Filters
total: 49
filtered: 46
Chosen catalog filters
Search results for: tissue scaffolds
-
Polyester-urethanes modified with gelatine for tissue scaffolds
PublicationNovel aliphatic PU foams, modified with gelatine, were obtained in a one-step polymerization process. Hard segments were obtained from 1,6-hexamethylene diisocyanate (HDI) and chain extenders 1,4-butanediol (BDO) or 2-(2-(2-hydroxyethoxy)ethoxy)ethanol (TG), soft segments were obtained from poly(ethylene-buthylene adipate) (EBO) polyol. We examined the PU foams for their sorption capability in canola oil, saline (0.9% NaCl water...
-
Polyurethane porous scaffolds (PPS) for soft tissue regenerative medicine applications
PublicationTissue engineering requires suitable polymeric scaffolds, which act as a physical support for regenerated tissue. A promising candidate might be polyurethane (PUR) scaffold, due to the ease of the PUR properties design, which can be adjusted directly to the intended purpose. In this study, we report a successful fabrication of porous polyurethane scaffolds (PPS) using solvent casting/particulate leaching technique combined with...
-
The Influence of Calcium Glycerophosphate (GPCa) Modifier on Physicochemical, Mechanical, and Biological Performance of Polyurethanes Applicable as Biomaterials for Bone Tissue Scaffolds Fabrication
PublicationIn this paper we describe the synthesis of poly(ester ether urethane)s (PEEURs) by using selected raw materials to reach a biocompatible polyurethane (PU) for biomedical applications. PEEURs were synthesized by using aliphatic 1,6-hexamethylene diisocyanate (HDI), poly(ethylene glycol) (PEG), α,ω-dihydroxy(ethylene-butylene adipate) (Polios), 1,4-butanediol (BDO) as a chain extender and calcium glycerolphosphate salt (GPCa) as...
-
The characterization of collagen‑based scaffolds modified with phenolic acids for tissue engineering application
PublicationThe aim of the experiment was to study the morphology of collagen-based scaffolds modified by caffeic acid, ferulic acid, and gallic acid, their swelling, and degradation rate, as well as the biological properties of scaffolds, such as antioxidant activity, hemo- and cytocompatibility, histological observation, and antibacterial properties. Scaffolds based on collagen with phenolic acid showed higher swelling rate and enzymatic...
-
The influence of amorphous macrodiol, diisocyanate type and l-ascorbic acid modifier on chemical structure, morphology and degradation behavior of polyurethanes for tissue scaffolds fabrication
PublicationStudies described in this work were related to the bulk synthesis and characterization of polyurethanes (PURs) obtained with the use of cyclic 4,4′-methylene bis(cyclohexyl isocyanate) (HMDI) or linear 1,6-hexamethylene diisocyanate (HDI), amorphous α,ω-dihydroxy(ethylene-butylene adipate) macrodiol (PEBA), 1,4-butandiol (BDO) chain extender and dibutyltin dilaurate (DBTDL) catalyst. Obtained PURs were modified with l-ascorbic...
-
A facile approach to fabricate load-bearing porous polymer scaffolds for bone tissue engineering
PublicationBiodegradable porous scaffolds with oriented interconnected pores and high mechanical are load-bearing biomaterials for bone tissue engineering. Herein, we report a simple, non-toxic, and cost-effective method to fabricate high-strength porous biodegradable scaffolds, composed of a polymer matrix of polycaprolactone (PCL) and water-soluble poly (ethylene oxide) (PEO) as a sacrificial material by integrating annealing treatment,...
-
Silk Fibroin/Collagen/Chitosan Scaffolds Cross-Linked by a Glyoxal Solution as Biomaterials toward Bone Tissue Regeneration
Publication -
Biomaterials with Potential Use in Bone Tissue Regeneration—Collagen/Chitosan/Silk Fibroin Scaffolds Cross-Linked by EDC/NHS
Publication -
Porosity and swelling properties of novel polyurethane–ascorbic acid scaffolds prepared by different procedures for potential use in bone tissue engineering
PublicationIn this work, a novel polyurethane (PU) system based on poly(ethylene-butylene) adipate diol, 1,6-hexamethylene diisocyanate, 1,4-butanediol, and ascorbic acid was used to prepare scaffolds with potential applications in bone tissue engineering. Two fabrication methods to obtain porous materials were chosen: phase separation (PS)/salt particle leaching (PL) and solvent casting (SC)/salt PL. The calculated porosity demonstrated...
-
Improving osteoblasts cells proliferation via femtosecond laser surface modification of 3D-printed poly-ε-caprolactone scaffolds for bone tissue engineering applications
Publication -
Fabrication of polyurethane and polyurethane based composite fibers by the electrospinning technique for soft tissue engineering of cardiovascular system
PublicationElectrospinning is the unique technique, which provides forming of polymeric scaffolds for soft tissue engineering, which include tissue scaffolds for soft tissues of cardiovascular system. Such artificial soft tissues of cardiovascular system may possess mechanical properties comparable to native vascular tissues. Electrospinning technique gives the opportu nity to form fibres with nm- to μm-scale in diameter. The arrangement...
-
Polyurethane Composite Scaffolds Modified with the Mixture of Gelatin and Hydroxyapatite Characterized by Improved Calcium Deposition
PublicationThe skeleton is a crucial element of the motion system in the human body, whose main function is to support and protect the soft tissues. Furthermore, the elements of the skeleton act as a storage place for minerals and participate in the production of red blood cells. The bone tissue includes the craniomaxillofacial bones, ribs, and spine. There are abundant reports in the literature indicating that the amount of treatments related...
-
A review: Fabrication of porous polyurethane scaffolds
PublicationThe aim of tissue engineering is the fabrication of three-dimensional scaffolds that can be used for the reconstruction and regeneration of damaged or deformed tissues and organs. A wide variety of techniques have been developed to create either fibrous or porous scaffolds from polymers, metals, composite materials and ceramics. However, the most promising materials are biodegradable polymers due to their comprehensive mechanical...
-
Green Polymer Nanocomposites for Skin Tissue Engineering
PublicationFabrication of an appropriate skin scaffold needs to meet several standards related to the mechanical and biological properties. Fully natural/green scaffolds with acceptable biodegradability, biocompatibility, and physiological properties quite often suffer from poor mechanical properties. Therefore, for appropriate skin tissue engineering and to mimic the real functions, we need to use synthetic polymers and/or additives as complements...
-
Polyurethanes modified with natural polymers for medical application. Part II. Polyurethane/gelatin, polyurethane/starch, polyurethane/cellulose
PublicationThis paper is a literature overview of biomedical PUR modifications with natural polymers such as starch, cellulose and gelatin. Properties like biodegradability and biocompatibility of modified PUR cause that these materials may be used as wound dressings, tissue scaffolds, tissue implants and also vascular grafts.
-
Novel Research on Biomedical Polyurethanes
PublicationThe variety of mechanical properties characterizes properly designed PURs. They may be biocompatible and reveal compatibility with blood, making them attractive materials for the fabrication of tissue scaffolds; however, like all synthetic materials, PURs don’t reveal sufficient biocompatibility. PURs may undergo certain chemical modifications (e.g., 1,4:3,6-dianhydro-D-sorbitol, ascorbic acid (AA), growth factors, covering with...
-
Marine polymers in tissue bioprinting: Current achievements and challenges
PublicationBioprinting has a critical role in tissue engineering, allowing the creation of sophisticated cellular scaffolds with high resolution, shape fidelity, and cell viability. Achieving these parameters remains a challenge, necessitating bioinks that are biocompatible, printable, and biodegradable. This review highlights the potential of marine-derived polymers and crosslinking techniques including mammalian collagen and gelatin along...
-
The Influence of PEG on Morphology of Polyurethane Tissue Scaffold
PublicationIn this study, polyurethanes (PU) were synthesized from oligomeric dihydroxy(etylene-butylene adipate), poly(ethylene glycol) (PEG), hexamethylene diisocyanate (HDI), 1,4-butanediol (BDO) as chain extender and stannous octoate as catalyst. PEG due to its hydrophilic character influences physical and chemical properties of PU. For testing were used PU having the following weigh contents of PEG: 0%, 7%, and 14%. Porous scaffolds...
-
ASCORBIC ACID IN POLYURETHANE SYSTEMS FOR TISSUE ENGINEERING
PublicationThe introduction of the paper was devoted to the main items of tissue engineering (TE) and the way of porous structure obtaining as scaffolds. Furthermore, the significant role of the scaffold design in TE was described. It was shown, that properly designed polyurethanes (PURs) find application in TE due to the proper physicochemical, mechanical and biological properties. Then the use of L-ascorbic acid (L-AA) in PUR systems for...
-
Comparative review of piezoelectric biomaterials approach for bone tissue engineering
PublicationBone as a minerals’ reservoir and rigid tissue of the body generating red and white blood cells supports various organs. Although the self-regeneration property of bone, it cannot regenerate spontaneously in severe damages and still remains as a challenging issue. Tissue engineering offers several techniques for regenerating damaged bones, where various biomaterials are examined to fabricate scaffolds for bone repair. Piezoelectric...
-
Biopolymer-based composites for tissue engineering applications: A basis for future opportunities
PublicationBiomimetic scaffolds supporting tissue regeneration are complex materials with multifunctional characteristics. The unique biocompatibility and biodegradability of biopolymers make them excellent candidates for tissue engineering and regenerative medicine. Biopolymers, which have a wide range of properties, can be obtained from different natural sources. Depending on the target tissue, biopolymers can be engineered to meet a series...
-
Chitosan-protein scaffolds loaded with lysostaphin as potential antistaphylococcal wound dressing materials.
PublicationAIMS: The development of technology for preparing chitosan-protein scaffolds loaded with lysostaphin, which potentially could be used as dressing for wound treatment and soft tissue infections caused by Staphylococcus aureus. METHODS AND RESULTS: The unique technology of chitosan solubilization using gaseous CO(2) instead of organic or inorganic acids was used for the incorporation of lysostaphin, the enzyme that exhibits bactericidal...
-
Ciprofloxacin-modified degradable hybrid polyurethane-polylactide porous scaffolds developed for potential use as an antibacterial scaffold for regeneration of skin
PublicationThe aim of the performed study was to fabricate an antibacterial and degradable scaffold that may be used in the field of skin regeneration. To reach the degradation criterion for the biocompatible polyurethane (PUR), obtained by using amorphous α,ω-dihydroxy(ethylene-butylene adipate) macrodiol (PEBA), was used and processed with so-called “fast-degradable” polymer polylactide (PLA) (5 or 10 wt %). To meet the antibacterial requirement...
-
Mathematical approach to design 3D scaffolds for the 3D printable bone implant
PublicationThis work demonstrates that an artificial scaffold structure can be designed to exhibit mechanical properties close to the ones of real bone tissue, thus highly reducing the stress-shielding phenomenon. In this study the scan of lumbar vertebra fragment was reproduced to create a numerical 3D model (this model was called the reference bone sample). New nine 3D scaffold samples were designed and their numerical models were created....
-
Polyurethanes modified with natural polymers for medical application. I. Polyurethanes/ Chitosan and polyurethane/collagen.
PublicationFor over three decades polyurethanes (PUR or PU) have been reported for application in a variety of medical devices. These polymers consist of hard and soft segments, which allow for more subtle control of their structure and properties. By varying the composition of the different segments, properties of PURcan be tuned up for use in many areas of medicine. Recently there is a great interest in modification of biomedical PUR with...
-
Application of 3D- printed hydrogels in wound healing and regenerative medicine
PublicationHydrogels are three-dimensional polymer networks with hydrophilic properties. The modifiable properties of hydrogels and the structure resembling living tissue allow their versatile application. Therefore, increasing attention is focused on the use of hydrogels as bioinks for three-dimensional (3D) printing in tissue engineering. Bioprinting involves the fabrication of complex structures from several types of materials, cells,...
-
Structural and Material Determinants Influencing the Behavior of Porous Ti and Its Alloys Made by Additive Manufacturing Techniques for Biomedical Applications
PublicationOne of the biggest challenges in tissue engineering is the manufacturing of porous structures that are customized in size and shape and that mimic natural bone structure. Additive manufacturing is known as a sufficient method to produce 3D porous structures used as bone substitutes in large segmental bone defects. The literature indicates that the mechanical and biological properties of scaffolds highly depend on geometrical features...
-
Biomechanical properties of 3D-printed bone models
PublicationBone lesions resulting from large traumas or cancer resections can be successfully treated by directly using synthetic materials or in combination with tissue engineering methods (hybrid). Synthetic or hybrid materials combined with bone tissue’s natural ability for regeneration and biological adaptation to the directions of loading, allow for full recovery of its biological functions. Increasing interest in new production methods...
-
Polylysine for Skin Regeneration: A Review of Recent Advances and Perspectives
PublicationThere have been several attempts to find promising biomaterials for skin regeneration, among which polylysine (a homopolypeptide) has shown benefits in the regeneration and treatment of skin disorders. This class of biomaterials has shown exceptional abilities due to their macromolecular structure. Polylysine-based biomaterials can not only be used as tissue engineering scaffolds for skin regeneration, but also as drug carriers...
-
Modifiers for Medical Grade Polymeric Systems used in FDM 3D Printing - Short Review
PublicationFDM 3D printing could find an application in the wide range of biomedical applications. Unfortunately, the quantity of polymeric biomaterials suitable to processing into filaments is limited. The most frequently used biomaterials for medical constructs such as bone grafts, soft tissue scaffolds or another DDS include PCL, PLA, PVA, HPC, EVA copolymer, EC and TPUs. Various modifiers such as TCP, HA, TEC, MMC could be applicated...
-
From Bioink to Tissue: Exploring Chitosan-Agarose Composite in the Context of Printability and Cellular Behaviour
PublicationThis study presents an innovative method for producing thermosensitive bioink from chitosan hydrogels saturated with carbon dioxide and agarose. It focuses on a detailed characterisation of their physicochemical properties and potential applications in biomedicine and tissue engineering. The ORO test approved the rapid regeneration of the three-dimensional structure of chitosan–agarose composites in a unidirectional bench press...
-
Degradable poly(ester-ether) urethanes of improved surface calcium deposition developed as novel biomaterials
PublicationBones, which are considered as hard tissues, work as scaffold for human body. They provide physical support for muscles and protect intestinal organs. Percentage of hard tissues in human body depends on age, weight, and gender. Human skeleton consists of 206 connected bones. Therefore, it is natural that the hard-tissue damage such as fractures, osteoporosis, and congenital lack of bone may appear. The innovative way of bone healing...
-
Development of polyurethanes for bone repair
PublicationThe purpose of this paper is to review recent developments on polyurethanes aimed at the design, synthesis, modifications, and biological properties in the field of bone tissue engineering. Different polyurethane systems are presented and discussed in terms of biodegradation, biocompatibility and bioactivity. A comprehensive discussion is provided of the influence of hard to soft segments ratio, catalysts, stiffness and hydrophilicity...
-
Thermal and mechanical properties of polyurethanes modified with L-ascorbic acid
PublicationIn this study we report the thermal and mechanical properties of polyurethanes modified with ascorbic acid (AA). Ascorbic acid was used as a modifier at concentration of 1 or 2 mass%. The antioxidative properties of AA may improve the biocompatibility of the obtained materials, which were designed for biomedical applications. In this paper we describe characterization of obtained unmodified and ascorbic acid modified polyurethanes...
-
3D porous graphene-based structures- synthesis and applications
PublicationPorous carbon-based materials are of the great industrial and academic interest due to their high surface area, low density, good electrical conductivity, chemical inertness and low cost of fabrication. Up to now, the main approach to obtain porous carbon structures has involved the pyrolysis of carbonaceous natural or synthetic precursors. After the isolation of graphene, the interest in 3D porous graphene-based structures (called...
-
Bacterial cellulose in the field of wound healing and regenerative medicine of skin: recent trends and future prospectives
PublicationIn this overview, we focused on the bacterial cellulose (BC) applications, described in recently published scientific papers, in the field of skin regenerative medicine and wound care industry. Bacterial cellulose was proven to be biocompatible with living tissues. Moreover, its mechanical properties and porous structure are considered to be suitable for biomedical applications. It is due to the fact that porous structure of bacterial...
-
REVIEW OF CURRENT RESEARCH ON CHITOSAN AS A RAW MATERIAL IN THREE-DIMENSIONAL PRINTING TECHNOLOGY IN BIOMEDICAL APPLICATIONS
PublicationThree-dimensional (3D) biomaterial manufacturing strategies show an extraordinary driving force for the development of innovative solutions in the biomedical sector, including drug delivery systems, disease modelling and tissue and organ engineering. Due to its remarkable and promising biological and structural properties, chitosan has been widely studied for decades in several potential applications in the biomedical field. However,...
-
Chitosan-based inks for 3D printing and bioprinting
PublicationThe advent of 3D-printing/additive manufacturing in biomedical engineering field has introduced great potential for the preparation of 3D structures that can mimic native tissues. This technology has accelerated the progress in numerous areas of regenerative medicine, especially led to a big wave of biomimetic functional scaffold developments for tissue engineering demands. In recent years, the introduction of smart bio-inks has...
-
Release systems based on self-assembling RADA16-I hydrogels with a signal sequence which improves wound healing processes
PublicationSelf-assembling peptides can be used for the regeneration of severely damaged skin. They can act as scaffolds for skin cells and as a reservoir of active compounds, to accelerate scarless wound healing. To overcome repeated administration of peptides which accelerate healing, we report development of three new peptide biomaterials based on the RADA16-I hydrogel functionalized with a sequence (AAPV) cleaved by human neutrophil elastase...
-
Preparation, characterization, and manufacturing of new polymeric materials for 3D printing for medical applications
PublicationThis work concerns the synthesis, formation, and characteristics of new filaments for 3D printing in FDM™/FFF technology for medical purposes. Two types of filaments were developed, i.e. degradable polyurethane and biodegradable polylactide-starch. The influence of the 3D printing process on selected filament properties was investigated. A detailed analysis of the filament formation process by the extrusion method was carried out,...
-
Experimental study on the effect of selected sterilization methods on mechanical properties of polylactide FFF specimens
PublicationPurpose: Biodegradable polymers are widely used in personalized medical devices or scaffolds for tissue engineering. The manufacturing process should be finished with sterilization procedure. However, it is not clear how the different sterilization methods have an impact on the mechanical strength of the three-dimensional (3D)-printed parts, such as bone models or personalized mechanical devices. This paper aims to present the...
-
Functionalized Peptide Fibrils as a Scaffold for Active Substances in Wound Healing
PublicationTechnological developments in the field of biologically active peptide applications in medicine have increased the need for new methods for peptide delivery. The disadvantage of peptides as drugs is their low biological stability. Recently, great attention has been paid to self-assembling peptides that can form fibrils. Such a formulation makes bioactive peptides more resistant to enzymatic degradation and druggable. Peptide fibrils...
-
Titania Nanofiber Scaffolds with Enhanced Biointegration Activity—Preliminary In Vitro Studies
PublicationThe increasing need for novel bone replacement materials has been driving numerous studies on modifying their surface to stimulate osteogenic cells expansion and to accelerate bone tissue regeneration. The goal of the presented study was to optimize the production of titania-based bioactive materials with high porosity and defined nanostructure, which supports the cell viability and growth. We have chosen to our experiments TiO2...
-
Qualitative analysis of phospholipids and their oxidised derivatives – used techniques and examples of their applications related to lipidomic research and food analysis
PublicationPhospholipids (PLs) are important biomolecules that not only constitute structural building blocks and scaffolds of cell and organelle membranes, but also play a vital role in cell biochemistry and physiology. Moreover, dietary exogenous PLs are characterized by high nutritional value and other beneficial health effects, which are confirmed by numerous epidemiological studies. For this reason, PLs are of high interest in lipidomics...
-
Keratin-Butyrate Scaffolds Promote Skin Wound Healing in Diabetic Rats Through Down-Regulation of IL-1β and Up-Regulation of Keratins 16 and 17
PublicationImpaired wound healing particularly in diabetics creates a significant healthcare burden. The study aimed to evaluate the effect of keratin-butyrate fibers (FKDP +0.1%NaBu) in a full-thickness skin wound model in 30 diabetic rats. Physicochemical examination showed that the obtained dressing possesses a heterogeneous structure and butyrate was slowly released into the wound. Moreover, the obtained dressing is nontoxic and supports...
-
Processing of Polyester-Urethane Filament and Characterization of FFF 3D Printed Elastic Porous Structures with Potential in Cancellous Bone Tissue Engineering
PublicationThis paper addresses the potential of self-made polyester-urethane filament as a candidate for Fused Filament Fabrication (FFF)-based 3D printing (3DP) in medical applications. Since the industry does not provide many ready-made solutions of medical-grade polyurethane filaments, we undertook research aimed at presenting the process of thermoplastic polyurethane (TPU) filament formation, detailed characteristics, and 3DP of specially...