This study aims to identify and analyze the possibilities of modifying the communication...
-
Autoencoder application for anomaly detection in power consumption of lighting systems
PublikacjaDetecting energy consumption anomalies is a popular topic of industrial research, but there is a noticeable lack of research reported in the literature on energy consumption anomalies for road lighting systems. However, there is a need for such research because the lighting system, a key element of the Smart City concept, creates new monitoring opportunities and challenges. This paper examines algorithms based on the deep learning...
-
Accurate simulation-driven modeling and design optimization of compact microwave structures
PublikacjaCost efficient design optimization of microwave structures requires availability of fast yet reliable replacement models so that multiple evaluations of the structure at hand can be executed in reasonable timeframe. Direct utilization of full-wave electromagnetic (EM) simulations is often prohibitive. On the other hand, accurate data-driven modeling normally requires a very large number of training points and it is virtually infeasible...
-
Developing students' spatial skills and teaching the history of architecture through structural drawing
PublikacjaThe method of “structural drawing" is used in teaching history of architecture in the Architectural Faculty of Gdańsk University of Technology. It is addressed to students of the first semester of study – so to the architectural beginners. There are three main goals of the structural drawing method used in that educational course: (1) developing the students’ spatial skills; (2) training architectural drawing ability; (3) teaching...
-
A COMPREHENSIVE REVIEW OF LIFE CYCLE ASSESSMENT AND ENERGY EFFICIENCY IN 3D PRINTING FOR CONSTRUCTION: CURRENT STATE, BENEFITS, LIMITATIONS, AND FUTURE OUTLOOK
PublikacjaThe agenda of Industry 4.0 strongly affects design and construction at all its phases, and three-Dimensional Printing (3DP) is an essential part of it. The emerging technology has the potential to become a more valid and accepted form of construction. This research is based on a literature review regarding the relationships between the concepts of Life Cycle Assessment (LCA) and energy efficiency for 3DP in construction research...
-
Multi-fidelity EM simulations and constrained surrogate modelling for low-cost multi-objective design optimisation of antennas
PublikacjaIn this study, a technique for low-cost multi-objective design optimisation of antenna structures has been proposed. The proposed approach is an enhancement of a recently reported surrogate-assisted technique exploiting variable-fidelity electromagnetic (EM) simulations and auxiliary kriging interpolation surrogate, the latter utilised to produce the initial approximation of the Pareto set. A bottleneck of the procedure for higher-dimensional...
-
Triangulation-based Constrained Surrogate Modeling of Antennas
PublikacjaDesign of contemporary antenna structures is heavily based on full-wave electromagnetic (EM) simulation tools. They provide accuracy but are CPU-intensive. Reduction of EM-driven design procedure cost can be achieved by using fast replacement models (surrogates). Unfortunately, standard modeling techniques are unable to ensure sufficient predictive power for real-world antenna structures (multiple parameters, wide parameter ranges,...
-
BP-EVD: Forward Block-Output Propagation for Efficient Video Denoising
PublikacjaDenoising videos in real-time is critical in many applications, including robotics and medicine, where varying light conditions, miniaturized sensors, and optics can substantially compromise image quality. This work proposes the first video denoising method based on a deep neural network that achieves state-of-the-art performance on dynamic scenes while running in real-time on VGA video resolution with no frame latency. The backbone...
-
Selection of effective cocrystals former for dissolution rate improvement of active pharmaceutical ingredients based on lipoaffinity index
PublikacjaNew theoretical screening procedure was proposed for appropriate selection of potential cocrystal formers possessing the ability of enhancing dissolution rates of drugs. The procedure relies on the training set comprising 102 positive and 17 negative cases of cocrystals found in the literature. Despite the fact that the only available data were of qualitative character, performed statistical analysis using binary classification...
-
Distinguishing of cocrystals from simple eutectic mixtures: phenolic acids as potential pharmaceutical coformers
PublikacjaThe multiparameter model comprising 1D and 2D QSPR/QSAR descriptors was proposed and validated for phenolic acid binary systems. This approach is based on the optimization of regression coefficients for maximization of the percentage of true positives in the pool of systems comprising either simple binary eutectics or cocrystals. The training set consisted of 58 eutectics and 168 cocrystals. The solid dispersions collection used...
-
Recent Advances in Performance-Driven Surrogate Modeling of High-Frequency Structures
PublikacjaDesign of high‐frequency structures, including microwave and antenna components, heavily relies on full‐wave electromagnetic (EM) simulation models. Their reliability comes at a price of a considerable computational cost. This may lead to practical issues whenever numerous EM analyses are to be executed, e.g., in the case of parametric optimization. The difficulties entailed by massive simulations may be mitigated by the use of...
-
Music information retrieval—The impact of technology, crowdsourcing, big data, and the cloud in art.
PublikacjaThe exponential growth of computer processing power, cloud data storage, and crowdsourcing model of gathering data bring new possibilities to music information retrieval (mir) field. Mir is no longer music content retrieval only; the area also comprises the discovery of expressing feelings and emotions contained in music, incorporating other than hearing modalities for helping this issue, users’ profiling, merging music with social...
-
Automated hearing loss type classification based on pure tone audiometry data
PublikacjaHearing problems are commonly diagnosed with the use of tonal audiometry, which measures a patient’s hearing threshold in both air and bone conduction at various frequencies. Results of audiometry tests, usually represented graphically in the form of an audiogram, need to be interpreted by a professional audiologist in order to determine the exact type of hearing loss and administer proper treatment. However, the small number of...
-
Exploring the influence of personal factors on physiological responses to mental imagery in sport
PublikacjaImagery is a well-known technique in mental training which improves performance efficiency and influences physiological arousal. One of the biomarkers indicating the amount of physiological arousal is skin conductance level (SCL). The aim of our study is to understand how individual differences in personality (e.g. neuroticism), general imagery and situational sport anxiety are linked to arousal measuring with SCL in situational...
-
Security of Cryptocurrencies: A View on the State-of-the-Art Research and Current Developments
Publikacja[Context] The goal of security is to protect digital assets, devices, and services from being disrupted, exploited or stolen by unauthorized users. It is also about having reliable information available at the right time. [Motivation] Since the inception in 2009 of the first cryptocurrency, few studies have been undertaken to analyze and review the state-of-the-art research and current developments with respect to the security...
-
Improving the prediction of biochar production from various biomass sources through the implementation of eXplainable machine learning approaches
PublikacjaExamining the game-changing possibilities of explainable machine learning techniques, this study explores the fast-growing area of biochar production prediction. The paper demonstrates how recent advances in sensitivity analysis methodology, optimization of training hyperparameters, and state-of-the-art ensemble techniques have greatly simplified and enhanced the forecasting of biochar output and composition from various biomass...
-
The role of EMG module in hybrid interface of prosthetic arm
PublikacjaNearly 10% of all upper limb amputations concern the whole arm. It affects the mobility and reduces the productivity of such a person. These two factors can be restored by using prosthetics. However, the complexity of human arm makes restoring its basic functions quite difficult. When the osseointegration and/or targeted muscle reinnervation (TMR) are not possible, different modalities can be used to control the prosthesis. In...
-
Domain segmentation for low-cost surrogate-assisted multi-objective design optimisation of antennas
PublikacjaAbstract: Information regarding the best possible design trade-offs of an antenna structure can be obtained through multiobjective optimisation (MO). Unfortunately, MO is extremely challenging if full-wave electromagnetic (EM) simulation models are used for performance evaluation. Yet, for the majority of contemporary antennas, EM analysis is the only tool that ensures reliability. This study introduces a procedure for accelerated...
-
Investigating Feature Spaces for Isolated Word Recognition
PublikacjaMuch attention is given by researchers to the speech processing task in automatic speech recognition (ASR) over the past decades. The study addresses the issue related to the investigation of the appropriateness of a two-dimensional representation of speech feature spaces for speech recognition tasks based on deep learning techniques. The approach combines Convolutional Neural Networks (CNNs) and timefrequency signal representation...
-
Prediction of fracture toughness in fibre-reinforced concrete, mortar, and rocks using various Machine learning techniques
PublikacjaMachine Learning (ML) method is widely used in engineering applications such as fracture mechanics. In this study, twenty different ML algorithms were employed and compared for the prediction of the fracture toughness and fracture load in modes I, II, and mixed-mode (I-II) of various materials, including fibre-reinforced concrete, cement mortar, sandstone, white travertine, marble, and granite. A set of 401 specimens of “Brazilian...
-
Performance-driven yield optimization of high-frequency structures by kriging surrogates
PublikacjaUncertainty quantification is an important aspect of engineering design, as manufacturing toler-ances may affect the characteristics of the structure. Therefore, quantification of these effects is in-dispensable for adequate assessment of the design quality. Toward this end, statistical analysis is performed, for reliability reasons, using full-wave electromagnetic (EM) simulations. Still, the computational expenditures associated...
-
Efficient Surrogate Modeling and Design Optimization of Compact Integrated On-Chip Inductors Based on Multi-Fidelity EM Simulation Models
PublikacjaHigh-performance and small-size on-chip inductors play a critical role in contemporary radio-frequency integrated circuits. This work presents a reliable surrogate modeling technique combining low-fidelity EM simulation models, response surface approximations based on kriging interpolation, and space mapping technology. The reported method is useful for the development of broadband and highly accurate data-driven models of integrated...
-
Challenges and Perspectives of Nature-Based Wastewater Treatment and Reuse in Rural Areas of Central and Eastern Europe
Publikacjan Central and Eastern Europe, about one-third of the population lives in small settlements (<2000 PE). Since the current European Urban Wastewater Treatment Directive (91/271/EEC) does not clearly regulate the collection and treatment of wastewater from these settlements, countries solve the problem individually. Simple and robust technologies such as nature-based treatment systems could be the solution and are widely applied in...
-
Do the young employees perceive themselves as digitally competent and does it matter?
PublikacjaPurpose – The study aims to examine the digital competence of young employees (under 30 years of age) who graduated from the technical university. Self-assessment of selected digital competencies was examined along with the determination of a self-efficacy level in the area of using digital competencies. Design/methodology/approach – Quantitative research was conducted using the computer-assisted web interview method on a sample...
-
Reliable Surrogate Modeling of Antenna Input Characteristics by Means of Domain Confinement and Principal Components
PublikacjaA reliable design of contemporary antenna structures necessarily involves full-wave electromagnetic (EM) analysis which is the only tool capable of accounting, for example, for element coupling or the effects of connectors. As EM simulations tend to be CPU-intensive, surrogate modeling allows for relieving the computational overhead of design tasks that require numerous analyses, for example, parametric optimization or uncertainty...
-
RUSSIANS ON THE POLISH LABOUR MARKET
PublikacjaThe article looks into the employment of Russian citizens in Poland in 2004– 2018. It presents the legal basis for Russians’ entering Poland and taking up work without having to seek a work permit, and specifies who must apply for such a permit. Russian citizens can obtain refugee status under the Geneva Convention, which grants them the right to move freely, choose their place of residence and undertake paid employment, while...
-
Modeling lignin extraction with ionic liquids using machine learning approach
PublikacjaLignin, next to cellulose, is the second most common natural biopolymer on Earth, containing a third of the organic carbon in the biosphere. For many years, lignin was perceived as waste when obtaining cellulose and hemicellulose and used as a biofuel for the production of bioenergy. However, recently, lignin has been considered a renewable raw material for the production of chemicals and materials to replace petrochemical resources....
-
Transfer learning in imagined speech EEG-based BCIs
PublikacjaThe Brain–Computer Interfaces (BCI) based on electroencephalograms (EEG) are systems which aim is to provide a communication channel to any person with a computer, initially it was proposed to aid people with disabilities, but actually wider applications have been proposed. These devices allow to send messages or to control devices using the brain signals. There are different neuro-paradigms which evoke brain signals of interest...
-
Predicting emotion from color present in images and video excerpts by machine learning
PublikacjaThis work aims at predicting emotion based on the colors present in images and video excerpts using a machine-learning approach. The purpose of this paper is threefold: (a) to develop a machine-learning algorithm that classifies emotions based on the color present in an image, (b) to select the best-performing algorithm from the first phase and apply it to film excerpt emotion analysis based on colors, (c) to design an online survey...
-
Multicomponent ionic liquid CMC prediction
PublikacjaWe created a model to predict CMC of ILs based on 704 experimental values published in 43 publications since 2000. Our model was able to predict CMC of variety of ILs in binary or ternary system in a presence of salt or alcohol. The molecular volume of IL (Vm), solvent-accessible surface (Sˆ), solvation enthalpy (DsolvGN), concentration of salt (Cs) or alcohol (Ca) and their molecular volumes (Vms and Vma, respectively) were chosen...
-
An audio-visual corpus for multimodal automatic speech recognition
Publikacjareview of available audio-visual speech corpora and a description of a new multimodal corpus of English speech recordings is provided. The new corpus containing 31 hours of recordings was created specifically to assist audio-visual speech recognition systems (AVSR) development. The database related to the corpus includes high-resolution, high-framerate stereoscopic video streams from RGB cameras, depth imaging stream utilizing Time-of-Flight...
-
Sperm segmentation and abnormalities detection during the ICSI procedure using machine learning algorithms
Publikacja(1) About 15-20% of couples struggle with the problem of infertility. 30 to 40% of these cases are caused by abnormalities in the structure and motility of sperm. Sometimes the only possibility for such people is to use the procedure of artificial insemination. CASA systems are used to increase the efficiency of this procedure by selecting the appropriate sperm cell. (2) This paper presents an approach to the sperm classification...
-
Using Convolutional Neural Networks for Corneal Arcus Detection Towards Familial Hypercholesterolemia Screening
PublikacjaFamilial hypercholesterolemia (FH) is a highly undiagnosed disease. Among FH patients, the onset of premature coronary artery disease is 13 times higher than in the general population. Early diagnosis and treatment is essential to prevent cardiovascular diseases and their complications, and to prolong life. One of the clinical criteria of FH is the occurrence of a corneal arcus (CA) among patients, especially those under 45 years...
-
Reduced-Cost Two-Level Surrogate Antenna Modeling using Domain Confinement and Response Features
PublikacjaElectromagnetic (EM) simulation tools have become indispensable in the design of contemporary antennas. Still, the major setback of EM-driven design is the associated computational overhead. This is because a single full-wave simulation may take from dozens of seconds up to several hours, thus, the cost of solving design tasks that involve multiple EM analyses may turn unmanageable. This is where faster system representations (surrogates)...
-
The Effectiveness of Basic Resuscitation Activities Carried out by Combat Paramedics of the Police, as Exemplified by Polish Counterterrorist Units
PublikacjaThe tasks carried out by Police officers are often accompanied by dangerous situations that threaten the life and health of the people involved, the police themselves, and bystanders. It concerns especially counter-terrorism police units whose activities are aimed at terrorists and particularly dangerous criminals, and their course is violent and aggressive. In conjunction with the inability to bring civilian rescue services into...