Filtry
wszystkich: 4251
-
Katalog
- Publikacje 3357 wyników po odfiltrowaniu
- Czasopisma 225 wyników po odfiltrowaniu
- Konferencje 27 wyników po odfiltrowaniu
- Osoby 122 wyników po odfiltrowaniu
- Wynalazki 1 wyników po odfiltrowaniu
- Projekty 12 wyników po odfiltrowaniu
- Kursy Online 86 wyników po odfiltrowaniu
- Wydarzenia 10 wyników po odfiltrowaniu
- Dane Badawcze 411 wyników po odfiltrowaniu
wyświetlamy 1000 najlepszych wyników Pomoc
Wyniki wyszukiwania dla: hearing protectors
-
Data Domain Adaptation in Federated Learning in the Breast Mammography Image Classification Problem
PublikacjaWe are increasingly striving to introduce modern artificial intelligence techniques in medicine and elevate medical care, catering to both patients and specialists. An essential aspect that warrants concurrent development is the protection of personal data, especially with technology's advancement, along with addressing data disparities to ensure model efficacy. This study assesses various domain adaptation techniques and federated...
-
LDNet: A Robust Hybrid Approach for Lie Detection Using Deep Learning Techniques
PublikacjaDeception detection is regarded as a concern for everyone in their daily lives and affects social interactions. The human face is a rich source of data that offers trustworthy markers of deception. The deception or lie detection systems are non-intrusive, cost-effective, and mobile by identifying facial expressions. Over the last decade, numerous studies have been conducted on deception detection using several advanced techniques....
-
Advancing Solar Energy: Machine Learning Approaches for Predicting Photovoltaic Power Output
PublikacjaThis research is primarily concentrated on predicting the output of photovoitaic power, an essential field in the study of renewable energy. The paper comprehensively reviews various forecasting methodologies, transitioning from conventional physical and statistical methods to advanced machine learning (ML) techniques. A significant shift has been observed from traditional point forecasting to machine learning-based forecasting...
-
Application of the Flipped Learning Methodology at a Business Process Modelling Course – A Case Study
PublikacjaFlipped learning has been known for a long time, but its modern use dates back to 2012, with the publication of Bergmann and Saams. In the last decade, it has become an increasingly popular learning method. Every year, the number of publications on implementing flipped learning experiments is growing, just as the amount of research on the effectiveness of this educational method. The aim of the article is to analyze the possibilities...
-
Variable Resolution Machine Learning Optimization of Antennas Using Global Sensitivity Analysis
PublikacjaThe significance of rigorous optimization techniques in antenna engineering has grown significantly in recent years. For many design tasks, parameter tuning must be conducted globally, presenting a challenge due to associated computational costs. The popular bio-inspired routines often necessitate thousands of merit function calls to converge, generating prohibitive expenses whenever the design process relies on electromagnetic...
-
Deep learning-enabled integration of renewable energy sources through photovoltaics in buildings
PublikacjaInstalling photovoltaic (PV) systems in buildings is one of the most effective strategies for achieving sustainable energy goals and reducing carbon emissions. However, the requirement for efficient energy management, the fluctuating energy demands, and the intermittent nature of solar power are a few of the obstacles to the seamless integration of PV systems into buildings. These complexities surpass the capabilities of rule-based...
-
Comparison of Deep Neural Network Learning Algorithms for Mars Terrain Image Segmentation
PublikacjaThis paper is dedicated to the topic of terrain recognition on Mars using advanced techniques based on the convolutional neural networks (CNN). The work on the project was conducted based on the set of 18K images collected by the Curiosity, Opportunity and Spirit rovers. The data were later processed by the model operating in a Python environment, utilizing Keras and Tensorflow repositories. The model benefits from the pretrained...
-
Preeclampsia Risk Prediction Using Machine Learning Methods Trained on Synthetic Data
PublikacjaThis paper describes a research study that investigates the use of machine learning algorithms on synthetic data to classify the risk of developing preeclampsia by pregnant women. Synthetic datasets were generated based on parameter distributions from three real patient studies. Four models were compared: XGBoost, Support Vector Machine (SVM), Random Forest, and Explainable Boosting Machines (EBM). The study found that the XGBoost...
-
Adapt Your Teacher: Improving Knowledge Distillation for Exemplar-free Continual Learning
PublikacjaIn this work, we investigate exemplar-free class incremental learning (CIL) with knowledge distillation (KD) as a regularization strategy, aiming to prevent forgetting. KDbased methods are successfully used in CIL, but they often struggle to regularize the model without access to exemplars of the training data from previous tasks. Our analysis reveals that this issue originates from substantial representation shifts in the teacher...
-
Driver’s Condition Detection System Using Multimodal Imaging and Machine Learning Algorithms
PublikacjaTo this day, driver fatigue remains one of the most significant causes of road accidents. In this paper, a novel way of detecting and monitoring a driver’s physical state has been proposed. The goal of the system was to make use of multimodal imaging from RGB and thermal cameras working simultaneously to monitor the driver’s current condition. A custom dataset was created consisting of thermal and RGB video samples. Acquired data...
-
The sensitiveness of the speed of pile displacement to speed variations of hammer in beating down process
PublikacjaIn this paper there is presented dynamical system described speed of pile displacement during beating down process. Its response is determined by using Heaviside operator. There is introduced the convergence with regulator in partially ordered space. There is given an answer to the question, whetdisplacement is sensitive to hammer's speed variations.
-
E-Learning Service Management System For Migration Towards Future Internet Architectures
PublikacjaAs access to knowledge and continuous learning are among the most valuable assets in modern, technological society, it is hardly surprising that e-learning solutions can be counted amongst the most important groups of services being deployed in modern network systems. Based on analysis of their current state-of-the-art, we decided to concentrate our research and development work on designing and implementing a management system...
-
Some fundamental aspects of self-levitating sliding contact bearings and their practical implementations
PublikacjaIn this study, fundamental aspects and mechanisms of acoustic levitation together with governing equations are presented first. Then, the acoustic levitation phenomenon is considered as a new way to design air suspension systems capable of self-levitation. A particular emphasis is laid on journal bearings and their specific geometrical configuration. A practical feasibility of using acoustic levitation to separate contacting surfaces...
-
Tacit Knowledge Sharing and Creativity. How to Derive Innovation from Project Teams?
PublikacjaModern companies are increasingly likely to work in a project management environment, which ensures their success in the implementation of innovation. The aim of the study is to prove that tacit knowledge is a mediator for creativity and project performance. Creativity as one of the crucial sources of innovation is stimulated by tacit knowledge. Bearing this fact in mind, the authors studied relations between tacit knowledge, creativity...
-
Trust, Collaborative Culture and Tacit Knowledge Sharing in Project Management–a Relationship Model
PublikacjaThe aim of this research is to study the relationship between Trust, Collaborative Culture, and Tacit Knowledge Sharing in Project Management as a source of Team Creativity in the context of delivering value through knowledge. For this purpose authors conducted a study of 514 Polish professionals with different functions and experience in managing projects in construction industry. The data collected during the study has been analysed...
-
Learning and memory processes in autonomous agents using an intelligent system of decision-making
PublikacjaThis paper analyzes functions and structures of the memory that is an indispensable part of an Intelligent System of Decision-making (ISD), developed as a universal engine for autonomous robotics. A simplified way of processing and coding information in human cognitive processes is modelled and adopted for the use in autonomous systems. Based on such a knowledge structure, an artificial model of reality representation and a model...
-
Innovative e-learning approach in teaching based on case studies - Innocase project
PublikacjaThe article presents the application of innovative e-learning approach for the creation of case study content. Case study methodology is becoming more and more widely applied in modern education, especially in business and management field. Although case study methodology is quite well recognized and used in education, there are still few examples of developing e-learning content on the basis of case studies. This task is to be...
-
Exploring the factor structure and the validity of the abbreviated Basic and Earning Self-Esteem Scales
PublikacjaThe original longer versions (Forsman & Johnson, 1996) and abbreviated versions of the Basic and Earning Self-Esteem Scales have been used in clinical and non-clinical settings, but little is known about the factor structure and the validity of these scales in their abbreviated forms. The original longer versions of the scales comprise several dimensions, but both abbreviated versions of the scales have been interpreted as if they...
-
THE ONLINE APPLICATION AND E-LEARNING IN THE COMPETENCE-BASED MANAGEMENT IN PUBLIC ADMINISTRATION ORGANIZATIONS
PublikacjaThe integration of effective management of work-related processes and utilization of human resources potential leads to the development of organization. The purpose of this paper was to examine how the principles of competences-based management can be introduced to enhance organization’s effectiveness in human resources management. A model of assessment and development of competences-based management, embracing an online application...
-
Learning and memory processes in autonomous agents using an intelligent system of decision-making
PublikacjaThis paper analyzes functions and structures of the memory that is an indispensable part of an Intelligent System of Decision-making (ISD), developed as a universal engine for autonomous robotics. A simplified way of processing and coding information in human cognitive processes is modelled and adopted for the use in autonomous systems. Based on such a knowledge structure, an artificial model of reality representation and a model...
-
Publicly available lecture webcasts - e-learning or promotion tool? case study
PublikacjaThis paper aims to show how universities interact with Internet users by webcasting selected courses. Paper has exploratory case-study character, presenting example of Berkeley Webcast initiative of University of California, Berkeley, webcasting undergraduate courses and on-campus events. On the base of short introduction to webcasting usage as an e-learning and promotional tool, the analysis of 3 purposely chosen different courses...
-
Deep Learning-Based, Multiclass Approach to Cancer Classification on Liquid Biopsy Data
Publikacja -
Analyzing the Effectiveness of the Brain–Computer Interface for Task Discerning Based on Machine Learning
PublikacjaThe aim of the study is to compare electroencephalographic (EEG) signal feature extraction methods in the context of the effectiveness of the classification of brain activities. For classification, electroencephalographic signals were obtained using an EEG device from 17 subjects in three mental states (relaxation, excitation, and solving logical task). Blind source separation employing independent component analysis (ICA) was...
-
Deep Learning-Based LOS and NLOS Identification in Wireless Body Area Networks
PublikacjaIn this article, the usage of deep learning (DL) in ultra-wideband (UWB) Wireless Body Area Networks (WBANs) is presented. The developed approach, using channel impulse response, allows higher efficiency in identifying the direct visibility conditions between nodes in off-body communication with comparison to the methods described in the literature. The effectiveness of the proposed deep feedforward neural network was checked on...
-
Influence of Thermal Imagery Resolution on Accuracy of Deep Learning based Face Recognition
PublikacjaHuman-system interactions frequently require a retrieval of the key context information about the user and the environment. Image processing techniques have been widely applied in this area, providing details about recognized objects, people and actions. Considering remote diagnostics solutions, e.g. non-contact vital signs estimation and smart home monitoring systems that utilize person’s identity, security is a very important factor....
-
A Proposed Machine Learning Model for Forecasting Impact of Traffic-Induced Vibrations on Buildings
PublikacjaTraffic-induced vibrations may cause various damages to buildings located near the road, including cracking of plaster, cracks in load-bearing elements or even collapse of the whole structure. Measurements of vibrations of real buildings are costly and laborious. Therefore the aim of the research is to propose the original numerical algorithm which allows us to predict, with high probability, the nega-tive dynamic impact of traffic-induced...
-
The influence of IT-competency dimensions on job satisfaction, knowledge sharing and performance across industries
PublikacjaPurpose – Technology makes knowledge management easier. Knowledge sharing is essential for organizational development. Job satisfaction fosters knowledge sharing. Hence, this study aims to develop an understanding of the mutual relationship between knowledge sharing and job satisfaction when both are predicted by information technology (IT)-competency dimensions such as IT-operations, IT-knowledge and IT-infrastructure in the context...
-
Continuous learning as a method of raising qualifications – the perspective of workers, employers and training organizations
PublikacjaContinuous learning is discussed in strategic documents of Poland and the European Union. In Poland, the idea of continuous learning is not very popular. However, in the context of strong competition in the labour market and the progressive globalization processes, the skills issue takes on new meaning — both for employees and employers. In order to adapt skills to labour market needs it is necessary to conduct adequate studies...
-
Current based Normalized Triple Covariance as a bearings diagnostic feature in induction motor
PublikacjaDiagnosis of induction motors, conducted remotely by measuring and analyzing the supply current is attractive with the lack of access to the engine. So far there is no solution, based on analysis of current, the credibility of which allow use in industry. Statistics of IM bearing failures of induction motors indicate, that they constitute more than 40% of IM damage, therefore bearing diagnosis is so important. The article provides...
-
Advanced Hysteretic Model of a Prototype Seismic Isolation System Made of Polymeric Bearings
PublikacjaThe present paper reports the results of acomprehensive study designed to verify the effectiveness of an advanced mathematical model in simulating the complex mechanical behaviour of a prototype seismic isolation system made of polymeric bearings (PBs). Firstly, in order to construct the seismic bearings considered in this research, a specially prepared flexible polymeric material with increased damping properties was employed....
-
Leading with Understanding: Cultivating Positive Relationships between Neurotypical Leaders and Neurodivergent Employees
PublikacjaNeurodivergent employees have atypical needs that require distinctive leadership approaches. In this study, the specific nature of a relationship between neurodivergent employees and their neurotypical leaders is explored through the lens of the Leader-Member-Exchange (LMX) theory. This two-phased qualitative study builds on 12 semi-structured interviews with neurodivergent employees and an unstructured focus group with 15 individuals...
-
Gender as a Moderator of the Double Bias of Mistakes – Knowledge Culture and Knowledge Sharing Effects
PublikacjaThere is no learning without mistakes. The essence of the double bias of mistakes is the contradiction between an often-declared positive attitude towards learning from mistakes, and negative experiences when mistakes occur. Financial and personal consequences, shame, and blame force desperate employees to hide their mistakes. These adverse outcomes are doubled in organizations by the common belief that managers never make mistakes,...
-
On the use of leading safety indicators in maritime and their feasibility for Maritime Autonomous Surface Ships
PublikacjaAlthough the safety of prospective Maritime Autonomous Surface Ships will largely depend on their ability to detect potential hazards and react to them, the contemporary scientific literature lacks the analysis of how to achieve this. This could be achieved through an application of leading safety indicators. The aim of the performed study was to identify the research directions of leading safety indicators in three safety-critical...
-
Pursuing the Deep-Learning-Based Classification of Exposed and Imagined Colors from EEG
PublikacjaEEG-based brain-computer interfaces are systems aiming to integrate disabled people into their environments. Nevertheless, their control could not be intuitive or depend on an active external stimulator to generate the responses for interacting with it. Targeting the second issue, a novel paradigm is explored in this paper, which depends on a passive stimulus by measuring the EEG responses of a subject to the primary colors (red,...
-
Machine learning approach to packaging compatibility testing in the new product development process
PublikacjaThe paper compares the effectiveness of selected machine learning methods as modelling tools supporting the selection of a packaging type in new product development process. The main goal of the developed model is to reduce the risk of failure in compatibility tests which are preformed to ensure safety, durability, and efficacy of the finished product for the entire period of its shelf life and consumer use. This kind of testing...
-
Machine learning-based seismic response and performance assessment of reinforced concrete buildings
PublikacjaComplexity and unpredictability nature of earthquakes makes them unique external loads that there is no unique formula used for the prediction of seismic responses. Hence, this research aims to implement the most well-known Machine Learning (ML) methods in Python software to propose a prediction model for seismic response and performance assessment of Reinforced Concrete Moment-Resisting Frames (RC MRFs). To prepare 92,400 data...
-
Detection of People Swimming in Water Reservoirs with the Use of Multimodal Imaging and Machine Learning
PublikacjaEvery year in many countries, there are fatal unintentional drownings in different water reservoirs like swimming pools, lakes, seas, or oceans. The existing threats of this type require creating a method that could automatically supervise such places to increase the safety of bathers. This work aimed to create methods and prototype solutions for detecting people bathing in water reservoirs using a multimodal imaging system and...
-
Technology-Enhanced Environmental Learning: Co-design of Educational Mobile Application Case
PublikacjaThe process of co-creating an educational mobile application to support environmentally friendly behavior is presented in this paper. The research material consisted of quantitative data collected on the application during the first testing phase by early adopters. The results suggest that the most frequently used features of the app were related to transport and educational activities. While women tended to split their time between...
-
Water-Lubricated Journal Bearings Marine Applications, Design, and Operational Problems and Solutions
PublikacjaWater-Lubricated Journal Bearings: Marine Applications, Design, and Operational Problems and Solutions provides cutting-edge design solutions, common problems and methods for avoiding them, and material selection considerations for the use of water-lubricated journal bearings in marine environments. These bearings have many advantages, including the absence of the potential for oil contamination. They are also sensitive, and their...
-
Predicting emotion from color present in images and video excerpts by machine learning
PublikacjaThis work aims at predicting emotion based on the colors present in images and video excerpts using a machine-learning approach. The purpose of this paper is threefold: (a) to develop a machine-learning algorithm that classifies emotions based on the color present in an image, (b) to select the best-performing algorithm from the first phase and apply it to film excerpt emotion analysis based on colors, (c) to design an online survey...
-
LOS and NLOS identification in real indoor environment using deep learning approach
PublikacjaVisibility conditions between antennas, i.e. Line-of-Sight (LOS) and Non-Line-of-Sight (NLOS) can be crucial in the context of indoor localization, for which detecting the NLOS condition and further correcting constant position estimation errors or allocating resources can reduce the negative influence of multipath propagation on wireless communication and positioning. In this paper a deep learning (DL) model to classify LOS/NLOS...
-
Data, Information, Knowledge, Wisdom Pyramid Concept Revisited in the Context of Deep Learning
PublikacjaIn this paper, the data, information, knowledge, and wisdom (DIKW) pyramid is revisited in the context of deep learning applied to machine learningbased audio signal processing. A discussion on the DIKW schema is carried out, resulting in a proposal that may supplement the original concept. Parallels between DIWK pertaining to audio processing are presented based on examples of the case studies performed by the author and her collaborators....
-
DNAffinity: a machine-learning approach to predict DNA binding affinities of transcription factors
PublikacjaWe present a physics-based machine learning approach to predict in vitro transcription factor binding affinities from structural and mechanical DNA properties directly derived from atomistic molecular dynamics simulations. The method is able to predict affinities obtained with techniques as different as uPBM, gcPBM and HT-SELEX with an excellent performance, much better than existing algorithms. Due to its nature, the method can...
-
Machine learning for the management of biochar yield and properties of biomass sources for sustainable energy
PublikacjaBiochar is emerging as a potential solution for biomass conversion to meet the ever increasing demand for sustainable energy. Efficient management systems are needed in order to exploit fully the potential of biochar. Modern machine learning (ML) techniques, and in particular ensemble approaches and explainable AI methods, are valuable for forecasting the properties and efficiency of biochar properly. Machine-learning-based forecasts,...
-
Deep Learning-Based, Multiclass Approach to Cancer Classification on Liquid Biopsy Data
PublikacjaThe field of cancer diagnostics has been revolutionized by liquid biopsies, which offer a bridge between laboratory research and clinical settings. These tests are less invasive than traditional biopsies and more convenient than routine imaging methods. Liquid biopsies allow studying of tumor-derived markers in bodily fluids, enabling the development of more precise cancer diagnostic tests for screening, disease monitoring, and...
-
Dataset Characteristics and Their Impact on Offline Policy Learning of Contextual Multi-Armed Bandits
PublikacjaThe Contextual Multi-Armed Bandits (CMAB) framework is pivotal for learning to make decisions. However, due to challenges in deploying online algorithms, there is a shift towards offline policy learning, which relies on pre-existing datasets. This study examines the relationship between the quality of these datasets and the performance of offline policy learning algorithms, specifically, Neural Greedy and NeuraLCB. Our results...
-
Looking through the past: better knowledge retention for generative replay in continual learning
PublikacjaIn this work, we improve the generative replay in a continual learning setting to perform well on challenging scenarios. Because of the growing complexity of continual learning tasks, it is becoming more popular, to apply the generative replay technique in the feature space instead of image space. Nevertheless, such an approach does not come without limitations. In particular, we notice the degradation of the continually trained...
-
OPERATING CONDITIONS OF SLIDE BEARINGS OF MILLS USED IN KGHM POLSKA MIEDŹ S.A.
PublikacjaThe paper contains the results from a tec hnical analysis of the conditions of the operation of hydrodynamic bearings supporting the drums of ore processing mills at KGHM Polska Mied ź S.A. A theoretical analysis was performed on the grounds of onsite examination and measurem ents of principal dimensions of the bearings of interest. The computer simulation covered the characteristics of the oil film in the bearings...
-
Visual Content Learning in a Cognitive Vision Platform for Hazard Control (CVP-HC)
PublikacjaThis work is part of an effort for the development of a Cognitive Vision Platform for Hazard Control (CVP-HC) for applications in industrial workplaces, adaptable to a wide range of environments. The paper focuses on hazards resulted from the nonuse of personal protective equipment (PPE). Given the results of previous analysis of supervised techniques for the problem of classification of a few PPE (boots, hard hats, and gloves...
-
Developing Novel Solutions to Realise the European Energy - Information Sharing & Analysis Centre
PublikacjaFor more effective decision making in preparation for and response to cyberevents in the energy sector, multilevel situation awareness, from technical to strategic is essential. With an uncertain picture of evolving threats, sharing of the latest cybersecurity knowledge among all sector stakeholders can inform and improve decisions and responses. This paper describes two novel solutions proposed during the formation of the European...