Filters
total: 369
filtered: 346
Search results for: HYBRID ORGANIC–INORGANIC SOLAR CELLS
-
Experimental Validation of the Chemical Recycling of Crystalline Silicon Solar Cells
PublicationW ostatnich latach systemy fotowoltaiczne stają się bardzo popularne na całym świecie jako korzystne dla środowiska rozwiązanie problemów energetycznych. Zagadnienie zagospodarowania zużytych elementów systemów fotowoltaicznych, których ilość w przyszłości może być znaczna, nie zostało do tej pory opracowane. Konieczne jest znalezienie optymalnej metody recyklingu i ponownego wykorzystania wycofanych z użycia elementów składowych...
-
Theoretical designing of selenium heterocyclic non-fullerene acceptors with enhanced power conversion efficiency for organic solar cells: a DFT/TD-DFT-based prediction and understanding
PublicationIn this study, we have designed and explored a new series of non-fullerene acceptors for possible applications in organic solar cells. We have designed four molecules named as APH1 to APH4 after end-capped modification of recently synthesized Y6-Se-4Cl molecule. Density functional theory and time dependent-density functional theory have been employed for computing geometric and photovoltaic parameters of the designed molecules....
-
Effect of Temperature and Pressure on Structural and Optical Properties of Organic–Inorganic Hybrid Manganese Halides
Publication -
Role of surface recombination in perovskite solar cells at the interface of HTL/CH3NH3PbI3
PublicationIn order to achieve the highest performance of organometal trihalide perovskite solar cells, it is required to recognize the dominant mechanisms which play a key role in a perovskite material. In the following studies, we have focused on the interfacial recombination between the hole transporting layer (HTL) and the perovskite CH3NH3PbI3 in solar cell devices with p–i–n architecture. It has been shown that Cu:NiOx : used as HTL...
-
Analysis of higher recombination orders in organic bulk heterojunction solar cells
PublicationRecently, it has been experimentally demonstrated that an order of nongeminate recombination exceeds two in some types of organic bulk heterojunction donor-acceptor structures. This result is different than for the case of bimolecular recombination described by Langevin theory. Although several theoretical explanations of this effect have been presented, the origin of higher recombination orders is still questionable. In this work,...
-
Integrated Experimental and Theoretical Approach for Efficient Design and Synthesis of Gold-Based Double Halide Perovskites
PublicationApplied cutting-edge electronic structure and phonon simulations provide a reliable knowledge about the stability of perovskite structures and their electronic properties, which are crucial for design of effective nanomaterials. Gold is one of the exceptional elements, which can exist both as a monovalent and a trivalent ion in the B site of a double perovskite such as A2BI BIIIX6. However, until now, electronic properties of Cs2AuI AuIIIX6...
-
Application of BiOClnBrm photocatalyst to cytostatic drugs removal from water; mechanism and toxicity assessment
PublicationThe photocatalytic activity of series of BiOClnBrm photocatalysts toward degradation and mineralization of the cytostatic drugs 5-fluorouracil (5-FU) and imatinib mesylate (IMA) both singly and in their mixture under simulated solar and visible light irradiation has been investigated. Screening test revealed that among BiOClnBrm photocatalysts synthesized by a solvothermal method, the one with molar 1.3Cl/0.7Br ratio was the most...
-
Power Converter Solutions for Industrial PV Applications—A Review
Publication: As the use of photovoltaics becomes more widespread, new technologies for more efficient energy generation, transmission, and distribution based on power electronics converters are being developed. The most common applications are grid-on, energy storage, hybrid, and high voltage gain applications. These applications impose several additional requirements in the design of power converters associated with the solar battery’s maximum...
-
The external walls of a passive building: A classification anddescription of their thermal and optical properties
PublicationThis paper attempts a new classification of insulating materials from the perspective of their utility in thepro-ecological passive construction industry. The main criterion is the conductivity of thermal and solarenergy. Based on their ability to conduct or block fluxes of thermal and solar energy, six types of insulatingwalls are proposed. On the basis of this criterion there are traditional dividing walls (typical walls, wallinsulating...
-
Bias-Dependent Dynamics of Degradation and Recovery in Perovskite Solar Cells
PublicationDegradation of perovskite solar cells (PSCs) is often found to be partially or fully reversible when the cells are allowed to recover in the dark. Unlike the dynamics of degradation, knowledge about the dynamics of PSC cell recovery is very limited. Here, we demonstrate that the PSC recovery strongly depends on the electrical bias conditions during the light-induced degradation and that it can be manipulated by applying an external...
-
Dye-sensitized solar cells, in: Physics of Nanostructured Solar Cells
PublicationRozwój nanotechnologii otwiera coraz szersze horyzonty w dziedzinie zastosowania nowych materiałów w istniejących technologiach. Po tranzystorach także inne urządzenia wchodzą w erę nanotechnologii, w tym także te, dla których podstawowym materiałem są półprzewodniki i materiały organiczne. Ogniwa słoneczne nie są w tym zakresie wyjątkiem. W książce przedstawiono różne rodzaje ogniwa fotowoltaicznych i związane z ich eksploatacją...
-
A giant 2-dimensional dielectric response in a compressed hydrogen-bonded hybrid organic–inorganic salt
Publication -
Light intensity analysis of photovoltaic parameters for perovskite solar cells
PublicationThe number of publications on perovskite solar cells (PSC) continues to grow exponentially. Although the efficiency of PSC is exceeded 25.5%, not every research laboratory can reproduce this result or even pass the border of 20%. Unfortunately, it is not always clear which dominating mechanism is responsible for the performance drop. Here, we develop a simple method of light intensity analysis of JV parameters allowing the understanding...
-
Modelling and optimisation of MXene-derived TiO2/Ti3C2 synthesis parameters using Response Surface Methodology based on the Box–Behnken factorial design. Enhanced carbamazepine degradation by the Cu-modified TiO2/Ti3C2 photocatalyst
PublicationIn the present study, a hydrothermal method in a water/ethanol environment was used for the first time to obtain novel Cu/TiO2/Ti3C2 composites with high photocatalytic activity for the degradation of carbamazepine (CBZ) under simulated solar light. The Box–Behnken factorial design was coupled with Response Surface Methodology (RSM) for synthesis parameter optimisation. The effect of different synthesis parameters, including temperature, time...
-
Recovery and re-use of photovoltaic solar cells from crystalline silicon
PublicationCrystalline silicon-type PV modules consist, in order of mass, of glass, an aluminium frame, an EVA coating, solar cells, a terminal box, back film and tapping screws. From the economic point of view, pure silicon, recoverable from spent cells, is the most important material owing to its cost and shortage. For crystalline, silicon-based PV cells, the following chemical treatments were performed: removal of the metal coating, followed...
-
Crystalline Silicon (c-Si)-Based Tunnel Oxide Passivated Contact (TOPCon) Solar Cells: A Review
PublicationContact selectivity is a key parameter for enhancing and improving the power conversion efficiency (PCE) of crystalline silicon (c-Si)-based solar cells. Carrier selective contacts (CSC) are the key technology which has the potential to achieve a higher PCE for c-Si-based solar cells closer to their theoretical efficiency limit. A recent and state-of-the-art approach in this domain is the tunnel oxide passivated contact (TOPCon)...
-
Comment on "On accurate capacitance characterization of organic photovoltaic cells"
PublicationIn the 100th volume of Applied Physics Letters Carr and Chaudhary have presented a work on capacitance characterization of organic photovoltaic cells. The work concerns small signal measurements of various organic photovoltaic structures. The authors however limit their considerations to one part of small signal response, namely to capacitance measured either in parallel mode or in series mode. This attitude generally does not...
-
Magnetic field effects in dye-sensitized solar cells controlled by different cell architecture
PublicationThe charge recombination and exciton dissociation are generally recognized as the basic electronic processes limiting the efficiency of photovoltaic devices. In this work, we propose a detailed mechanism of photocurrent generation in dye-sensitized solar cells (DSSCs) examined by magnetic field effect (MFE) technique. Here we demonstrate that the magnitude of the MFE on photocurrent in DSSCs can be controlled by the radius and...
-
Ranking of Generation Source Locations by a Hybrid Multi-Criteria Method
PublicationThe paper presents a ranking of the locations of eight renewable energy sources (RES) made using a hybrid multi-criteria analysis method. The method is a combination of the analytical hierarchical process (AHP) method and numerical taxonomy. The considered generating sources, i.e. solar plants, biogas plants, and wind farms are sources that will significantly contribute to implementing the provisions of the energy and climate package...
-
Photosensitization of TiO2 and SnO2 by Artificial Self-Assembling Mimics of the Natural Chlorosomal Bacteriochlorophylls
PublicationOf all known photosynthetic organisms, the green sulfur bacteria are able to survive under the lowest illumination conditions due to highly efficient photon management and exciton transport enabled by their special organelles, the chlorosomes, which consist mainly of self-assembled bacteriochlorophyll c, d, or e molecules. A challenging task is to mimic the principle of self-assembling chromophores in artificial light-harvesting...
-
Spray deposited carbon nanotubes counter electrodes for dye-sensitized solar cells
PublicationCarbon nanotubes due to their catalytic properties are a promising alternative to platinum counter electrodes (CE) for dye-sensitized solar cells (DSSC). In this study, counter electrodes were made from double-walled carbon nanotube (DWCNT) ink using the spray printing technique and afterwards thermally treated at temperatures ranging from 120 to 300 °C. Morphology and structure was studied using scanning electron microscopy and...
-
Spray-deposited carbon-nanotube counter-electrodes for dye-sensitized solar cells
PublicationCarbon nanotubes due to their catalytic properties are a promising alternative to platinum counter electrodes (CE) for dye-sensitized solar cells (DSSC). In this study, counter electrodes were made from double-walled carbon nanotube (DWCNT) ink using the spray printing technique and afterwards they were thermally treated at temperatures ranging from 120 to 300 °C. Morphology and structure was studied using scanning electron microscopy...
-
Effect of Different Bromine Sources on the Dual Cation Mixed Halide Perovskite Solar Cells
PublicationRecent research has shown that perovskite solar cells with a mixed dual A-cation have much better structural stability without loss of efficiency than single cation devices. Mixed cation perovskites create a lot of questions about the salts being used for the formation of the best-quality layer. Here, we have investigated three sources of bromide in the perovskite absorption layer, using lead bromide (PbBr2), formamidinium bromide...
-
Exploring the interfacial effects at the ETL/perovskite boundary in the semitransparent perovskite solar cells
PublicationThe recent focus has been made on the perovskite solar cells (PSCs) with an inverted configuration, where substantial improvements have been already achieved. However, the p–i–n structure needs a buffer layer for most of the configurations to modify the work-function of a deposited electrode. Additionally and very importantly, such a layer can also serve as a protective film that improves a stability of solar cells. Here, we study...
-
The influence of anchoring group position in ruthenium dye molecule on performance of dye-sensitized solar cells
PublicationThe effect of anchoring group position and, in consequence, the orientation of the ruthenium dye molecule on titania surface on the performance of dye-sensitized solar cells has been studied intensively. Three model ruthenium sensitizing dyes bearing carboxylic anchoring group in ortho, meta or para position were synthesized and well characterized by spectroscopic, electrochemical, photophysical and photochemical measurements....
-
The influence of UV light on Performance of poly(methyl methacrylate) in regard to dyesensitised solar cells
PublicationNiskie kosztu produkcji i prosta budowa Barwnikowych Ogniw Słonecznych (ang.DSSC-Dye Sensitized Solar Cells) a także porównywalne wydajności czynią je konkurencyjnymi wsród komercyjnych technologii ogniw słonecznych. Jednym z elementów wchodzących w skład BOS jest transparentne szkło przewodzące stanowiące jego elektrody. Doskonała transparentność omozliwia zastosowanie polimeru PMMA jako substytutu transparaentnego szkła przewodzącego....
-
Hydrodynamic cavitation based advanced oxidation processes: Studies on specific effects of inorganic acids on the degradation effectiveness of organic pollutants
PublicationThe use of cavitation in advanced oxidation processes (AOPs) to treat acidic effluents and process water has become a promising trend in the area of environmental protection. The pH value of effluents – often acidified using an inorganic acid, is one of the key parameters of optimization process. However, in the majority of cases the effect of kind of inorganic acid on the effectiveness of degradation is not studied. The present...
-
Synthesis of novel dinuclear ruthenium polypyridine dye for dye-sensitized solar cells application
PublicationA new dinuclear ruthenium(II) polypyridine complex has been successfully synthesized. The new compound has been characterized by spectroscopic and electrochemical methods. Its potential application as a sensitizing dye in dye-sensitized solar cells has been checked under AM 1.5 G irradiation conditions (100 mW cm−2) and its performance was compared to that of a commercially available mononuclear analogous dye. The overall light-to-electricity...
-
Highly stable CsFAPbIBr perovskite solar cells with dominant bulk recombination at real operating temperatures
PublicationMixed-cation mixed-halide perovskite solar cells have been characterized in DC at different temperatures (from −20 °C up to 50 °C) and the time evolution of the device efficiency has been assessed using different degradation protocols (indoors and outdoors). The completely planar p–i–n structure is ITO/CuNiOx/PTAA/CsFAPbIBr/PCBM/PEI/Ag. Pristine current–voltage characteristics barely show hysteresis, at any temperature. Open circuit...
-
Alternative Energy: Photovoltaic Solar Cells
Publication...
-
Recycling of raw materials, silicon wafers and complete solar cells from photovoltaic modules
PublicationPhotovoltaic modules (PVs) are an attractive way of generating electricity in reliable and maintenance-free systems with the use of solar energy. The average lifetime of photovoltaic modules is 25 to 30 years. To offset the negative impact of photovoltaic modules on the environment, it is necessary to introduce a long-term strategy that includes a complete lifecycle of all system components from the production phase through installation...
-
Efficiency of exciton splitting in organic photovoltaic cells within EQE spectrum
PublicationThe paper presents a procedure of estimating the efficiency of exciton splitting at ED/EA interface. The procedure consists in evaluation of splitting of excitons into electron-hole pairs on the basis of the external quantum efficiency spectra of planar cells and spectra of absorbance of active organic layers. The fitting parameters are the exciton splitting probabilities at ED/EA interface. The presented procedure was applied...
-
PVT - hybrid photovoltaic - thermal solar systems
PublicationPVT - to urządzenia, łączące ze sobą funkcje modułu fotowoltaicznego i kolektora słonecznego, w którym rolę absorbera pełni moduł ogniw fotowoltaicznych. Umożliwia to otrzymywanie z tej samej powierzchni pokrycia dachu lub fasady budynku uzyskiwanie jednocześnie energii elektrycznej i cieplnej. Uzyskiwane ciepło jest ciepłem niskotemperaturowym. Poszczególne rozwiązania systemów PVT można scharakteryzować ze względu na: różną liczbę...
-
The Influence of Titania Electrode Modification with Lanthanide Ions Containing Thin Layer on the Performance of Dye-Sensitized Solar Cells
PublicationThe lanthanide and scandium groups ions (except Pm and Ac) have been used as dopants of TiO2 film in dye-sensitized solar cells. The X-ray diffraction spectra show that the modification has no influence on the structure of the electrode; however, the diffuse reflectance UV-Vis measurements exhibit significant changes in the electronic properties of modified electrodes. The appearance of energy barrier preventing photoexcited electron...
-
Impacts of inorganic/organic pollutants on agroecosystems and eco-friendly solutions
Publication -
Immobilization of Pb and Cu by organic and inorganic amendments in contaminated soil
Publication -
Synthesis of Titanium Dioxide via Surfactant-Assisted Microwave Method for Photocatalytic and Dye-Sensitized Solar Cells Applications
PublicationIn this study, titania nanoparticles were obtained using the microwave-assisted technique. Moreover, different surfactants (PEG (Mn = 400), Pluronic P123 and Triton X−100) were used during the synthesis in order to determine their impact on the crystallinity and morphology of the final products. Subsequently, techniques such as XRD, SEM and TEM (performed in high contrast and high-resolution mode), diffuse reflectance spectroscopy...
-
Enhanced Photoelectrocatalytical Performance of Inorganic-Inorganic Hybrid Consisting BiVO4, V2O5, and Cobalt Hexacyanocobaltate as a Perspective Photoanode for Water Splitting
PublicationThin layers of BiVO4/V2O5 were prepared on FTO substrates using pulsed laser deposition technique. The method of cobalt hexacyanocobaltate (Cohcc) synthesis on the BiVO4/V2O5 photoanodes consists of cobalt deposition followed by electrochemical oxidation of metallic Co in K3[Co(CN)6] aqueous electrolyte. The modified electrodes were tested as photoanodes for water oxidation under simulated sunlight irradiation. Deposited films...
-
Copper(I) iodide ribbons coordinated with thiourea derivatives
PublicationTwo products of the reactions of CuI with 1-benzoyl-3-(4-bromophenyl)thiourea and with 1-benzoyl-3-(2-iodophenyl)thiourea have been obtained and characterized, namely poly[[[1-benzoyl-3-(4-bromophenyl)thiourea-κS]-µ3-iodidocopper(I)] acetone hemisolvate], {[CuI(C₁₄H₁₁BrN₂OS)]‧0.5C₃H₆O}ₙ, and poly-[µ₄-iodido-µ₃-iodido-[N-(benzo[d]thiazol-2-yl)benzamide-κN]dicopper(I)], [Cu₂I₂(C₁₄H₁₀N₂OS)]ₙ. Their structures, determined by single-crystal...
-
Sources and composition of chemical pollution in Maritime Antarctica (King George Island), part 2: Organic and inorganic chemicals in snow cover at the Warszawa Icefield
PublicationThe study area is located on King George Island, where 90% of the area is permanently glaciated. This study provides a comprehensive analysis of the inorganic and organic chemistry of snow cover in the icefield and a comparison against previous results obtained in fresh water. Snow samples were collected in the summer of 2017 in the Warszawa Icefield area. Sampling points are located along two transects: between the Arctowski Polish...
-
Flexible syngas-biogas-hydrogen fueling spark-ignition engine behaviors with optimized fuel compositions and control parameters
PublicationThis paper presents the results research on the optimal fuel compositions and the control parameters of the spark ignition engine fueled with syngas-biogas-hydrogen for the purpose of setting up a flexible electronic control unit for the engine working in a solar-biomass hybrid renewable energy system. In syngas-biogas-hydrogen mixture, the optimal content of hydrogen and biogas is 20% and 30%, respectively. Exceeding these thresholds,...
-
Recent advances in hydrogen production from biomass waste with a focus on pyrolysis and gasification
PublicationThis paper presents the results research on the optimal fuel compositions and the control parameters of the spark ignition engine fueled with syngas-biogas-hydrogen for the purpose of setting up a flexible electronic control unit for the engine working in a solar-biomass hybrid renewable energy system. In syngas-biogas-hydrogen mixture, the optimal content of hydrogen and biogas is 20% and 30%, respectively. Exceeding these thresholds,...
-
Fabrication and photoactivity of organic-inorganic systems based on titania nanotubes and PEDOT containing redox centres formed by different Prussian Blue analogues
PublicationHerein, the heterojunction composed of an inorganic substrate: ordered hydrogenated titania nanotubes (H-TiO2NTs) and a deposited organic film: poly(3,4-ethylenedioxythiophene) (PEDOT) is reported. The conducting polymer is modified with different transition metal haxacyanoferrates (Mehcf), wherein as metal: copper, iron, cobalt and nickel are introduced. The presence of various metal centres provides characteristic redox activity...
-
Heterojunction of (P, S) co-doped g-C3N4 and 2D TiO2 for improved carbamazepine and acetaminophen photocatalytic degradation
PublicationNovel photocatalysts of phosphorus and sulfur co-doped graphitic carbon nitride incorporated in 2D TiO2 structure were successfully fabricated and applied for solar-driven degradation of emerging pollutants from the group of pharmaceuticals not susceptible to biodegradation. The hybrid photocatalysts with different loadings of (P, S)-doped g-C3N4 were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR),...
-
Polymers in High-Efficiency Solar Cells: The Latest Reports
Publication -
The effect of temperature difference on heat transport in solar cells
PublicationW pracy omówiono wpływ wzrostu temperatury i mechanizm transportu ciepła na drodze przewodzenia w układach hybrydowych PV/T. Wyznaczono współczynniki przewodzenia krystalicznego krzemu typu n i p oraz gęstość strumienia ciepła w zakresie temperatur od 0 do 100 st. C.
-
Flexible dye-sensitized solar cells based on Ti/TiO2 nanotubes photoanode and Pt-free and TCO-free counter electrode system
PublicationFlexible dye-sensitized solar cells (DSSCs) are getting more attention compared to standard glass covered DSSCs due to their unique commercial applications (e.g. tents or sail surfaces) and the possibility of rolling up into a small, portable device. In this work, titania nanotubes (TiO2 NT) modified with titania nanoparticles (TiO2 NP) were photoelectrochemically characterized as an anode for flexible dye-sensitized solar cells....
-
Understanding the Dominant Physics Mechanisms on the p-i-n Perovskite Solar Cells Fabricated by Scalable Slot-Die Coating Process in Ambient Air
PublicationPerovskite solar cells (PSC) are emerging technologies that have shown continuous improvement in power conversion efficiency (PCE) and stability. However, a very important aspect that has been seldom considered is the reproducibility of PCE of PSC devices. It is possible to achieve PCE from 10.21% to 17.05% using scalable slot-die-coating technique. However, a spatial distribution of performance is clearly observed for device samples...
-
The importance of anchoring ligands of binuclear sensitizers on electron transfer processes and photovoltaic action in dye-sensitized solar cells
PublicationThe relatively low photon-to-current conversion efficiency of dye-sensitized solar cells is their major drawback limiting widespread application. Light harvesting, followed by a series of electron transfer processes, is the critical step in photocurrent generation. An in-depth understanding and fine optimization of those processes are crucial to enhance cell performance. In this work, we synthesize two new bi-ruthenium sensitizers...
-
Organic-inorganic materials for fast charging-discharging processes in energy storage devices
PublicationPraca dotyczy materiału kompozytowego złożonego z poli(3,4-etylenodioksytiofenu) i heksacyjanokobaltanu żelaza. Materiał został otrzymany elektrochemicznie bezpośrednio na elektrodzie tytanowej metodą jednoetapowa z zawiesiny zawierającej monomer (EDOT) oraz Fe3[Co(CN)6]2 w postaci proszku. Warstwy pEDOT/FehcCo otrzymane potencjostatycznie ładunkiem od 0,6 do 1,5 C/cm2 charakteryzują się różną grubością (od 1,9 do 4 μm) zależną...