Filters
total: 197
filtered: 147
-
Catalog
Chosen catalog filters
Search results for: anode
-
Locust bean gum as green and water-soluble binder for LiFePO4 and Li4Ti5O12 electrodes
PublicationLocust Bean Gum (LBG, carob bean gum) was investigated as an environmentally friendly, natural, and water-soluble binder for cathode (LFP) and anode (LTO) in lithium-ion batteries (Li-ion). For the frst time, we show LBG as an electrode binder and compare to those of the most popular aqueous (CMC) and conventional (PVDF) binders. The electrodes were characterized using TGA/DSC, the galvanostatic charge–discharge cycle test, cyclic...
-
Improved performance of LaNi0.6Fe0.4O3 solid oxide fuel cell cathode by application of a thin interface cathode functional layer
PublicationIn this work, novel functional layers were prepared by a low temperature spray pyrolysis method on the oxygen side of the solid oxide cells. Thin layers of Ce0.8Gd0.2O2 and LaNi0.6Fe0.4O3 are prepared between the electrolyte and the porous oxygen electrode. Additionally the influence of the sprayed ceria barrier layer on the zirconia based electrolyte with the new layers is evaluated. Impedance spectroscopy results show improvement...
-
N-doped graphene quantum dot-decorated MOF-derived yolk-shell ZnO/NiO hybrids to boost lithium and sodium ion battery performance
PublicationSurface engineering at the nanoscale to obtain robust interface between metal oxides and quantum dots is essential for improving the performance and stability of battery materials. Herein, we designed and prepared novel N-doped graphene quantum dot-modified ZnO/NiO anode materials with a well-defined yolk-shell structure for lithium and sodium-ion batteries. NG QDs were assembled on the ZnO/NiO microspheres using three different...
-
Modernized cathodic protection system for legs of the production rig – Evaluation during ten years of service
PublicationThe modernization of cathodic protection system of the Baltic Beta platform legs is described. It was that the sacrificial anodes cone-shaped groups were to be placed on the seabed at a depth of 80 m. The measurements results of cathodic protection effectiveness during its ten-years operation are presented. The effectiveness was assessed based on the potential value along the entire length of the legs from the sea surface to the...
-
Design and characterization of apatite La9.8Si5.7Mg0.3O26±δ-based micro-tubular solid oxide fuel cells
PublicationIn this study, electrolyte-supported (Cell A) and anode-supported (Cell B) micro-tubular solid oxide fuel cells (SOFCs) based on the La9.8Si5.7Mg0.3O26±δ (LSMO) electrolyte is built through an extrusion and dip-coating processes. The formulations and process conditions for these cells are established and optimized. Both cell configurations show no visible delamination or cracking, and reaction zones and inter-diffusion of any species...
-
CeCu2O4 as a functional layer on solid oxide fuel cells for synthetic biogas reforming
PublicationSolid Oxide Fuel Cells (SOFC) are one of the most promising electrochemical devices, which can convert chemical energy to the electrical energy these days. Their ability to work with different kind of fuel makes them noteworthy. SOFC can work with biogas. The problem arises when solid carbon starts to be deposited in anode. That leads to degradation of fuel cell. Simple solution is to apply catalytic functional layer, which is...
-
Tin oxide nanoparticles from laser ablation encapsulated in a carbonaceous matrix – a negative electrode in lithium-ion battery applications
PublicationThis report concerns carbonaceous electrodes doped with tin(II) oxide nanoparticles. Tin nanoparticles are obtained by pulsed laser ablation in water. Crystalline nanoparticles have been encapsulated in a carbonaceous matrix formed after pyrolysis of a mixture consisting of tin/tin(IV) oxide nanoparticles and gelatine. The obtained material is characterized by means of X-ray diffraction, selected area diffraction, scanning electron...
-
Hard carbon derived from rice husk as low cost negative electrodes in Na-ion batteries
PublicationHere, we report the synthesis of hard carbon materials (RH) made from natural rice husk through a single pyrolysis process and their application as an anode in sodium-ion batteries. The studies show that the electrochemical properties of RHs are affected by the treatment temperatures, which determine the materials morphology, in particular, their degree of graphitization and extent of continuous channels (nanovoids). The latter...
-
Fully enzymatic mediatorless fuel cell with efficient naphthylated carbon nanotube-laccase composite cathodes
PublicationAn efficient, mediator-free enzymatic glucose/O2 biofuel cell with an oxygen intensive anode based on glucose dehydrogenase is presented. In the device,the power of the biofuel cell and electrode potentials of each of the enzymatic electrodes were monitored in parallel under the biofuel cell working conditions. The carbon nanotube composite biocathode demonstrates an almost constant electrode potential vs. saturated calomel electrode...
-
Electrochemical Characterization of Gelatine Derived Ceramics
PublicationNew materials obtained by pyrolysis of gelatine (G) and poly(1,2-dimethylsilazane) (PSN) (weight ratio: G/PSN 70/30) at temperatures 700 and 900 °C were characterized by SEM and Raman spectroscopy. The presence of ceramics influences on the cluster size of the materials. Electrochemical tests were performed by cyclic voltammetry and galvanostatic cyclic polarization. The capacity of G/PSN was 464 and 527 mAh/g for materials pyrolysed...
-
Performance of a single layer fuel cell based on a mixed proton-electron conducting composite
PublicationMany of the challenges in solid oxide fuel cell technology stem from chemical and mechanical incompatibilities between the anode, cathode and electrolyte materials. Numerous attempts have been made to identify compatible materials. Here, these challenges are circumvented by the introduction of a working single layer fuel cell, fabricated from a composite of proton conducting BaCe0.6Zr0.2Y0.2O3-δ and a mixture of semiconducting...
-
An Easy and Ecological Method of Obtaining Hydrated and Non-Crystalline WO3−x for Application in Supercapacitors
PublicationIn this work, we report the synthesis of hydrated and non-crystalline WO3 flakes (WO3−x) via an environmentally friendly and facile water-based strategy. This method is described, in the literature, as exfoliation, however, based on the results obtained, we cannot say unequivocally that we have obtained an exfoliated material. Nevertheless, the proposed modification procedure clearly affects the morphology of WO3 and leads to loss...
-
The influence of synthesis method on the microstructure and catalytic performance of Y 0.07 Sr 0.93 Ti 0.8 Fe 0.2 O 3-δ in synthetic biogas operated solid oxide fuel cells
PublicationThe Y0.07Sr0.93Ti0.8Fe0.2O3-δ (YSTF) material was fabricated using three different synthesis methods: modified polymer precursor method (MPP), Pechini method and a solid state reaction method. It was applied as an anode catalytic material for biogas reforming in solid oxide fuel cells. Clear differences in the microstructure of fabricated catalytic layers were found, mainly with respect to a grain size and distribution of grains....
-
Photoconduction and magnetic field effect on photoconduction in hole-transporting star-burst amine (m-MTDATA) films
PublicationPhotoconduction and magnetic field effect on photoconduction have been investigated as a function of electric field strength, excitation light intensity and wavelength in vacuum evaporated films of m-MTDATA (4,4′,4″-tris(N-(3-methylphenyl)-N-phenylylamino) triphenylamine), the starburst amine commonly used as hole-transporting material in organic light-emitting diodes. The photocurrent is found to be generated by the singlet exciton...
-
Electrolytic corrosion of water pipeline system in the remote distance from stray currents– case study
PublicationCase study of corrosion failure of urban water supply system caused by the harmful effects of stray currents was presented. The failure occurred at a site distant from the sources of these currents namely the tramway and railway traction systems. Diagnosis revealed the stray currents flow to pipeline over a remote distance of 800 ÷ 1,000 meters from the point of failure. At the point of failure stray currents flowed from the pipeline...
-
Composites of tin oxide and different carbonaceous materials as negative electrodes in lithium-ion batteries
PublicationAbstract Tin and tin oxide have been considered as suitable materials with high theoretical capacity for lithium ion batteries. Their low cost, high safety and other technical benefits placed them as promising replacements for graphite negative electrodes. The problem to overcome with tin oxide, as well as with other metallic materials, is high volume changes during alloying/dealloying, subsequent pulverization, delamination from...
-
Performance and Stability in H2S of SrFe0.75Mo0.25O3-δ as Electrode in Proton Ceramic Fuel Cells
PublicationThe H2S-tolerance of SrFe0.75Mo0.25O3-δ (SFM) electrodes has been investigated in symmetric proton ceramic fuel cells (PCFC) with BaZr0.8Ce0.1Y0.1O3-δ (BZCY81) electrolyte. The ionic conductivity of the electrolyte under wet reducing conditions was found to be insignificantly affected in the presence of up to 5000 ppm H2S. The fuel cell exhibited an OCV of about 0.9 V at 700 °C, which dropped to about 0.6 V and 0.4 V upon exposure...
-
Sustainable energy system combined biogas-feedSolid Oxide Fuel Cell and Microalgae technology
PublicationIn the new frontier of energy and environmental safety, new efficient and clean safe energy conversion systems are required. In this sense, the present work is framed within the context of Circular Economy and proposes a multidisciplinary study for the development of more efficient, economically viable and non-polluting energy conversion systems, based on the synergetic combination of different technologies: fuel cells, biofuels,...
-
Manganese–Cobalt Based Spinel Coatings Processed by Electrophoretic Deposition Method: The Influence of Sintering on Degradation Issues of Solid Oxide Cell Oxygen Electrodes at 750 °C
PublicationThis paper seeks to examine how the Mn–Co spinel interconnect coating microstructure can influence Cr contamination in an oxygen electrode of intermediate temperature solid oxide cells, at an operating temperature of 750 °C. A Mn–Co spinel coating is processed on Crofer 22 APU substrates by electrophoretic deposition, and subsequently sintered, following both the one-step and two-step sintering, in order to obtain significantly...
-
Ceramic composites for single-layer fuel cells
PublicationComposite materials consisting of acceptor doped lanthanum orthoniobate electrolyte phase (La0.98Ca0.02NbO4) and Li2O:NiO:ZnO semiconducting phase were synthesized. The precursor powder of La0.98Ca0.02NbO4 was prepared in nanocrystalline (mechanosynthesis) and microcrystalline (solid-state synthesis) form. The composite can be applied in a single-layer fuel cell, because of the presence of two phases acting as an anode and a cathode...
-
A negative effect of carbon phase on specific capacity of electrode material consisted of nanosized bismuth vanadate embedded in carbonaceous matrix
PublicationLithium-ion batteries (LIBs) are widely used all over the world. The LIBs belong to a renewable energy source and energy storage devices. The increase in energy demand causes that new materials of higher energy and higher power densities are still under investigation. Herein, we compare electrochemical properties of bismuth vanadate (BiVO4) embedded and not embedded into carbonaceous matrix as an anode material along with structural...
-
Hydrothermal Cobalt Doping of Titanium Dioxide Nanotubes towards Photoanode Activity Enhancement
PublicationDoping and modification of TiO2 nanotubes were carried out using the hydrothermal method. The introduction of small amounts of cobalt (0.1 at %) into the structure of anatase caused an increase in the absorption of light in the visible spectrum, changes in the position of the flat band potential, a decrease in the threshold potential of water oxidation in the dark, and a significant increase in the anode photocurrent. The material...
-
Enhanced Electrochemical Performance of MnCo1.5Fe0.5O4Spinel for Oxygen Evolution Reaction through Heat Treatment
PublicationMnCo1.5Fe0.5O4 spinel oxide was synthesized using the sol−gel technique, followed by heat treatment at various temperatures (400, 600, 800, and 1000 °C). The prepared materials were examined as anode electrocatalysts for watersplitting systems in alkaline environments. Solid-state characterization methods, such as powder X-ray diffraction and X-ray absorption spectroscopy (XAS), were used to analyze the materials’ crystallographic...
-
Advanced Lithium-Ion Battery Model for Power System Performance Analysis
PublicationThe paper describes a novel approach in battery storage system modelling. Different types of lithium-ion batteries exhibit differences in performance due to the battery anode and cathode materials being the determining factors in the storage system performance. Because of this, the influence of model parameters on the model accuracy can be different for different battery types. These models are used in battery management system...
-
Towards spectroscopic monitoring of photoelectrodes: In-situ Raman photoelectrochemistry of a TiO2/prussian blue photoanode
PublicationHere, novel in-situ Raman photoelectrochemical measurements are performed. The obtained results have proved that it is possible to track the progress of a photoelectrochemical reaction that takes place on a semiconducting electrode using the spectroscopic method. As an exemplary system, the Ti/TiO2/Prussian blue electrode is investigated. Since TiO2 is an n-type semiconductor, it cannot act as an efficient anode in dark conditions....
-
THE ROLE OF THIN FUNCTIONAL LAYERS IN SOLID OXIDE FUEL CELLS
PublicationWidespread commercialization of solid oxide fuel cells requires lowering its cost. It is generally accepted that to lower the cost of solid oxide fuel cells it is necessary to use metal alloys as interconnectors and, consequently, lower its operating temperature to slow down interconnectors degradation. As a result the area specific resistance of the cathodes should be lowered to sustain the performance of the cells. In order to...
-
Effect of interconnect coating procedure on solid oxide fuel cell performance
PublicationChromium (Cr) species vaporizing from chromia-forming alloy interconnects is known as a source of degradation in solid oxide fuel cell (SOFC) stacks called “cathode poisoning”. (Mn,Co)3O4 spinel coatings offer good protection against Cr evaporation during operation. In this study, Crofer 22 APU steel interconnects were electrophoretically deposited in different mediums to obtain high packing of green coating layer. The optimized...
-
Correlation between partial inhibition of hydrogen evolution using thiourea and catalytic activity of AB5-type hydrogen storage alloy towards borohydride electrooxidation
PublicationDirect borohydride fuel cells (DBFCs) are devices which directly convert the chemical energy stored in the borohydride ion and oxidant into electrical energy as a result of redox reactions. Unfortunately, a significant amount of fuel is lost as a result of the undesirable hydrolysis reaction. The selection of an efficient borohydride hydrolysis inhibitor requires detailed knowledge regarding the interaction mechanism between the...
-
Degradation of xylose using a microbial fuel cell
PublicationIt is generally known, that many kind of microorganisms are capable of using carbohydrates as a source of carbon and energy in an environment. The biodegradation process of monosaccharides from pentoses (in this case- racemic mixture of D - and L – xylose) is an immense opportunity for an entire reduction of biological contamination to neutral compounds through MFC. The process is occurred in a single-chamber MFC, which is contained...
-
In situ study of a composition of outlet gases from biogas fuelled Solid Oxide Fuel Cell performed by the Fourier Transform Infrared Spectroscopy
PublicationThe purpose of this study was to develop a method and software based on the Fourier Transform Infrared Spectroscopy for the in-situ, quantitative analysis of the composition of outlet gases from Solid Oxide Fuel Cell (SOFC). The calibration procedure performed at the beginning of the experiment indicated a polynomial dependence between the concentration of a calibrating gas (CO, CO2, CH4) and the corresponding integrated absorbance in...
-
Increasing efficiency of technological process by limiting impact of corrosive environment on operation of spiral classifiers
PublicationMost of the technological operations related to the preparation of the output to be enriched and to the production of the final copper concentrate take place with the use of water environment. Water management, besides using innovative technical and technological solutions, is a significant factor in the whole copper ore enrichment process. Mine water resources and surface water of the tailing pond named "Żelazny Most" are the...
-
High-performance NdSrCo2O5+δ–Ce0.8Gd0.2O2-δ composite cathodes for electrolyte-supported microtubular solid oxide fuel cells
PublicationNdSrCo2O5+δ (NSCO) is a perovskite with an electrical conductivity of 1551.3 S cm−1 at 500 °C and 921.7 S cm−1 at 800 °C and has a metal-like temperature dependence. This perovskite is used as the cathode material for Ce0.8Gd0.2O2-δ (GDC)-supported microtubular solid oxide fuel cells (MT-SOFCs). The MT-SOFCs fabricated in this study consist of a bilayer anode, comprising a NiO–GDC composite layer and a NiO layer, and a NSCO–GDC...
-
Improvement of Oxygen Electrode Performance of Intermediate Temperature Solid Oxide Cells by Spray Pyrolysis Deposited Active Layers
PublicationIntermediate temperature solid oxide fuel cells oxygen electrodes are modified by active interfacial layers. Spray pyrolysis is used to produce thin (≈500 nm) layers of mixed ionic and electronic conductors: Sm0.5Sr0.5CoO3−δ (SSC), La0.6Sr0.4CoO3−δ (LSC), La0.6Sr0.4Co0.2Fe0.8O3−δ (LSCF), and Pr6O11 (PrOx) on the electrode–electrolyte interface. The influence of the annealing temperature on the electrode polarization (area specific...
-
Fluoroaromatic substituents attached to carbon nanotubes help to increase oxygen concentration on biocathode in biosensors and biofuel cells
PublicationBased on the known ability of perfluorodecalin/perfluorohydrocarbons to enhance oxygen solubility we modified oxygen sensitive biocathode by adding perfluorinated components to the catholite. This procedure improved the efficiency of the oxygen sensitive cathodes. Glassy carbon electrodes covered with single-wall carbon nanotubes (SWCNTs) with covalently bonded perfluoroaromatic groups were shown to be more sensitive to oxygen,...
-
Effects of thermal history on the performance of low-temperature solid oxide fuel cells with Sm0.2Ce0.8O2-δ electrolyte and LiNi0.81Co0.15Al0.04O2 electrodes
PublicationIn this study, low-temperature solid oxide fuel cells with an ∼560 μm thick Sm0.2Ce0.8O2−δ (SDC) electrolyte and ∼890 μm thick LiNi0.81Co0.15Al0.04O2−δ (NCAL) electrodes are constructed and characterized under three experimental conditions. The cell with an NCAL cathode pre-reduced under an H2 atmosphere at 550 °C presents the best electrochemical performance. This is ascribed to facts that the reduction reaction generating Ni–Co...
-
Cathodic Protection System of the Spiral Classifier at the KGHM Polska Miedź S.A. Ore Concentration Plant—Case Study of Commissioning and Control of Operating Parameters
PublicationThe project involved designing, constructing and commissioning a cathodic protection system for a selected spiral classifier operating at the KGHM Polska Miedź S.A. Ore Concentration Plant (O/ZWR). The authors developed a concept and assumptions regarding the corrosion protection of a large industrial device using a cathodic protection system with an external power source. Pre-project studies included conducting a trial polarization...
-
SEI Growth and Depth Profiling on ZFO Electrodes by Soft X-Ray Absorption Spectroscopy
PublicationZnFe2O4 (ZFO) Li-ion batteries (LIBs) represent a reliable, affordable, and safe energy storage technology for use in portable application. However, current LIB active materials (graphite, lithium/transition metal spinel or layered oxides, olivine structures) can store only limited energy since they rely on insertion storage based on solid-state host-guest interactions. Moreover, performances and durability of the cells are strongly...
-
Nickel-based catalysts for electrolytic decomposition of ammonia towards hydrogen production
PublicationNickel is an attractive metal for electrochemical applications because it is abundant, cheap, chemically resilient, and catalytically active towards many reactions. Nickel-based materials (metallic nickel, its alloys, oxides, hydroxides, and composites) have been also considered as promising electrocatalysts for ammonia oxidation. The electrolysis of ammonia aqueous solution results in evolution of gaseous hydrogen and nitrogen....
-
Enhanced electrochemical activity of boron-doped nanocarbon functionalized reticulated vitreous carbon structures for water treatment applications
PublicationAn extraordinary charge transfer kinetics and chemical stability make a boron-doped diamond (BDD) a prom- ising material for electrochemical applications including wastewater treatment. Yet, with flat geometrical sur- faces its scaling options are limited. In this study, the reticulated Vitreous Carbon (RVC) served as a substrate for boron-doped diamondized nanocarbons (BDNC) film growth resulting with complex heterogeneity carbon structures...
-
Diamondized carbon nanoarchitectures as electrocatalytic material for sulfate-based oxidizing species electrogeneration
PublicationThe introduction of nanotechnology seems to be an imperative factor to intensify the synergic effects of electrocatalytic materials to produce strong oxidant species or to increase the active sites on their surfaces as well as to enhance the conversion yield in a fuel cell, high-added value products, electrolytic treatment for environmental protection or the detection limit in electroanalysis. Recently, a new type of 3D-diamond...
-
Tuning Electrochemical Performance by Microstructural Optimization of the Nanocrystalline Functional Oxygen Electrode Layer for Solid Oxide Cells
PublicationFurther development of solid oxide fuel cell (SOFC) oxygen electrodes can be achieved through improvements in oxygen electrode design by microstructure miniaturisation alongside nanomaterials implementation. In this work, improved electrochemical performance of an La0.6Sr0.4Co0.2Fe0.8O3-d (LSCF) cathode was achieved by the controlled modification of the La0.6Sr0.4CoO3-d (LSC) nanocrystalline interlayer introduced between a porous...
-
Exsolution of Ni nanoparticles on the surface of cerium and nickel co-doped lanthanum strontium titanate as a new anodic layer for DIR-SOFC. Anti-coking potential and H2S poisoning resistance of the prepared material
PublicationThe aim of this study was to evaluate a new catalytic material for biogas fueled DIR-SOFC. This material was a perovskite-type SrTiO3 doped with La, Ce and Ni of a general formula La0.27Sr0.54Ce0.09Ni0.1Ti0.9O3-σ (LSCNT). Additional preparation steps were undertaken to promote a nickel exsolution process. Heat post-treatment of powders in a humidified H2 resulted in an intensive growth of nickel nanoparticles (NPs) while the temperature...
-
The role of aluminium in metal–organic frameworks derived carbon doped with cobalt in electrocatalytic oxygen evolution reaction
PublicationWater electrolysis is one of the most crucial processes in the development of new energy sources, where ultra-clean fuel is produced - hydrogen. Oxygen evolution reaction (OER) is the sluggish process of overall water splitting. Therefore, this study presents the design, characterization and electrochemical study of cobalt-based electrocatalysts embedded into porous carbons derived from an Al-metal–organic...
-
Influence of the boron doping level on the electrochemical oxidation of the azo dyes at Si/BDD thin film electrodes
PublicationIn this study the efficiency of electrochemical oxidation of aromatic pollutants, such as reactive dyes, at boron-doped diamond on silicon (Si/BDD) electrodes was investigated. The level of [B]/[C] ratio which is effective for the degradation and mineralization of selected aromatic pollutants, and the impact of [B]/[C] ratio on the crystalline structure, layer conductivity and relative sp3/sp2 coefficient of a BDD electrode were...
-
Effects of La0.8Sr0.2MnO3 and Ag electrodes on bismuth-oxide-based low-temperature solid electrolyte oxygen generators
PublicationIn this study, La0.8Sr0.2MnO3 (LSM) was used as the ceramic electrode in a (Bi1.50Y0.50)0.98Zr0.04O3+δ (BYO)-based solid electrolyte oxygen generator (SEOG) and its performance was compared with that of a previously studied high-fire Ag electrode. Among La0.6Sr0.4Co0.2Fe0.8O3, LaNi0.6Fe0.4O3, Cu1.4Mn1.6O4, and LSM materials, only LSM materials did not trigger any chemical reaction or interdiffusion with BYO at temperatures up to...
-
Practical Approach to Large-Scale Electronic Structure Calculations in Electrolyte Solutions via Continuum-Embedded Linear-Scaling Density Functional Theory
PublicationWe present the implementation of a hybrid continuum-atomistic model for including the effects of a surrounding electrolyte in large-scale density functional theory (DFT) calculations within the Order-N Electronic Total Energy Package (ONETEP) linear-scaling DFT code, which allows the simulation of large complex systems such as electrochemical interfaces. The model represents the electrolyte ions as a scalar field and the solvent...
-
Efficiency of pollutants removal from landfill leachates using Nb/BDD and Si/BDD anodic oxidation
PublicationLandfill leachates (LLs) is a complex, refectory and difficult to depurate liquid generated from sanitary landfills. It contains excessive levels of biodegradable and in particular non-biodegradable products (e.g. heavy metals, phenols, sulphide, plasticisers). LLs are among the effluents that may pose major environmental concerns, they can be a dangerous source of pollution e.g. due to infiltration into soil and underlying water....