Filters
total: 354
filtered: 347
Search results for: 2D MATERIALS
-
A critical review on electrospun membranes containing 2D materials for seawater desalination
PublicationElectrospun nanofibers are a cutting-edge class of membranes which have been applied in several molecular separations. These membranes can be well designed and tailored due to the versatility of the electrospinning process. Eminently, electrospun membranes, once implemented in membrane processes, are an alternative in removing salts and some other minerals from water, so-called desalination, for producing drinking water. Such membranes...
-
2D lattice model for fracture in brittle materials
PublicationW artykule przedstawiono wyniki obliczeń propagacji rys w elementach betonowych przy zastosowaniu modelu dyskretnego opartego na ruszcie belkowym. Obliczenia wykonano dla różnych problemów brzegowych.
-
Quenching of bright and dark excitons via deep states in the presence of SRH recombination in 2D monolayer materials
PublicationTwo-dimensional (2D) monolayer materials are interesting systems due to an existence of optically non-active dark excitonic states. In this work, we formulate a theoretical model of an excitonic Auger process which can occur together with the trap-assisted recombination in such 2D structures. The interactions of intravalley excitons (bright and spin-dark ones) and intervalley excitons (momentum-dark ones) with deep states located...
-
Photoluminescence as a probe of phosphorene properties
Publication -
Photoluminescence as a probe of phosphorene properties
PublicationHere, we provide a detailed evaluation of photoluminescence (PL) as a comprehensive tool for phosphorene characterization with the emphasis on a prominent quantitative role of PL in providing fingerprint-like features due to its extreme sensitivity to the band structure details, anisotropy, disorder, external fields, etc. Factors such as number of layers, dimensionality, structural and chemical disorder, and environmental factors...
-
Composite 2D Material-Based Pervaporation Membranes for Liquid Separation: A Review
PublicationToday, chemistry and nanotechnology cover molecular separations in liquid and gas states by aiding in the design of new nano-sized materials. In this regard, the synthesis and application of two-dimensional (2D) nanomaterials are current fields of research in which structurally defined 2D materials are being used in membrane separation either in self-standing membranes or composites with polymer phases. For instance, pervaporation...
-
MXene-based materials for removal of antibiotics and heavy metals from wastewater– a review
PublicationAs a novel family of 2D materials, MXenes provide an extensive variety of applications in water and effluent treatment due to their distinctive properties and attractive applicability, including superior electrical conductivity, higher thermal stability, hydrophilicity, and high sorption-reduction capacity. Their excellent sorption selectivity makes them perfect for removing hazardous contaminants. Currently, MXene-based materials...
-
2D MXene nanocomposites: electrochemical and biomedical applications
PublicationIn recent years, key questions about the interaction of 2D MXene nanomaterials in electrochemical and biomedical applications have been raised. Most research has focused on clarifying the exclusive properties of the materials; however, only limited reports have described the biomedical applications of 2D nanomaterials. 2D MXenes are monolayer atomic nanosheets resulting from MAX phase ceramics. The hydrophilic properties, metallic...
-
Towards large-scale application of nanoporous materials in membranes for separation of energy-relevant gas mixtures
PublicationMembranes containing nanoporous materials (such as zeolites, metal–organic materials and 2D materials such as graphene derivatives) may allow more efficient separation of gas mixtures relevant to emerging energy technologies. For example, such membranes could be applied in the separation of gases containing mixtures of carbon dioxide (CO2) and hydrogen (H2). However, these membranes are currently at a relatively low technology...
-
Anode Materials for Sodium-Ion Battery
PublicationThere is an urgent need to develop a highly efficient, low-cost alternative to the now-ubiquitous lithium-ion batteries (LIBs). A cheaper and less resource-critical sodium-ion battery (NIB) technology has recently gained much attention. Thus, there is also continuous research ongoing on stable, high-capacity anode materials for NIBs. Dependent on the mechanism of the electrochemical reaction, the negative electrode materials can...
-
Reviewing the recent developments of using graphene-based nanosized materials in membrane separations
PublicationAccording to the potentialities of graphene-based materials and their unique physicochemical properties. Such 2D nanomaterials are likely to be the most implemented within the improvement of the selective separations of polymer membranes, together with enhanced physicochemical properties (such as hydrophilicity/hydrophobicity, transport of molecules, mechanical and thermal features, among others). Hence, this review compiles and...
-
Polarization-dependent optical absorption in phosphorene flakes
PublicationThe interest of 2D materials is constantly increasing because of their very attractive mechanical, electrical and optical parameters. They have been used in many applications, e.g. photodetectors, sensors, modulators, insulators. One of the recently discovered 2D materials is phosphorene. In contrast to graphene, phosphorene has a direct bandgap tuned by numbers of layers in the 2D structure. The phosphorene flakes are strongly...
-
Meso‐scale analyses of size effect in brittle materials using DEM
PublicationThe paper describes numerical meso-scale results of a size effect on strength, brittleness and fracture in brittle materials like concrete. The discrete element method (DEM) was used to simulate the size effect during quasi-static splitting tension with the experimental-based meso-structure. The two-dimensional (2D) calculations were carried out on concrete cylindrical specimens with two diameters wherein two different failure...
-
Towards sugar-derived polyamides as environmentally friendly materials
PublicationAs part of our ongoing study investigating isohexide-based polyamides, we have synthesized isosorbide(bis(propan-1-amine)) (DAPIS) and studied its reactivity in the polymerization towards fully biobased polyamides. Polycondensation of nylon salts with various contributions of DAPIS afforded a family of homo- and copolyamides, which were characterized using complementary spectroscopic techniques. The chemical structure of the materials...
-
Weak localization competes with the quantum oscillations in a natural electronic superlattice: The case of Na1.5(PO2)4(WO3)20
PublicationWe report an investigation of the combined structural and electronic properties of the bronze Na1.5(PO2)4(WO3)20. Its low-dimensional structure and possible large reconstruction of the Fermi surface due to charge density wave instability make this bulk material a natural superlattice with a reduced number of carriers and Fermi energy. Signatures of multilayered two-dimensional (2D) electron weak localization are consequently reported,...
-
MXene-based composites for capacitive deionization – The advantages, progress, and their role in desalination - A review
PublicationMXenes, a novel large family of 2D transition metal carbides, carbonitrides and nitrides are currently a “hot topic” in science due to their several fascinating physical and chemical properties. It follows from a rich diversity of their elemental compositions and chemical functionalities. MXenes can form composites with many substances, including polymers or metal oxides, which allows to effective “tune” MXene characteristics to...
-
MXene-based materials as adsorbents, photocatalysts, membranes and sensors for detection and removal of emerging and gaseous pollutants: A comprehensive review
Publication2D materials have garnered significant attention as potential solutions to various environmental challenges. Graphene, molybdenum disulfide, MXenes, and boron nitride have emerged as the most popular candidates among these materials. This article presents a comprehensive review and discussion on the emerging applications of MXenes in environmental engineering. MXenes have demonstrated immense potential as future materials for adsorption...
-
Measurements of the optical and thermal properties of the 2D black phosphorus coating
PublicationBlack phosphorus is a 2D material, which properties are still being discovered. In this paper, the sensitivity to the temperature of a few-layer black phosphorus coating deposited, on the surface of a microsphere-based fiber-optic sensor, by a dip-coating method is presented. The coating was investigated after 2, 3, and 5 deposition cycles and during temperature growth from 50 °C to 300 °C in an interferometric setup. The intensity...
-
The effect of PEDOT morphology on hexavalent chromium reduction over 2D TiO2/PEDOT photocatalyst under UV–vis light
PublicationThe present study represents an approach to apply organic-inorganic hybrid materials for photocatalytic removal of heavy metals from the aqueous environment. The photocatalytic activity of the semiconductor modified with the conjugated polymer may depends on the conjugated polymer type, its amount and morphology. Therefore, in the present study the effect of poly (3, 4-ethylenedioxythiophene) (PEDOT) morphology on adsorption and photoreduction...
-
Adsorption onto zeolites: molecular perspective
Publication2D minerals are among key elements of advanced systems, but the need for understanding their interactions/reactions with materials and systems in which they are involved necessitates tracking their molecular and atomic monitoring. Zeolitic structures are microporous materials formed in the nature through volcanic activities or synthesis. Because of their outstanding physicochemical properties like cation exchange capacity and excellent...
-
Fracture Energy of Bonded Joints with 2D Elastic Adhesive Layer
PublicationWhen bonded joint is subjected to mode I fracture loading, the adhesive joints analytical solutions treats the adhesive layer, usually, as not existing or 1D Hooke elastic layer. In the case of 1D elastic layer, represented as Hookes spring element, is acting, only, in direction contrary to the applied load. Basing on the information yielded from sensitive laser profilometry technique, where deflections of bonded part of the joint...
-
Challenges and future prospectives of MXenes
PublicationIn the context of nanotechnology, MXenes gained considerable attention as two-dimensional (2D) materials derived from layered transition metal carbides, nitrides, and carbonitrides. These materials display distinct characteristics with promising implications for a variety of practical applications. This book chapter provides an extensive exploration into MXenes’ fundamental concepts, such as how they are classified based on various...
-
Room temperature depinning of the charge-density waves in quasi-two-dimensional 1T-TaS2 devices
PublicationWe report on the depinning of nearly commensurate charge-density waves in 1T-TaS2 thin films at room temperature. A combination of the differential current–voltage measurements with the low-frequency noise spectroscopy provides unambiguous means for detecting the depinning threshold field in quasi-2D materials. The depinning process in 1T-TaS2 is not accompanied by an observable abrupt increase in electric current—in striking contrast...
-
Influence of the grains shape on the mechanical behavior of granular materials
PublicationDiscrete Element Method is a numerical method suitable for modeling geotechnical problems concerning granular media. In most cases simple forms of grains, like discs or spheres, are used. But these shapes are capable of soil behavior modeling up to a certain point only, they cannot reflect all of the features of the medium (large shear resistance and large volumetric change). In order to reflect the complex behavior of the real...
-
Two-Dimensional CrCl3-Layered Trihalide Nanoflake Sensor for the Detection of Humidity, NO2, and H2
PublicationThis study demonstrates that few-layer two-dimensional (2D) CrCl3 transition-metal trihalides (TMTHs; MX3, where M = Ti, V, Cr, Mo, Fe, Ru, and X = Cl, Br, or I) exhibit promising capabilities as chemoresistive sensors for humidity and NO2, H2, and NH3 gases, representing suitable 2D interfaces for gas-sensing applications. Liquid-phase-exfoliated 2D-CrCl3 flakes spin-coated over interdigital substrates exhibit higher chemical...
-
Influence of grain shape on the mechanical behaviour of granular materials
PublicationWe performed series of numerical vertical compression tests on assemblies of 2D granular material using a Discrete Element code and studied the results in regard to the grain shape. The samples consist of 5000 grains made either of 3 overlapping discs (clump - grain with concavities) or of six-edged polygons (convex grain). These two types of grains have a similar external envelope, ruled with a geometrical parameter α. In the...
-
Polaronic and Mott insulating phase of layered magnetic vanadium trihalide VCl3
PublicationTwo-dimensional (2D) van der Waals (vdW) magnetic 3d-transition metal trihalides are a new class of functional materials showing exotic physical properties useful for spintronic and memory storage applications. In this article, we report the synthesis and electromagnetic characterization of single-crystalline vanadium trichloride, VCl 3 , a novel 2D layered vdW Mott insulator, which has a rhombohedral structure (R3, No. 148) at...
-
The influence of amorphous macrodiol, diisocyanate type and l-ascorbic acid modifier on chemical structure, morphology and degradation behavior of polyurethanes for tissue scaffolds fabrication
PublicationStudies described in this work were related to the bulk synthesis and characterization of polyurethanes (PURs) obtained with the use of cyclic 4,4′-methylene bis(cyclohexyl isocyanate) (HMDI) or linear 1,6-hexamethylene diisocyanate (HDI), amorphous α,ω-dihydroxy(ethylene-butylene adipate) macrodiol (PEBA), 1,4-butandiol (BDO) chain extender and dibutyltin dilaurate (DBTDL) catalyst. Obtained PURs were modified with l-ascorbic...
-
Electrochemical synthesis of 2D copper coordination-polymers: Layer-stacking deviation induced by the solvent and its effect on the adsorptive properties
PublicationA 2D Cu-based Metal-Organic Framework (MOF), namely copper-terephthalate (Cu(1,4-BDC)), was successfully synthesized by electrochemical method for effective methylene blue (MB) sorption from aqueous solutions. The composition, morphology, and the presence of functional groups in the obtained material were verified by Fourier Transform Infrared spectroscopy (FTIR), Powder X-Ray Diffraction (PXRD), Thermal (TGA), and Elemental (EA)...
-
MXenes Antibacterial Properties and Applications: A Review and Perspective
PublicationThe mutations of bacteria due to the excessive use of antibiotics, and generation of antibiotic-resistant bacteria have made the development of new antibacterial compounds a necessity. MXenes have emerged as biocompatible transition metal carbide structures with extensive biomedical applications. This is related to the MXenes’ unique combination of properties, including multifarious elemental compositions, 2D-layered structure,...
-
Theoretical examination of the fracture behavior of BC3 polycrystalline nanosheets: Effect of crack size and temperature
Publication2D carbon graphene nanostructures are elements of advanced materials and systems. This theoretical survey provides explanation to the mechanical and fracture behavior of mono- and polycrystalline BC3 nanosheets (denoted as MC- and PCBC3NS, respectively) as a function of temperature and the type of crack defects. The mechanical performance of PCBC3NS at elevated temperatures was monitored varying the number of grain boundaries (the...
-
Synthesis and structural characterization of bio-based bis(cyclic carbonate)s for the preparation of non-isocyanate polyurethanes
PublicationBio-based cyclic carbonates are of significant research interest as monomers for non-isocyanate polyurethane (NIPU) synthesis. This research describes the synthesis of a series of five-membered bis(cyclic carbonate)s using bio-based polyether polyols (PO3G) with different molecular weights (250, 650 and 1000 g mol−1) and carbon dioxide as green feedstocks. The utilization of CO2 as a source of carbon in the chemical reaction is...
-
Spin and Orbital Effects on Asymmetric Exchange Interaction in Polar Magnets: M(IO3)2 (M = Cu and Mn)
PublicationMagnetic polar materials feature an astonishing range of physical properties, such as magnetoelectric coupling, chiral spin textures, and related new spin topology physics. This is primarily attributable to their lack of space inversion symmetry in conjunction with unpaired electrons, potentially facilitating an asymmetric Dzyaloshinskii–Moriya (DM) exchange interaction supported by spin–orbital and electron–lattice coupling. However,...
-
Determination of magnetisation conditions in a Double-Core Barkhausen Noise measurement set-up
PublicationThe magnetic Barkhausen effect is useful forassessing 1D and 2D stress states of ferromagnetic steelobjects. However, its extension to technically importantmaterials, such as duplex anisotropic steels, remains challenging. The determination of magnetisation inside the studied object and the electromagnet for various geometries, materials and magnetisation angles is a key issue.Three-dimensional, dynamic finite element analysis...
-
AlP compound and P-doping for promotion of electrocatalytic activity of N-doped carbon derived from metal-organic framework
PublicationWater splitting plays a key role in future fuels, where two processes occur - the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER). Nitrogen-doped carbon derived from...
-
An Open Platform Tool for 2D Multipactor Simulations in Metallic Microwave Components
PublicationThe paper presents a computer simulation software aimed at assessing the multipactor threshold power in a rectangular waveguide working with single tone excitation. Initial tests demonstrate a strong agreement between the simulation results obtained and those from commercial software. Contrary to the existing commercial software, our tool will be provided as Open Platform, for free use and popularisation of knowledge about physical...
-
Applying molecular dynamics simulation to take the fracture fingerprint of polycrystalline SiC nanosheets
PublicationGraphene-like nanosheets are the key elements of advanced materials and systems. The mechanical behavior of the structurally perfect 2D nanostructures is well documented, but that of polycrystalline ones is less understood. Herein, we applied molecular dynamics simulation (MDS) to take the fracture fingerprint of polycrystalline SiC nanosheets (PSiCNS), where monocrystalline SiC nanosheets (MSiCNS) was the reference nanosheet....
-
Representative volume element in 2D for disks and in 3D for balls
Publication -
Graphene oxide aerogels for adsorptive separation of aromatic hydrocarbons and cycloalkanes
PublicationEfficient separation of benzene and cyclohexane has critical importance for production of commodity chemicals, and is one of the most challenging separations in the industry. Physisorption by recyclable, porous solids has a significant potential in substituting energy-intensive azeotropic or extractive distillation methods. Reduced graphene oxide aerogels (rGOAs) are emerging materials holding great promise for connecting unique...
-
Contact with coupled adhesion and friction: Computational framework, applications, and new insights
PublicationContact involving soft materials often combines dry adhesion, sliding friction, and large deformations. At the local level, these three aspects are rarely captured simultaneously, but included in the theoretical models by Mergel et al., (2019). We here develop a corresponding finite element framework that captures 3D finite-strain contact of two deformable bodies. This framework is suitable to investigate sliding friction even...
-
Numerical modelling of asymetric double-layer Al-Cu plate rolling process
PublicationNiekorzystnym zjawiskiem towarzyszącym procesom walcowania płaskich wyrobów bimetalowych jest krzywizna pasma na wyjściu z kotliny walcowniczej wynikająca z nierównomierności odkształcenia warstw bimetalowej blachy. Możliwość szybkiego i łatwego przeciwdziałania temu zjawisku daje wprowadzenie asymetrii prędkości bądź średnic walców roboczych. W przedstawionym artykule zaprezentowano badania komputerowe procesu walcowania blach...
-
Thermostability and photophysical properties of mixed-ligand carboxylate/benzimidazole Zn(II)-coordination polymers
PublicationThe reaction between Zn(NO3)2*6H2O or Zn(CH3COO)2*2H2O and isophthalic acid (1,3-H2bdc) in the presence of benzimidazole (Hbzim) in dimethylformamide (DMF)/ethanol (EtOH)/H2O solvent mixture at room temperature yielded two structurally different coordination polymers: [Zn2(1,3-bdc)2(Hbzim)2] (1) and [Zn2(1,3-bdc)(bzim)2] (2). (1) is a 2D-layered framework with a molecule of benzimidazole coordinated to the Zn center, whereas (2)...
-
A new open-source software developed for numerical simulations usingdiscrete modeling methods
PublicationThe purpose of this work is to present the development of an open-source software based on a discrete description of matter applied to study the behavior of geomaterials. This software uses Object Oriented Programming techniques, and its methodology design uses three different methods, which are the Discrete Element Method (DEM) [F. Donzé, S.A. Magnier, Formulation of a three-dimensional numerical model of brittle behavior, Geophys....
-
A benchmark for particle shape dependence
PublicationParticle shape is a major parameter for the space-filling and strength properties of granular materials. For a systematic investigation of shape effect, a numerical benchmark test was set up within a collaborative group using different numerical methods and particles of various shape characteristics such as elongation, angularity and nonconvexity. Extensive 2D shear simulations were performed in this framework and the shear strength...
-
Quantification of Asphalt Mixture Interlocking Utilizing 2D and 3D Image Processing
Publication -
A facile approach to fabricate load-bearing porous polymer scaffolds for bone tissue engineering
PublicationBiodegradable porous scaffolds with oriented interconnected pores and high mechanical are load-bearing biomaterials for bone tissue engineering. Herein, we report a simple, non-toxic, and cost-effective method to fabricate high-strength porous biodegradable scaffolds, composed of a polymer matrix of polycaprolactone (PCL) and water-soluble poly (ethylene oxide) (PEO) as a sacrificial material by integrating annealing treatment,...
-
In situ transformation boosts the pseudocapacitance of CuNi-MOF via cooperative orientational and electronic governing
PublicationThe disordered arrangement and thereof inferior conductivity of 2D MOF sheets seriously hinder their practical application. Herein, we propose in situ transformation strategy to architect vertically oriented bimetallic CuNi-MOF as a self-supporting electrode, leading to a decuple high specific capacitance of 1262 C g-1 in comparison with the pristine Ni-MOF powder of 114 C g-1 at 2 A g-1. DFT calculations reveal that introduction...
-
Chiral analysis of chloro intermediates of methylamphetamine by one-dimensional and multidementional NMR and GC/MS
PublicationImpurity profiling and classification of abused drugs using chiral analytical techniques is of particular interest and importance because of the additional information obtained fromthis approach. When these methods are applied to the synthesis of illicitly used substances, they can supply valuable information about the conditions/chemicals used in the synthesis. We have applied GC and NMR methods to the study of intermediates found...
-
Mechanical exfoliation and layer number identification of single crystal monoclinic CrCl3
PublicationAfter the recent finding that CrI3, displays ferromagnetic order down to its monolayer, extensive studies have followed to pursue new two-dimensional (2D) magnetic materials. In this article, we report on the growth of single crystal CrCl3 in the layered monoclinic phase. The system after mechanical exfoliation exhibits stability in ambient air (the degradation occurs on a time scale at least four orders of magnitude longer than...
-
Dobór cech elementu skończonego do wyznaczania naprężeń w tkance kostnej
PublicationBadania dotyczące obliczeń metodą elementów skończonych dla tkanki kostnej często wykorzystują metodologię budowy maszyn, gdzie używa się materiałów konstrukcyjnych o jednolitych właściwościach. Rzadko uwzględniają zróżnicowanie modułu Younga w obszarze elementów skończonych, gdzie informacje o rozkładzie sztywności tkanki pochodzą z obrazów tomograficznych. Celem pracy jest opracowanie metody modelowania tkanki kostnej uwzględniającej...