Wyniki wyszukiwania dla: neural network architecture search - MOST Wiedzy

Wyszukiwarka

Wyniki wyszukiwania dla: neural network architecture search

Wyniki wyszukiwania dla: neural network architecture search

  • Deep neural network architecture search using network morphism

    The paper presents the results of the research on neural architecture search (NAS) algorithm. We utilized the hill climbing algorithm to search for well-performing structures of deep convolutional neural network. Moreover, we used the function preserving transformations which enabled the effective operation of the algorithm in a short period of time. The network obtained with the advantage of NAS was validated on skin lesion classification...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • Neural Architecture Search for Skin Lesion Classification

    Deep neural networks have achieved great success in many domains. However, successful deployment of such systems is determined by proper manual selection of the neural architecture. This is a tedious and time-consuming process that requires expert knowledge. Different tasks need very different architectures to obtain satisfactory results. The group of methods called the neural architecture search (NAS) helps to find effective architecture...

    Pełny tekst do pobrania w portalu

  • The impact of the AC922 Architecture on Performance of Deep Neural Network Training

    Publikacja

    - Rok 2020

    Practical deep learning applications require more and more computing power. New computing architectures emerge, specifically designed for the artificial intelligence applications, including the IBM Power System AC922. In this paper we confront an AC922 (8335-GTG) server equipped with 4 NVIDIA Volta V100 GPUs with selected deep neural network training applications, including four convolutional and one recurrent model. We report...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • An automatic selection of optimal recurrent neural network architecture for processes dynamics modelling purposes

    A problem related to the development of algorithms designed to find the structure of artificial neural network used for behavioural (black-box) modelling of selected dynamic processes has been addressed in this paper. The research has included four original proposals of algorithms dedicated to neural network architecture search. Algorithms have been based on well-known optimisation techniques such as evolutionary algorithms and...

    Pełny tekst do pobrania w portalu

  • Neural network based control system architecture proposal for underwatership hull cleaning robot.

    Publikacja

    - Rok 2003

    Przedstawiono model matematyczny podwodnej głowicy roboczej, oraz określono metodę jej pozycjonowania i orientacji w lokalnym środowisku. Zaproponowano architekturę układu sterowania, opartego na bazie sieci neuronowych, za pomocą którego można sterować podwodnym robotem, przeznaczonym do czyszczenia burt statku.

  • Neural Network Subgraphs Correlation with Trained Model Accuracy

    Publikacja

    - Rok 2020

    Neural Architecture Search (NAS) is a computationally demanding process of finding optimal neural network architecture for a given task. Conceptually, NAS comprises applying a search strategy on a predefined search space accompanied by a performance evaluation method. The design of search space alone is expected to substantially impact NAS efficiency. We consider neural networks as graphs and find a correlation between the presence...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • Using Long-Short term Memory networks with Genetic Algorithm to predict engine condition

    Publikacja

    - Gazi University Journal of Science - Rok 2022

    Predictive maintenance (PdM) is a type of approach for maintenance processes, allowing maintenance actions to be managed depending on the machine's current condition. Maintenance is therefore carried out before failures occur. The approach doesn’t only help avoid abrupt failures but also helps lower maintenance cost and provides possibilities to manufacturers to manage maintenance budgets in a more efficient way. A new deep neural...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • Gesture Recognition With the Linear Optical Sensor and Recurrent Neural Networks

    In this paper, the optical linear sensor, a representative of low-resolution sensors, was investigated in the multiclass recognition of near-field hand gestures. The recurrent neural network (RNN) with a gated recurrent unit (GRU) memory cell was utilized as a gestures classifier. A set of 27 gestures was collected from a group of volunteers. The 27 000 sequences obtained were divided into training, validation, and test subsets....

    Pełny tekst do pobrania w portalu

  • Poprawa jakości klasyfikacji głębokich sieci neuronowych poprzez optymalizację ich struktury i dwuetapowy proces uczenia

    Publikacja

    - Rok 2024

    W pracy doktorskiej podjęto problem realizacji algorytmów głębokiego uczenia w warunkach deficytu danych uczących. Głównym celem było opracowanie podejścia optymalizującego strukturę sieci neuronowej oraz zastosowanie uczeniu dwuetapowym, w celu uzyskania mniejszych struktur, zachowując przy tym dokładności. Proponowane rozwiązania poddano testom na zadaniu klasyfikacji znamion skórnych na znamiona złośliwe i łagodne. W pierwszym...

    Pełny tekst do pobrania w portalu

  • A Simple Neural Network for Collision Detection of Collaborative Robots

    Publikacja

    Due to the epidemic threat, more and more companies decide to automate their production lines. Given the lack of adequate security or space, in most cases, such companies cannot use classic production robots. The solution to this problem is the use of collaborative robots (cobots). However, the required equipment (force sensors) or alternative methods of detecting a threat to humans are usually quite expensive. The article presents...

    Pełny tekst do pobrania w portalu

  • Neural network model of ship magnetic signature for different measurement depths

    Publikacja

    This paper presents the development of a model of a corvette-type ship’s magnetic signature using an artificial neural network (ANN). The capabilities of ANNs to learn complex relationships between the vessel’s characteristics and the magnetic field at different depths are proposed as an alternative to a multi-dipole model. A training dataset, consisting of signatures prepared in finite element method (FEM) environment Simulia...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • New Two-center Ellipsoidal Basis Function Neural Network for Fault Diagnosis of Analog Electronic Circuits

    In the paper a new fault diagnosis-oriented neural network and a diagnostic method for localization of parametric faults in Analog Electronic Circuits (AECs) with tolerances is presented. The method belongs to the class of dictionary Simulation Before Test (SBT) methods. It utilizes dictionary fault signatures as a family of identification curves dispersed around nominal positions by component tolerances of the Circuit Under Test...

  • Neural network based algorithm for hand gesture detection in a low-cost microprocessor applications

    In this paper the simple architecture of neural network for hand gesture classification was presented. The network classifies the previously calculated parameters of EMG signals. The main goal of this project was to develop simple solution that is not computationally complex and can be implemented on microprocessors in low-cost 3D printed prosthetic arms. As the part of conducted research the data set EMG signals corresponding...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • Efkleidis Katsaros

    Osoby

    Efklidis Katsaros received the B.Sc. degree in mathematics from the Aristotle University of Thessaloniki, Greece, in 2016, and the M.Sc. degree (cum laude) in data science: statistical science from Leiden University, The Netherlands, in 2019. He is currently pursuing the Ph.D. degree in deep video multi-task learning with the Department of Biomedical Engineering, Gdańsk University of Technology, Poland. Since 2020, he has been...

  • Neural modelling of dynamic systems with time delays based on an adjusted NEAT algorithm

    Publikacja

    A problem related to the development of an algorithm designed to find an architecture of artificial neural network used for black-box modelling of dynamic systems with time delays has been addressed in this paper. The proposed algorithm is based on a well-known NeuroEvolution of Augmenting Topologies (NEAT) algorithm. The NEAT algorithm has been adjusted by allowing additional connections within an artificial neural network and...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • Exploring Neural Networks for Musical Instrument Identification in Polyphonic Audio

    Publikacja

    - IEEE INTELLIGENT SYSTEMS - Rok 2024

    The purpose of this paper is to introduce neural network-based methods that surpass state-of-the-art (SOTA) models, either by training faster or having simpler architecture, while maintaining comparable effectiveness in musical instrument identification in polyphonic music. Several approaches are presented, including two authors’ proposals, i.e., spiking neural networks (SNN) and a modular deep learning model named FMCNN (Fully...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • 1D convolutional context-aware architectures for acoustic sensing and recognition of passing vehicle type

    Publikacja

    A network architecture that may be employed to sensing and recognition of a type of vehicle on the basis of audio recordings made in the proximity of a road is proposed in the paper. The analyzed road traffic consists of both passenger cars and heavier vehicles. Excerpts from recordings that do not contain vehicles passing sounds are also taken into account and marked as ones containing silence....

  • Emotion Recognition from Physiological Channels Using Graph Neural Network

    In recent years, a number of new research papers have emerged on the application of neural networks in affective computing. One of the newest trends observed is the utilization of graph neural networks (GNNs) to recognize emotions. The study presented in the paper follows this trend. Within the work, GraphSleepNet (a GNN for classifying the stages of sleep) was adjusted for emotion recognition and validated for this purpose. The...

    Pełny tekst do pobrania w portalu

  • Categorization of emotions in dog behavior based on the deep neural network

    The aim of this article is to present a neural system based on stock architecture for recognizing emotional behavior in dogs. Our considerations are inspired by the original work of Franzoni et al. on recognizing dog emotions. An appropriate set of photographic data has been compiled taking into account five classes of emotional behavior in dogs of one breed, including joy, anger, licking, yawning, and sleeping. Focusing on a particular...

    Pełny tekst do pobrania w portalu

  • Neural Approximators for Variable-Order Fractional Calculus Operators (VO-FC)

    Publikacja

    - IEEE Access - Rok 2022

    The paper presents research on the approximation of variable-order fractional operators by recurrent neural networks. The research focuses on two basic variable-order fractional operators, i.e., integrator and differentiator. The study includes variations of the order of each fractional operator. The recurrent neural network architecture based on GRU (Gated Recurrent Unit) cells functioned as a neural approximation for selected...

    Pełny tekst do pobrania w portalu

  • Smart Approach for Glioma Segmentation in Magnetic Resonance Imaging using Modified Convolutional Network Architecture (U-NET)

    Publikacja

    - CYBERNETICS AND SYSTEMS - Rok 2021

    Segmentation of a brain tumor from magnetic resonance multimodal images is a challenging task in the field of medical imaging. The vast diversity in potential target regions, appearance and multifarious intensity threshold levels of various tumor types are few of the major factors that affect segmentation results. An accurate diagnosis and its treatment demand strict delineation of the tumor affected tissues. Herein, we focus on...

    Pełny tekst do pobrania w portalu

  • Decision making process using deep learning

    Publikacja

    - Rok 2019

    Endüstri 4.0, dördüncü endüstri devrimi veya Endüstriyel Nesnelerin İnterneti (IIoT) olarak adlandırılan sanayi akımı, işletmelere, daha verimli, daha büyük bir esneklikle, daha güvenli ve daha çevre dostu bir şekilde üretim yapma imkanı sunmaktadır. Nesnelerin İnterneti ile bağlantılı yeni teknoloji ve hizmetler birçok endüstriyel uygulamada devrim niteliği taşımaktadır. Fabrikalardaki otomasyon, tahminleyici bakım (PdM – Predictive...

  • Detecting type of hearing loss with different AI classification methods: a performance review

    Publikacja
    • M. Kassjański
    • M. Kulawiak
    • T. Przewoźny
    • D. Tretiakow
    • J. Kuryłowicz
    • A. Molisz
    • K. Koźmiński
    • A. Kwaśniewska
    • P. Mierzwińska-Dolny
    • M. Grono

    - Rok 2023

    Hearing is one of the most crucial senses for all humans. It allows people to hear and connect with the environment, the people they can meet and the knowledge they need to live their lives to the fullest. Hearing loss can have a detrimental impact on a person's quality of life in a variety of ways, ranging from fewer educational and job opportunities due to impaired communication to social withdrawal in severe situations. Early...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • Minimizing Distribution and Data Loading Overheads in Parallel Training of DNN Acoustic Models with Frequent Parameter Averaging

    Publikacja

    In the paper we investigate the performance of parallel deep neural network training with parameter averaging for acoustic modeling in Kaldi, a popular automatic speech recognition toolkit. We describe experiments based on training a recurrent neural network with 4 layers of 800 LSTM hidden states on a 100-hour corpora of annotated Polish speech data. We propose a MPI-based modification of the training program which minimizes the...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • In Search of Naval Beauty. Historical Study of Ship Architecture

    Publikacja

    - Rok 2018

    Designing ships is no mean achievement. In the old days, constructors focused on making their ships visually appealing, while paying scant regard to the living conditions of the crew. Such an approach reflected the state of the art in ship building at the time as well as the social order prevalent in those days. A breakthrough came no earlier than at the turn of the 19th / 20th centuries. The industrial revolution brought along...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • Developing a Low SNR Resistant, Text Independent Speaker Recognition System for Intercom Solutions - A Case Study

    Publikacja

    This article presents a case study on the development of a biometric voice verification system for an intercom solution, utilizing the DeepSpeaker neural network architecture. Despite the variety of solutions available in the literature, there is a noted lack of evaluations for "text-independent" systems under real conditions and with varying distances between the speaker and the microphone. This article aims to bridge this gap....

    Pełny tekst do pobrania w portalu

  • Comparison of Deep Neural Network Learning Algorithms for Mars Terrain Image Segmentation

    This paper is dedicated to the topic of terrain recognition on Mars using advanced techniques based on the convolutional neural networks (CNN). The work on the project was conducted based on the set of 18K images collected by the Curiosity, Opportunity and Spirit rovers. The data were later processed by the model operating in a Python environment, utilizing Keras and Tensorflow repositories. The model benefits from the pretrained...

    Pełny tekst do pobrania w portalu

  • Deep neural networks for human pose estimation from a very low resolution depth image

    The work presented in the paper is dedicated to determining and evaluating the most efficient neural network architecture applied as a multiple regression network localizing human body joints in 3D space based on a single low resolution depth image. The main challenge was to deal with a noisy and coarse representation of the human body, as observed by a depth sensor from a large distance, and to achieve high localization precision....

    Pełny tekst do pobrania w portalu

  • Machine Learning Techniques in Concrete Mix Design

    Concrete mix design is a complex and multistage process in which we try to find the best composition of ingredients to create good performing concrete. In contemporary literature, as well as in state-of-the-art corporate practice, there are some methods of concrete mix design, from which the most popular are methods derived from The Three Equation Method. One of the most important features of concrete is compressive strength, which...

    Pełny tekst do pobrania w portalu

  • Thermal Images Analysis Methods using Deep Learning Techniques for the Needs of Remote Medical Diagnostics

    Publikacja

    - Rok 2020

    Remote medical diagnostic solutions have recently gained more importance due to global demographic shifts and play a key role in evaluation of health status during epidemic. Contactless estimation of vital signs with image processing techniques is especially important since it allows for obtaining health status without the use of additional sensors. Thermography enables us to reveal additional details, imperceptible in images acquired...

    Pełny tekst do pobrania w portalu

  • Generalized regression neural network and fitness dependent optimization: Application to energy harvesting of centralized TEG systems

    Publikacja

    - Energy Reports - Rok 2022

    The thermoelectric generator (TEG) system has attracted extensive attention because of its applications in centralized solar heat utilization and recoverable heat energy. The operating efficiency of the TEG system is highly affected by operating conditions. In a series-parallel structure, due to diverse temperature differences, the TEG modules show non-linear performance. Due to the non-uniform temperature distribution (NUTD) condition,...

    Pełny tekst do pobrania w portalu

  • Energy Management for PV Powered Hybrid Storage System in Electric Vehicles Using Artificial Neural Network and Aquila Optimizer Algorithm

    Publikacja

    - ENERGIES - Rok 2022

    In an electric vehicle (EV), using more than one energy source often provides a safe ride without concerns about range. EVs are powered by photovoltaic (PV), battery, and ultracapacitor (UC) systems. The overall results of this arrangement are an increase in travel distance; a reduction in battery size; improved reaction, especially under overload; and an extension of battery life. Improved results allow the energy to be used efficiently,...

    Pełny tekst do pobrania w portalu

  • The Application of the IODA Document Architecture to Music Data

    Publikacja

    - Rok 2014

    This paper is concerned with storing music data with the use of document architecture called Interactive Open Document Architecture (IODA). This architecture makes it possible to create documents which are executable, mobile, interactive and intelligent. Such documents consist of many files that are semantically related to each other. Semantic links are defined in XML files which are a part of a document. IODA documents with music...

  • Musical Instrument Identification Using Deep Learning Approach

    Publikacja

    The work aims to propose a novel approach for automatically identifying all instruments present in an audio excerpt using sets of individual convolutional neural networks (CNNs) per tested instrument. The paper starts with a review of tasks related to musical instrument identification. It focuses on tasks performed, input type, algorithms employed, and metrics used. The paper starts with the background presentation, i.e., metadata...

    Pełny tekst do pobrania w portalu

  • Spatiotemporal Assessment of Satellite Image Time Series for Land Cover Classification Using Deep Learning Techniques: A Case Study of Reunion Island, France

    Publikacja
    • N. N. Navnath
    • K. Chandrasekaran
    • A. Stateczny
    • V. M. Sundaram
    • P. Panneer

    - Remote Sensing - Rok 2022

    Current Earth observation systems generate massive amounts of satellite image time series to keep track of geographical areas over time to monitor and identify environmental and climate change. Efficiently analyzing such data remains an unresolved issue in remote sensing. In classifying land cover, utilizing SITS rather than one image might benefit differentiating across classes because of their varied temporal patterns. The aim...

    Pełny tekst do pobrania w portalu

  • Deep learning for recommending subscription-limited documents

    Publikacja

    Documents recommendation for a commercial, subscription-based online platform is important due to the difficulty in navigation through a large volume and diversity of content available to clients. However, this is also a challenging task due to the number of new documents added every day and decreasing relevance of older contents. To solve this problem, we propose deep neural network architecture that combines autoencoder with...

    Pełny tekst do pobrania w portalu

  • Comparison of image pre-processing methods in liver segmentation task

    Automatic liver segmentation of Computed Tomography (CT) images is becoming increasingly important. Although there are many publications in this field there is little explanation why certain pre-processing methods were utilised. This paper presents a comparison of the commonly used approach of Hounsfield Units (HU) windowing, histogram equalisation, and a combination of these methods to try to ascertain what are the differences...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • Optimized Computational Intelligence Model for Estimating the Flexural Behavior of Composite Shear Walls

    Publikacja

    - Buildings - Rok 2023

    This article presents a novel approach to estimate the flexural capacity of reinforced concrete-filled composite plate shear walls using an optimized computational intelligence model. The proposed model was developed and validated based on 47 laboratory data points and the Transit Search (TS) optimization algorithm. Using 80% of the experimental dataset, the optimized model was selected by determining the unknown coefficients of...

    Pełny tekst do pobrania w portalu

  • Harmony Search for Data Mining with Big Data

    Publikacja

    - Rok 2016

    In this paper, some harmony search algorithms have been proposed for data mining with big data. Three areas of big data processing have been studied to apply new metaheuristics. The first problem is related to MapReduce architecture that can be supported by a team of harmony search agents in grid infrastructure. The second dilemma involves development of harmony search in preprocessing of data series before data mining. Moreover,...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • Deep-Learning-Based Precise Characterization of Microwave Transistors Using Fully-Automated Regression Surrogates

    Publikacja

    - Scientific Reports - Rok 2023

    Accurate models of scattering and noise parameters of transistors are instrumental in facilitating design procedures of microwave devices such as low-noise amplifiers. Yet, data-driven modeling of transistors is a challenging endeavor due to complex relationships between transistor characteristics and its designable parameters, biasing conditions, and frequency. Artificial neural network (ANN)-based methods, including deep learning...

    Pełny tekst do pobrania w portalu

  • OBTAINING FLUID FLOW PATTERN FOR TURBINE STAGE WITH NEURAL MODEL.

    Publikacja

    In the paper possibility of applying neural model to obtaining patterns of proper operation for fluid flow in turbine stage for fluid-flow diagnostics is discussed. Main differences between Computational Fluid Dynamics (CFD) solvers and neural model is given, also limitations and advantages of both are considered. Time of calculations of both methods was given, also possibilities of shortening that time with preserving the accuracy...

    Pełny tekst do pobrania w portalu

  • Fast Approximate String Search for Wikification

    Publikacja

    The paper presents a novel method for fast approximate string search based on neural distance metrics embeddings. Our research is focused primarily on applying the proposed method for entity retrieval in the Wikification process, which is similar to edit distance-based similarity search on the typical dictionary. The proposed method has been compared with symmetric delete spelling correction algorithm and proven to be more efficient...

    Pełny tekst do pobrania w portalu

  • Bees Detection on Images: Study of Different Color Models for Neural Networks

    Publikacja

    This paper presents an approach to bee detection in video streams using a neural network classifier. We describe the motivation for our research and the methodology of data acquisition. The main contribution to this work is a comparison of different color models used as an input format for a feedforward convolutional architecture applied to bee detection. The detection process has is based on a neural binary classifier that classifies...

    Pełny tekst do pobrania w portalu

  • Accurate Lightweight Calibration Methods for Mobile Low-Cost Particulate Matter Sensors

    Publikacja

    - Rok 2023

    Monitoring air pollution is a critical step towards improving public health, particularly when it comes to identifying the primary air pollutants that can have an impact on human health. Among these pollutants, particulate matter (PM) with a diameter of up to 2.5 μ m (or PM2.5) is of particular concern, making it important to continuously and accurately monitor pollution related to PM. The emergence of mobile low-cost PM sensors...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • Prediction of maximum tensile stress in plain-weave composite laminates with interacting holes via stacked machine learning algorithms: A comparative study

    Publikacja

    Plain weave composite is a long-lasting type of fabric composite that is stable enough when being handled. Open-hole composites have been widely used in industry, though they have weak structural performance and complex design processes. An extensive number of material/geometry parameters have been utilized for designing these composites, thereby an efficient computational tool is essential for that purpose. Different Machine Learning...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • AUTOMATYCZNA KLASYFIKACJA MOWY PATOLOGICZNEJ

    Publikacja

    Aplikacja przedstawiona w niniejszym rozdziale służy do automatycznego wykrywania mowy patologicznej na podstawie bazy nagrań. W pierwszej kolejności przedstawiono założenia leżące u podstaw przeprowadzonych badan wraz z wyborem bazy mowy patologicznej. Zaprezentowano również zastosowane algorytmy oraz cechy sygnału mowy, które pozwalają odróżnić mowę niezaburzoną od mowy patologicznej. Wytrenowane sieci neuronowe zostały następnie...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • Self Organizing Maps for Visualization of Categories

    Publikacja

    - Rok 2012

    Visualization of Wikipedia categories using Self Organizing Mapsshows an overview of categories and their relations, helping to narrow down search domains. Selecting particular neurons this approach enables retrieval of conceptually similar categories. Evaluation of neural activations indicates that they form coherent patterns that may be useful for building user interfaces for navigation over category structures.

  • Case Study NEB Atlas / part I - 3D Models / Brunnshög, Lund

    Dane Badawcze
    open access

    The data presents the results of work on the analysis of contemporary neighbourhoods. The aim of this part of the research was to create a digital model - a simplified digital twin - for selected parts of housing estates already realised in various cities in Europe. This group presents a model for a fragment of the Brunnshög district in Lund, Sweden....

  • BP-EVD: Forward Block-Output Propagation for Efficient Video Denoising

    Denoising videos in real-time is critical in many applications, including robotics and medicine, where varying light conditions, miniaturized sensors, and optics can substantially compromise image quality. This work proposes the first video denoising method based on a deep neural network that achieves state-of-the-art performance on dynamic scenes while running in real-time on VGA video resolution with no frame latency. The backbone...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • Constrained aerodynamic shape optimization using neural networks and sequential sampling

    Publikacja

    - Rok 2023

    Aerodynamic shape optimization (ASO) involves computational fluid dynamics (CFD)-based search for an optimal aerodynamic shape such as airfoils and wings. Gradient-based optimization (GBO) with adjoints can be used efficiently to solve ASO problems with many design variables, but problems with many constraints can still be challenging. The recently created efficient global optimization algorithm with neural network (NN)-based prediction...

    Pełny tekst do pobrania w serwisie zewnętrznym