Filtry
wszystkich: 2227
wyświetlamy 1000 najlepszych wyników Pomoc
Wyniki wyszukiwania dla: EULER'S DYNAMIC EQUATION
-
On forced vibrations of piezo-flexomagnetic nano-actuator beams
PublikacjaThe effect of excitation frequency on the piezomagnetic Euler-Bernoulli nanobeam taking the flexomagnetic material phenomenon into consideration is investigated in this chapter. The magnetization with strain gradients creates flexomagneticity. We couple simultaneously the piezomagnetic and flexomagnetic properties in an inverse magnetization. Resemble the flexoelectricity, the flexomagneticity is also size-dependent. So, it has...
-
Analytical Buckling of FG Nanobeams on The Basis of A New One Variable First-Order Shear Deformation Beam Theory
PublikacjaIn this work, buckling analysis of functionally graded (FG) nanobeams based on a new refined beam theory has been analyzed. The beam is modeled as an elastic beam subjected to unidirectional compressive loads. To achieve this aim, the new obtained beam theory has only one variable which leads to one equation similar to the Euler beam theory and also is free of any shear correction factor. The equilibrium equation has been...
-
Analytical Buckling of FG Nanobeams on The Basis of A New One Variable First-Order Shear Deformation Beam Theory
PublikacjaIn this work, buckling analysis of functionally graded (FG) nanobeams based on a new refined beam theory has been analyzed. The beam is modeled as an elastic beam subjected to unidirectional compressive loads. To achieve this aim, the new obtained beam theory has only one variable which lead to one equation similar to Euler beam theory and also is free of any shear correction factor. The...
-
Mountain pass type periodic solutions for Euler–Lagrange equations in anisotropic Orlicz–Sobolev space
PublikacjaUsing the Mountain Pass Theorem, we establish the existence of periodic solution for Euler–Lagrange equation. Lagrangian consists of kinetic part (an anisotropic G-function), potential part and a forcing term. We consider two situations: G satisfying at infinity and globally. We give conditions on the growth of the potential near zero for both situations.
-
On the Buckling Response of Axially Pressurized Nanotubes Based on a Novel Nonlocal Beam Theory
PublikacjaIn the present study, the buckling analysis of single-walled carbon nanotubes (SWCNT) on the basis of a new refined beam theory is analyzed. The SWCNT is modeled as an elastic beam subjected to unidirectional compressive loads. To achieve this aim, the new proposed beam theory has only one unknown variable which leads to one equation similar to Euler beam theory and is also free from any shear correction factors. The equilibrium...
-
Nonlocal Vibration of Carbon/Boron-Nitride Nano-hetero-structure in Thermal and Magnetic Fields by means of Nonlinear Finite Element Method
PublikacjaHybrid nanotubes composed of carbon and boron-nitride nanotubes have manifested as innovative building blocks to exploit the exceptional features of both structures simultaneously. On the other hand, by mixing with other types of materials, the fabrication of relatively large nanotubes would be feasible in the case of macroscale applications. In the current article, a nonlinear finite element formulation is employed to deal with...
-
Marek Czachor prof. dr hab.
Osoby -
Wiktoria Wojnicz dr hab. inż.
OsobyDSc in Mechanics (in the field of Biomechanics) - Lodz Univeristy of Technology, 2019 PhD in Mechanics (in the field of Biomechanics) - Lodz Univeristy of Technology, 2009 (with distinction) Publikacje z listy MNiSW (2009 - ) Wojnicz W., Wittbrodt E., Analysis of muscles' behaviour. Part I. The computational model of muscle. Acta of Bioengineering and Biomechanics, Vol. 11, No.4, 2009, p. 15-21 Wojnicz W., Wittbrodt E.,...
-
Hyperelastic Microcantilever AFM: Efficient Detection Mechanism Based on Principal Parametric Resonance
PublikacjaThe impetus of writing this paper is to propose an efficient detection mechanism to scan the surface profile of a micro-sample using cantilever-based atomic force microscopy (AFM), operating in non-contact mode. In order to implement this scheme, the principal parametric resonance characteristics of the resonator are employed, benefiting from the bifurcation-based sensing mechanism. It is assumed that the microcantilever is made...
-
Nonlinear Free and Forced Vibrations of a Hyperelastic Micro/Nanobeam Considering Strain Stiffening Effect
PublikacjaIn recent years, the static and dynamic response of micro/nanobeams made of hyperelasticity materials received great attention. In the majority of studies in this area, the strain-stiffing effect that plays a major role in many hyperelastic materials has not been investigated deeply. Moreover, the influence of the size effect and large rotation for such a beam that is important for the large deformation was not addressed. This...
-
Effect of Axial Porosities on Flexomagnetic Response of In-Plane Compressed Piezomagnetic Nanobeams
PublikacjaWe investigated the stability of an axially loaded Euler–Bernoulli porous nanobeam considering the flexomagnetic material properties. The flexomagneticity relates to the magnetization with strain gradients. Here we assume both piezomagnetic and flexomagnetic phenomena are coupled simultaneously with elastic relations in an inverse magnetization. Similar to flexoelectricity, the flexomagneticity is a size-dependent property. Therefore,...
-
DYNAMIC SYSTEMS AND APPLICATIONS
Czasopisma -
Equivariant Morse equation
PublikacjaThe paper is concerned with the Morse equation for flows in a representation of a compact Lie group. As a consequence of this equation we give a relationship between the equivariant Conley index of an isolated invariant set of the flow given by x˙ = − ∇f(x) and the gradient equivariant degree of ∇f. Some multiplicity results are also presented.
-
Dimensionally Consistent Nonlinear Muskingum Equation
PublikacjaAlthough the Muskingum equation was proposed nearly 75 years ago, it is still a subject of active research. Despite of its simple form, the real properties of this equation have not been comprehensively explained. This paper proposes a new interpretation of the linear McCarthy’s relation. This relation can be interpreted only together with the storage equation, whereas the Muskingum equation can be derived directly from the system...
-
On a flexomagnetic behavior of composite structures
PublikacjaThe popularity of the studies is getting further on the flexomagnetic (FM) response of nano-electro-magneto machines. In spite of this, there are a few incompatibilities with the available FM model. This study indicates that the accessible FM model is inappropriate when considering the converse magnetization effect that demonstrates the necessity and importance of deriving a new FM relation. Additionally, the literature has neglected...
-
Considerations about the applicability of the Reynolds equation for analyzing high-speed near field levitation phenomena
Publikacjaequation for analyzing near field levitation (NFL) phenomena. Two separate approaches were developed, experimentally verified, and applied to meet the research objective. One was based on the Reynolds equation and the other was based on general conservation equations for fluid flow solved using computational fluid dynamic (CFD). Comparing the calculation results revealed that, for certain operating conditions, differences in the...
-
Newton’s Method for the McKendrick-von Foerster Equation
PublikacjaIn the paper we study an age-structured model which describes the dynamics of one population with growth, reproduction and mortality rates. We apply Newton’smethod to the McKendrick-von Foerster equation in the semigroup setting. We prove its first- and second-order convergence.
-
Thermal ablation modeling via bioheat equation
PublikacjaWe consider Pennes’ bioheat equation and discuss an implicit numerical scheme which has better stability properties than other approaches. Our discussion concerns Carthesian geometry problems, however it carries over to spherical geometry models and more complicated shapes.
-
Balance error generated by numerical diffusion in the solution of Muskingum equation
PublikacjaIn the paper the conservative properties of the lumped hydrological models with variable parameters are discussed. It is shown that in the case of the non-linear Muskingum equation the mass balance is not satisfied. The study indicates that the mass balance errors are caused by the improper form of equation and by the numerical diffusion which is generated in the solution. It has been shown that the classical way of derivation...
-
Minikin’s equation mistake — a mystic art of systems of measuring units
PublikacjaThis paper deals with one of the most controversial equations in coastal engineering — the so-called Minikin’s equation, describing the impact pressure due to wave breaking on a vertical-wall caisson of a composite breakwater. This equation has been used worldwide for many years, although it has been reported many times to overestimate real values of the impact pressure measured in nature and in the laboratory. Units of measurement,...
-
Identification of Parameters Influencing the Accuracy of the Solution of the Nonlinear Muskingum Equation
PublikacjaTwo nonlinear versions of the Muskingum equation are considered. The difference between both equations relates to the exponent parameter. In the first version, commonly used in hydrology, this parameter is considered as free, while in the second version, it takes a value resulting from the kinematic wave theory. Consequently, the first version of the equation is dimensionally inconsistent, whereas the proposed second one is consistent. It...
-
Numerical Characterization of Thresholds for the Focusing 1d Nonlinear Schrödinger Equation
PublikacjaThe focusing nonlinear Schrödinger equation arises in various physical phenomena and it is therefore of interest to determine mathematical conditions on the initial data that guarantee whether the corresponding solution will blow up in finite time or exist globally in time. We focus on solutions to the mass‐supercritical nonlinear Schrödinger equation (1) in 1D case. In particular, we investigate numerical thresholds between blow...
-
Computational issues of solving the 1D steady gradually varied flow equation
PublikacjaIn this paper a problem of multiple solutions of steady gradually varied flow equation in the form of the ordinary differential energy equation is discussed from the viewpoint of its numerical solution. Using the Lipschitz theorem dealing with the uniqueness of solution of an initial value problem for the ordinary differential equation it was shown that the steady gradually varied flow equation can have more than one solution....
-
The Dynamic Model of Magnetic Hysteresis
PublikacjaThis paper presents the scalar dynamic magnetic hysteresis model based on the Preisach theory. The important role in this theory played hysteresis operator states. The changes of these operators` states are not immediate in the dynamic model but they are a function of time and parameter k representing the magnetic properties of the material. In this paper the transient state of the hysteresis operator is defined by the nonlinear...
-
Straightened characteristics of McKendrick-von Foerster equation
PublikacjaWe study the McKendrick-von Foerster equation with renewal (that is the age-structured model, with total population dependent coefficient and nonlinearity). By using a change of variables, the model is then transformed to a standard age-structured model in which the total population dependent coefficient of the transport term reduces to a constant 1. We use this transformation to get existence, uniqueness of solutions of the problem...
-
KOLMOGOROV EQUATION SOLUTION: MULTIPLE SCATTERING EXPANSION AND PHOTON STATISTICS EVOLUTION MODELING
PublikacjaWe consider a formulation of the Cauchy problem for the Kolmogorov equation which corresponds to a localized source of particles to be scattered by a medium with a given scattering amplitude density. The multiple scattering amplitudes are introduced and the corresponding series solution of the equation is constructed. We investigate the integral representation for the first series terms, its estimations and values of the photon...
-
Database of the illustrative simulations of the nonstandard approximation of the generalized Burgers–Huxley equation
Dane BadawczeThe presented dataset is a result of numerical analysis of a generalized Burgers–Huxley partial differential equation. An analyzed diffusive partial differential equation consist with nonlinear advection and reaction. The reaction term is a generalized form of the reaction law of the Hodgkin–Huxley model, while the advection is a generalized form of...
-
Thermal ablation modeling via the bioheat equation and its numerical treatment
PublikacjaThe phenomenon of thermal ablation is described by Pennes’ bioheat equation. This model is based on Newton’s law of cooling. Many approximate methods have been considered because of the importance of this issue. We propose an implicit numerical scheme which has better stability properties than other approaches.
-
The consideration to the dynamic systems parameter identification
PublikacjaIn this paper, a concept for continuous-time dynamic systems parameter identification using modulating function approach is presented. It refers to linear as well as selected non-linear systems. It shows the possibility of direct application without converting differential equation. In particular cases direct application can decrease the amount of computation in non-linear system identification, which generally requires Fourier...
-
Methods of solving the Atkins equation determine shear angle with taking into consideration a modern fracture mechanics
PublikacjaIn the paper are presented methods of solving nonlinear Atkins equation . The Atkins equation describe shear angle with taking into account properties of material cutting. To solve Atkins equation has been used iterative methods: Newton method and simplified method of simple iteration. Method of simple iteration is presented in the form of Java application.
-
Estimation of a Stochastic Burgers' Equation Using an Ensemble Kalman Filter
PublikacjaIn this work, we consider a difficult problem of state estimation of nonlinear stochastic partial differential equations (SPDE) based on uncertain measurements. The presented solution uses the method of lines (MoL), which allows us to discretize a stochastic partial differential equation in a spatial dimension and represent it as a system of coupled continuous-time ordinary stochastic differential equations (SDE). For such a system...
-
THE REPRESENTATION PROBLEM FOR A DIFFUSION EQUATION AND FRACTAL R-L LADDER NETWORKS
PublikacjaThe representation problem is to prove that a discretization in space of the Fourier transform of a diffusion equation with a constant diffusion coefficient can be realized explicitly by an infinite fractal R-L ladder networks. We prove a rigidity theorem: a solution to the representation problem exists if and only if the space discretization is a geometric space scale and the fractal ladder networks is a Oustaloup one. In this...
-
Contribution of dynamic vehicle loads to pavement failure
PublikacjaPavement surfaces are not ideally even, which causes dynamic loads of vehicle axles. Distribution of dynamic loads of a given axle is similar to normal distribution and can be described by static load and dynamic load coefficient. The dynamic load coefficient depends on road profile, vehicle speed, properties of suspensions and static load of axle. While for a given road section road profile remains constant, vehicle speed and...
-
Modelling of FloodWave Propagation with Wet-dry Front by One-dimensional Diffusive Wave Equation
PublikacjaA full dynamic model in the form of the shallow water equations (SWE) is often useful for reproducing the unsteady flow in open channels, as well as over a floodplain. However, most of the numerical algorithms applied to the solution of the SWE fail when flood wave propagation over an initially dry area is simulated. The main problems are related to the very small or negative values of water depths occurring in the vicinity of...
-
Dynamic Games and Applications
Czasopisma -
Dynamic coloring of graphs
PublikacjaDynamics is an inherent feature of many real life systems so it is natural to define and investigate the properties of models that reflect their dynamic nature. Dynamic graph colorings can be naturally applied in system modeling, e.g. for scheduling threads of parallel programs, time sharing in wireless networks, session scheduling in high-speed LAN's, channel assignment in WDM optical networks as well as traffic scheduling. In...
-
Impact of the Finite Element Mesh Structure on the Solution Accuracy of a Two-Dimensional Kinematic Wave Equation
PublikacjaThe paper presents the influence of the finite element mesh structure on the accuracy of the numerical solution of a two-dimensional linear kinematic wave equation. This equation was solved using a two-level scheme for time integration and a modified finite element method with triangular elements for space discretization. The accuracy analysis of the applied scheme was performed using a modified equation method for three different...
-
Studies of Nonlinear Sound Dynamics in Fluids Based on the Caloric Equation of State
PublikacjaThe sound speed and parameters of nonlinearity B/A, C/A in a fluid are expressed in terms of coefficients in the Taylor series expansion of an excess internal energy, in powers of excess pressure and density. That allows to conclude about features of the sound propagation in fluids, the internal energy of which is known as a function of pressure and density. The sound speed and parameters of nonlinearity in the mixture consisting...
-
On the convergence of a nonlinear finite-difference discretization of the generalized Burgers–Fisher equation
PublikacjaIn this note, we establish analytically the convergence of a nonlinear finite-difference discretization of the generalized Burgers-Fisher equation. The existence and uniqueness of positive, bounded and monotone solutions for this scheme was recently established in [J. Diff. Eq. Appl. 19, 1907{1920 (2014)]. In the present work, we prove additionally that the method is convergent of order one in time, and of order two in space. Some...
-
Novel analysis methods of dynamic properties for vehicle pantographs
PublikacjaTransmission of electrical energy from a catenary system to traction units must be safe and reliable especially for high speed trains. Modern pantographs have to meet these requirements. Pantographs are subjected to several forces acting on their structural elements. These forces come from pantograph drive, inertia forces, aerodynamic effects, vibration of traction units etc. Modern approach to static and dynamic analysis should...
-
Equation of state for Eu-doped SrSi2O2N2
Publikacja -
Approximated boundary conditions of the equation of difussion
PublikacjaProblem podejmowany w pracy dotyczy warunku brzegowego w równaniach fizyki matematycznej, opisujących procesy migracji zanieczyszczeń. W szczególności skoncentrowano się na badaniu wpływu na rozwiązanie przyjmowanych w rozwiązaniach numerycznych aproksymacji ''odpływowego'' warunku brzegowego w jednowymiarowym równaniu adwekcji - dyspersji. Rozważania teoretyczne przeprowadzono w oparciu o rozwiązania analityczne oraz numeryczne...
-
The application of Monod equation to denitrification kinetics description in the moving bed biofilm reactor (MBBR)
PublikacjaIn this paper, the kinetic constants Vmax and KCOD occurring in the Monod equation, which describe the denitrification process in the moving bed, are determined. For this purpose, a laboratory moving bed biofilm reactor (MBBR) was used. The filling of the reactor consisted of EvU Perl carriers. The experiment was carried out with an excess of nitrate, and denitrification rate was dependent on the concentration of external organic...
-
Numerical Solution of the Two-Dimensional Richards Equation Using Alternate Splitting Methods for Dimensional Decomposition
PublikacjaResearch on seepage flow in the vadose zone has largely been driven by engineering and environmental problems affecting many fields of geotechnics, hydrology, and agricultural science. Mathematical modeling of the subsurface flow under unsaturated conditions is an essential part of water resource management and planning. In order to determine such subsurface flow, the two-dimensional (2D) Richards equation can be used. However,...
-
A Fortran-95 algorithm to solve the three-dimensional Higgs boson equation in the de Sitter space-time
Dane BadawczeA numerically efficient finite-difference technique for the solution of a fractional extension of the Higgs boson equation in the de Sitter space-time is designed. The model under investigation is a multidimensional equation with Riesz fractional derivatives of orders in (0,1)U(1,2], which considers a generalized potential and a time-dependent diffusion...
-
Application of the Monte Carlo algorithm for solving volume integral equation in light scattering simulations
PublikacjaVarious numerical methods were proposed for analysis of the light scattering phenomenon. Important group of these methods is based on solving the volume integral equation describing the light scattering process. The popular method from this group is the discrete dipole approximation (DDA). DDA uses various numerical algorithms to solve the discretized integral equation. In the recent years, the application of the Monte Carlo (MC)...
-
Analysis of Floodplain Inundation Using 2D Nonlinear Diffusive Wave Equation Solved with Splitting Technique
PublikacjaIn the paper a solution of two-dimensional (2D) nonlinear diffusive wave equation in a partially dry and wet domain is considered. The splitting technique which allows to reduce 2D problem into the sequence of one-dimensional (1D) problems is applied. The obtained 1D equations with regard to x and y are spatially discretized using the modified finite element method with the linear shape functions. The applied modification referring...
-
Simulation of unsteady flow over floodplain using the diffusive wave equation and the modified finite element method
PublikacjaWe consider solution of 2D nonlinear diffusive wave equation in a domain temporarily covered by a layer of water. A modified finite element method with triangular elements and linear shape functions is used for spatial discretization. The proposed modification refers to the procedure of spatial integration and leads to a more general algorithm involving a weighting parameter. The standard finite element method and the finite difference...
-
On the convergence of a finite-difference discretization à la Mickens of the generalized Burgers–Huxley equation
PublikacjaIn this note, we establish the property of convergence for a finite-difference discretization of a diffusive partial differential equation with generalized Burgers convective law and generalized Hodgkin–Huxley reaction. The numerical method was previously investigated in the literature and, amongst other features of interest, it is a fast and nonlinear technique that is capable of preserving positivity, boundedness and monotonicity....
-
Simulating propagation of coherent light in random media using the Fredholm type integral equation
PublikacjaStudying propagation of light in random scattering materials is important for both basic and applied research. Such studies often require usage of numerical method for simulating behavior of light beams in random media. However, if such simulations require consideration of coherence properties of light, they may become a complex numerical problems. There are well established methods for simulating multiple scattering of light (e.g....