Filters
total: 10514
-
Catalog
- Publications 9494 available results
- Journals 69 available results
- Conferences 18 available results
- People 116 available results
- Inventions 2 available results
- Projects 12 available results
- Laboratories 1 available results
- Research Teams 2 available results
- e-Learning Courses 77 available results
- Events 7 available results
- Open Research Data 716 available results
displaying 1000 best results Help
Search results for: BIO-BASED POLYURETHANE
-
Medical-Grade PCL Based Polyurethane System for FDM 3D Printing—Characterization and Fabrication
PublicationThe widespread use of three-dimensional (3D) printing technologies in medicine has contributed to the increased demand for 3D printing materials. In addition, new printing materials that are appearing in the industry do not provide a detailed material characterization. In this paper, we present the synthesis and characterization of polycaprolactone (PCL) based medical-grade thermoplastic polyurethanes, which are suitable for forming...
-
Polyurethane based hybrid ciprofloxacin-releasing wound dressings designed for skin engineering purpose
PublicationPurpose Even in the 21st century, chronic wounds still pose a major challenge due to potentially inappropriate treatment options, so the latest wound dressings are hybrid systems that enable clinical management, such as a hybrid of hydrogels, antibiotics and polymers. These wound dressings are mainly used for chronic and complex wounds, which can easily be infected by bacteria. Materials and methods Six Composite Porous Matrices...
-
Synthesis and characterization of mechanically alloyed nanostructured ternary titanium based alloy for bio-medical applications
Publication -
The influence of crude glycerol and castor oil-based polyol on the structure and performance of rigid polyurethane-polyisocyanurate foams
PublicationIn this work, biopolyol obtained from two types of industrial crops’ processing products: crude glycerol and castor oil was used for preparation or rigid polyurethane-polyisocyanurate foams. Bio-based polyol was obtained via crude glycerol polymerization and further condensation of resulting polyglycerol with castor oil. Rigid polyurethane-polyisocyanurate foams were prepared at partial substitution (0–70 wt.%) of petrochemical...
-
Novel bio-based thermoplastic poly(ether-urethane)s. Correlations between the structure, processing and properties
PublicationThe main purpose of this work was to analyze the effect of the number of unreacted isocyanate groups and the [NCO]/[OH] molar ratio during the chain extension of a prepolymer during the polymerization process on the structure, processing and selected properties of thermoplastic poly(ether-urethane)s. Three series of novel thermoplastic polyurethanes were obtained via a prepolymer route. Three prepolymers were synthesized from diisocyanate...
-
Polyurethane/ground tire rubber composite foams based on polyglycerol: processing, mechanical and thermal properties
PublicationDuring the synthesis of rigid polyurethane foams, petrochemical polyol was substituted with polyglycerol, the product of thermo-catalytic polycondensation of waste glycerol, resulting from biodiesel production. Two types of ground tire rubbers, untreated and thermo-mechanically reclaimed, were used to obtain ‘‘green’’ polyurethane-polyglycerol composite foams. Samples were prepared by a single-step method for the ratio of NCO/OH...
-
A comprehensive review on current and emerging technologies toward the valorization of bio‐based wastes and by products from foods
PublicationIndustries in the agro-food sector are the largest generators of waste in the world. Agro-food wastes and by products originate from the natural process of senescence, pretreatment, handling, and manufacturing processes of food and beverage products. Notably, most of the wastes are produced with the transformation of raw materials (such as fruits, vegetables, plants, tubers, cereals, and dairy products) into different processed...
-
Comprehensive Enhancement of Prepolymer-Based Flexible Polyurethane Foams’ Performance by Introduction of Cost-Effective Waste-Based Ground Tire Rubber Particles
PublicationMaterial innovations in polyurethane (PU) foams should ideally combine performance enhancement, environmental impact limitation, and cost reduction. These goals can be achieved by applying recycled or waste-based materials without broader industrial applications, implicating their low price. Herein, from 5 to 20 parts by weight of ground tire rubber (GTR) particles originated from the recycling of postconsumer car tires were incorporated...
-
The role of hydrogen bonding on tuning hard-soft segments in bio-based thermoplastic poly(ether-urethane)s
PublicationThis work describes the preparation of bio-based thermoplastic poly(ether-urethane)s (TPU) via a prepolymer method and investigates the effect of varying the interphase hydrogen-bonding (H-bonding) on physicochemical, thermal and mechanical properties. This was achieved by varying the glycol type and molar ratio of [NCO]/[OH] groups used during the prepolymer chain extending step. The TPUs’ chemical structure was analyzed by Fourier...
-
Fully bio-based poly(propylene succinate) synthesis and investigation of thermal degradation kinetics with released gases analysis
PublicationOne of the most important information about polyesters is their thermal stability and phase transition tem- peratures. These characteristics give information about the promising behavior of the polyester during proces- sing. In this work, linear bio-based polyester polyols were prepared with the use of succinic acid and 1.3- propanediol (both with natural origin). As a polycondensation catalyst was used tetraisopropyl orthotitanate...
-
Natural/bio-based sorbents as greener extractive materials for endocrine disrupting compounds in samples of different matrix composition
PublicationEndocrine-disrupting compounds (EDCs) are a group of chemicals that interfere with the endocrine system, leading to adverse effects on human health and the environment. Increasing concerns over the EDCs presence in various environmental compartments has driven the search for greener extraction materials. Recently, the use of polymers of natural origin (biopolymers) has been demonstrated to be an effective and promising research...
-
Chemical Structure and Thermal Properties versus Accelerated Aging of Bio-Based Poly(ether-urethanes) with Modified Hard Segments
PublicationAging of polymers is a natural process that occurs during their usage and storage. Predicting the lifetime of polymers is a crucial aspect that should be considered at the design stage. In this paper, a series of bio-based thermoplastic poly(ether-urethane) elastomers (bio-TPUs) with modified hard segments were synthesized and investigated to understand the structural and property changes triggered by accelerated aging. The bio-TPUs...
-
Diamine derivatives of dimerized fatty acids and bio-based polyether polyol as sustainable platforms for the synthesis of non-isocyanate polyurethanes
PublicationA series of environmentally friendly non-isocyanate polyurethanes (NIPUs) were successfully prepared via the polyaddition reaction of bio-based polyether polyol-based cyclic carbonate with diamine derivative of dimerized fatty acids. The syntheses of NIPUs were realized by the three-step method in the absence of toxic solvents and, importantly, the process of carbonation did not require the use of elevated pressure. The effect...
-
Synthesis, structure and properties of poly(ester-urethane)s obtained using bio-based and petrochemical1,3-propanediol and 1,4-butanediol
PublicationIn this paper, the poly(ester-urethane)s obtained using petrochemical and bio-based chain extenders were prepared and characterized. The influence of glycols’ origin on the chemical structure, mechanical and thermal properties of the prepared polyurethanes was studied. The materials were synthesised by prepolymer method. The first step involved the reaction of α,ω-dihydroxy(ethylene-butylene adipate (POLIOS 55/20) with 4,4’-diphenylmethane...
-
Sustainable synthesis of cyclic carbonates from bio‐based polyether polyol: the structure characterization, rheological behaviour and thermal properties
PublicationThe cycloaddition of CO2 to epoxides represents a green efficient method to form bis(cyclic carbonate)s. The main purpose of the work reported in this paper was to examine the effect of the gas flow rate (20, 40, 60 and 100 mL min–1) during carbonation on the conversion yield, chemical structure, rheological behaviour and thermal properties of the prepared compounds. A series of new bis(cyclic carbonate)s was obtained from bio‐based...
-
Influence of chemical structure on physicochemical properties and thermal decomposition of the fully bio-based poly(propylene succinate-co-butylene succinate)s
PublicationIn this work, two polyesters and four copolyesters were studied. All materials were synthesized to obtain the monomers dedicated for thermoplastic polyurethane elastomers. For this type of PUR, the monomers should characterize by appropriate selected physicochemical properties and macromolecular structure distribution, which depends on synthesis conditions. The study of chemical structure with extensive and knowledgeable analysis...
-
Solid-State Modification of Poly(butylene terephthalate) with a Bio-Based Fatty Acid Dimer Diol Furnishing Copolyesters with Unique Morphologies
PublicationCopolyesters based on poly(butylene terephthalate) (PBT) and a bio-based fatty acid dimer diol (FADD) were prepared by solid-state modification (SSM). The chemical incorporation of the FADD into the backbone of the PBT was proven using various techniques. It was clear that the incorporation rate was diffusion-limited rather than reaction-limited. From quantitative 13C NMR a nonrandom chemical microstructure was obtained at all...
-
Structure analysis and thermal degradation characteristics of bio-based poly(propylene succinate)s obtained by using different catalyst amounts
PublicationLinear bio-based polyester polyols were prepared with the use of succinic acid and 1.3-propanediol (both with natural origin). As a catalyst was used tetraisopropyl orthotitanate (TPT). In order to determine the effect of various catalyst content on the thermal degradation characteristics, three different TPT amounts, as a 1.3-propanediol equivalent, were used, namely 0.1 mass% (PPS-0.1), 0.2 mass% (PPS-0.2) and 0.25 mass% (PPS-0.25)....
-
Effect of Variation of Hard Segment Content and Graphene-Based Nanofiller Concentration on Morphological, Thermal, and Mechanical Properties of Polyurethane Nanocomposites
PublicationThis study describes the development of a new class of high-performance polyurethane elastomer nanocomposites containing reduced graphene oxide (RGO) or graphene nanoplatelets (GNP). Two types of polyurethane elastomers with different contents of hard segments (HS) were used as a polymer matrix. The developed nanocomposites were characterized by thermal analysis (DSC, TG), dynamic mechanical testing (DMA), hardness testing, mechanical...
-
Fire-Retardant Flexible Foamed Polyurethane (PU)-Based Composites: Armed and Charmed Ground Tire Rubber (GTR) Particles
PublicationInadequate fire resistance of polymers raises questions about their advanced applications. Flexible polyurethane (PU) foams have myriad applications but inherently suffer from very high flammability. Because of the dependency of the ultimate properties (mechanical and damping performance) of PU foams on their cellular structure, reinforcement of PU with additives brings about further concerns. Though they are highly flammable and...
-
Glass transition temperatures of polyurethane-urea elastomers based on N, N′-ethylenethiourea and N, N′-ethyleneurea as chain extenders
Publication -
Towards sustainable catalyst-free biomass-based polyurethane-wood composites (PU-WC): From valorization and liquefaction to future generation of biocomposites
PublicationA substantial aspect of materials engineering lies in the responsible process of designing polymer-based materials. Due to environmental pollution, excessive consumption of natural resources, and increasing environmental awareness of society, there is a massive need for polyurethane (PU) materials with reduced environmental impact. To date, research on catalyst-free polyurethane-wood composites (PU-WC) has demonstrated a huge potential...
-
Hydrochars as a bio-based adsorbent for heavy metals removal: A review of production processes, adsorption mechanisms, kinetic models, regeneration and reusability of hydrochar
PublicationThe spread of heavy metals throughout the ecosystem has extremely endangered human health, animals, plants, and natural resources. Hydrochar has emerged as a promising adsorbent for removing heavy metals from water and wastewater. Hydrochar, obtained from hydrothermal carbonization of biomass, owns unique physical and chemical properties that are highly potent in capturing heavy metals via surface complexation, electrostatic interactions,...
-
Bio‑derived polyurethanes obtained by non‑isocyanate route using polyol‑based bis(cyclic carbonate)s—studies on thermal decomposition behavior
PublicationNon-isocyanate polyurethanes (NIPUs) constitute one of the most prospective groups of eco-friendly materials based on their phosgene-free synthesis pathway. Moreover, one of the steps of their obtaining includes the use of carbon dioxide (CO 2 ), which allows for the promotion of the development of carbon dioxide capture and storage technologies. In this work, non- isocyanate polyurethanes were obtained via three-step synthesis...
-
Electrostatic self-assembly approach in the deposition of bio-functional chitosan-based layers enriched with caffeic acid on Ti-6Al-7Nb alloys by alternate immersion
Publication -
A case study on the rotomolding behavior of black tea waste and bio-based high-density polyethylene composites: Do active compounds in the filler degrade during processing?
PublicationThis study verified the possibility of using waste material from the food industry (black tea) as functional filler of rotomolded biobased high-density polyethylene-based composites. As part of the experimental work, the influence of the materials preparation, i.e., dry blending versus twin-screw extrusion, on the effectiveness of the stabilizing antioxidant effect of the black tea was analyzed. The aim of the work was to verify...
-
Modification of structured bio‑carbon derived from spongin-based scaffolds with nickel compounds to produce a functional catalyst for reduction and oxidation reactions: Potential for use in environmental protection
PublicationThree different 3D fibrous-like NiO/Ni(OH)2/Ni‑carbonized spongin-based materials were prepared via a simple sorption–reduction method. Depending on the support used, the catalysts were composed of carbon, nickel oxide, nickel hydroxide and zero-valent nickel, with the surface content of the nickel-containing phase in the range 15.2–26.0 wt%. Catalytic studies showed promising activity in the oxidation of phenolic compounds in water...
-
Effect of molar ratio [NCO]/[OH] groups during prepolymer chains extending step on the morphology and selected mechanical properties of final bio‐based thermoplastic poly(ether‐urethane) materials
PublicationThe main aim of this work was to investigate the effect of [NCO]/[OH] molar ratio used during the prepolymer chain extending step (with bio‐based diols) on the chemical structure, and thermomechanical and mechanical properties of thermoplastic poly(ether‐urethane)s. Thermoplastic poly(ether‐urethane)s were obtained from bio‐based polyol (polytrimethylene ether glycol), bio‐based glycol (1,4‐butanediol or 1,3‐propanediol), and 4,4'diphenylmethane...
-
The effect of high molecular weight bio-based diamine derivative of dimerized fatty acids obtained from vegetable oils on the structure, morphology and selected properties of poly(ether-urethane-urea)s
PublicationIn this work, the effect of the high molecular weight bio-based diamine on the chemical structure and selected properties of poly(ether-urethane-urea)s has been investigated. The ether-urethane prepolymer was cured using 1,4-butanediol and/or bio-based diamine. Mentioned chain extenders were used separately or in the mixture, and their different molecular weight and chemical structure resulted in obtaining materials with diversified...
-
The study on application of biopolyols obtained by cellulose biomass liquefaction performed with crude glycerol for the synthesis of rigid polyurethane foams
PublicationIn this work rigid polyurethane foams (PUR) were obtained by replacement of 0–70 wt% of petrochemical polyol with bio-polyol obtained via cellulose liquefaction in presence of crude glycerol. The foams with different content of a bio-polyol were prepared by single step method for NCO/OH ratio equals 1.5. The prepared materials were analyzed in terms of their morphology, chemical structure, thermal stability and basic physical and...
-
Liquefaction of alder wood as the source of renewable and sustainable polyols for preparation of polyurethane resins
PublicationLiquefaction of wood-based biomass gives different polyol properties depending on the reagents used. In this article, alder wood sawdust was liquefied with glycerol and poly(ethylene glycol) solvents. Liquefaction reactions were carried out at temperatures of 120, 150 and 170 °C. The obtained bio-polyols were analyzed in order to establish the process efficiency, hydroxyl number, acid value, viscosity and structural characteristics...
-
Bio‐polyols synthesized by liquefaction of cellulose: Influence of liquefaction solvent molecular weight
PublicationCurrently, the plastics industry including polyurethanes is based on the use of petrochemicals. For this reason, scientists are looking for new types of renewable resources for the substitution of petrochemical substances. This work aims to evaluate the effect of polyethylene glycols (PEG) with different molecular mass impact on properties of bio-based polyols synthesized via biomass liquefaction of cellulose. To date, research...
-
Preparation and Properties of Thermoplastic Polyurethane Composites Filled with Powdered Buckwheat Husks
PublicationBio-based fillers for the polymer composites are still interesting from the scientific and industrial point of view, due to their low cost and renewable nature. In this work partially green composites were obtained by the mixing of thermoplastic poly(ester-urethane) with the unmodified and modified (by acetylation) grinded buckwheat husks. Obtained biocomposites were characterized in the terms of their chemical structure (FTIR),...
-
Structure and properties comparison of poly(ether-urethane)s based on nonpetrochemical and petrochemical polyols obtained by solvent free two-step method
PublicationThe application of thermoplastic polyurethanes (TPU) is becoming more and more extensive, and the decreasing of used petrochemical monomers and reduction of energy for the polymerization and processing processes is getting increasingly important. In this paper, we confirmed the positive influence of high bio-based monomers contents (by replacing petrochemical polyol and glycol by bio-based counterparts) on processing and properties...
-
Effect of modified soybeen oil amount on rheological characteriza-tion of polyurethane pre-polymers
PublicationPolyurethanes (Pu’s) are the polymeric materials which have got urethane groups in the structure. The properties of Pu’s depend both on the method of preparation and monomers used. Polyurethanes are produced by two methods known as one step or two step method called as “pre-polymers method”, especially for the case of segmented polyurethanes (SPU’s). These materials are thermoplastic block copolymers of the (AB)n type consisting...
-
Synthesis and characterization of biopolyols through biomass liquefaction of wood shavings and their application in the preparation of polyurethane wood composites
PublicationThe sustainability of production systems in wood processing, wood industry, and wooden waste disposal is an important issue for European industry and society. Proper development of products based on renewable wood resources gives an opportunity to provide materials with long-term environmental, social, and economic sustainability. This study aims to establish a new way of forestry and agricultural waste materials utilization by...
-
Environmental impact and industrial development of biorenewable resources for polyurethanes
PublicationPolyurethanes are among the most developed types of polymers. They are produced from the three primary components, i.e., polyols, low-molecular-weight glycols used as chain extenders, and diisocyanates. Until recently, all these substrates have been obtained via petrochemical processes. A decrease in petroleum-based resources and new ecological trends in chemistry, chemical technology, and materials engineering have generated increasing...
-
Influence of bio-polyols with different molecular weight on properites of PUR-PIR foams
Open Research DataThis work attempts to validate the possibility of replacing petrochemical polyols with previously synthesized bio-polyols and their impact on the structure and properties of rigid polyurethane-polyisocyanurate (PUR-PIR). The influence of bio-polyols addition on foam properties was investigated by mechanical testing, Fourier transform infrared spectroscopy...
-
Enhancement of PUR/PIR foam thermal stability after addition of Zostera marina biomass component investigated via thermal analysis and isoconversional kinetics
PublicationIn the present work, a thorough thermogravimetric (TG) analysis of bio-based polyurethane–polyisocyanurate (PUR–PIR) foams in both nitrogen and oxygen atmosphere is performed. A sustainable element of the foam is a biopolyol obtained via acid-catalyzed liquefaction of Zostera marina and Enteromorpha Algae biomass. Based on isoconversional analysis and apparent activation energies, several conclusions are obtained. In contradiction...
-
Microcrystalline Cellulose Management in the Production of Poly(ether-urethane)s- Structure, Morphology, and Thermal Characteristic
PublicationIn response to the demand of polymer industry for reducing the use of synthetic chemicals, eco-friendly materials are investigated. In the presented study, bio-based poly(ether-urethane)s were prepared by using microcrystalline cellulose (MCC) and polyether polyol and 1,3-propanediol derived from corn sugar. A step towards sustainability was taken by incorporating bio-based compounds and cellulose, consequently, bio-waste are utilized...
-
Biopolyols obtained via crude glycerol-based liquefaction of cellulose: their structural, rheological and thermal characterization
PublicationIn this work lignocellulose biomass liquefaction was used to produce biopolyols suitable for the manufacturing of rigid polyurethane foams. In order to better evaluate the mechanism of the process, pure cellulose was applied as a raw material. The effect of time and temperature on the effectiveness of liquefaction and the parameters of resulting biopolyols were characterized. The prepared materials were analyzed in terms of their...
-
Biopolyols obtained via microwave-assisted liquefaction of lignin: structure, rheological, physical and thermal properties
PublicationThe present study examined the application of polyols obtained via microwave-assisted liquefaction of lignin in the production of rigid polyurethane foam. Lignin was liquefed in crude glycerol and 1,4-butanediol at diferent temperatures (130–170 °C), without a catalyst and using various biomass concentrations (15 and 30 wt%). The physicochemical properties, process yield, and FTIR-based identifcation of the obtained polyols were...
-
New-fangled sources of cellulose extraction: comparative study of the effectiveness of Cissus latifolia and Ficus benghalensis cellulose as a filler
PublicationRecycled polymers and biopolymers are receiving a great deal of attention these days. If these two can be combined, it will lead to an environment-friendly green material with a great deal of applications. Here the present work is about incorporating bio-based fillers in a recycled polyurethane matrix. Two unusual and extremely novel sources of cellulose have been proposed. The celluloses obtained from Cissus latifolia and Ficus...
-
Nowe monomery pochodzenia roślinnego w syntezie termoplastycznych elastomerów poliuretanowych
PublicationJak dotychczas w syntezie termoplastycznych elastomerów poliuretanowych (TPU) są powszechnie wykorzystywane surowce pochodzenia petrochemicznego. Sytuacja jednak zmienia się dynamicznie i w wielu gospodarkach świata widoczne są już trendy, polegające na coraz większym wykorzystaniu substancji pochodzenia roślinnego w produkcji surowców, np. glikoli, izocyjanianów czy polioli, jako zamienników analogów syntetycznych. Praca obejmuje...
-
Preparation, characterization, and manufacturing of new polymeric materials for 3D printing for medical applications
PublicationThis work concerns the synthesis, formation, and characteristics of new filaments for 3D printing in FDM™/FFF technology for medical purposes. Two types of filaments were developed, i.e. degradable polyurethane and biodegradable polylactide-starch. The influence of the 3D printing process on selected filament properties was investigated. A detailed analysis of the filament formation process by the extrusion method was carried out,...
-
Adolfo Poma
PeopleI am the group leader of the computational modelling of biomolecules divison at the institute of Fundamental Technological Research Polish Academy of Sciences in Poland. My group was hosted between 2021-2022 by International Centre for Research on Innovative Bio-based Materials (ICRI-BioM). In 2008, I got a Master degree in computational physics from the State University of Campinas, Brazil. Then I moved to Germany and under the...
-
Termooksydacyjna i fotooksydacyjna degradacja pianek poliuretanowych
PublicationPrzeprowadzono ocenę efektywności działania wybranych środków przeciwstarzeniowych w sztywnych piankach poliuretanowych, otrzymywanych na drodze syntezy jednoetapowej. Ocenę tę oparto na pomia-rach zmian barwy oraz wytrzymałości mechanicznej zsyntezowanych materiałów. Na podstawie analizy uzyskanych wyników stwierdzono, iż dodatek 3% mieszaniny I rzędowego antyutleniacza fenolowego oraz benzotriazolowego absorbera UV znacząco zmniejsza...
-
Modelling of bio-mechanical objects: recent examples
PublicationW opracowaniu przedstawiono dwa wykorzystania modelowania bio-mechanicznego wybranych obiektów: modelowanie zachowania mięśni w układzie ramię-przedramię oraz wstępny projekt protezy dłoni przy użyciu materiałów z pamięcią kształtu. Przedstawiono wyniki badań symulacyjnych oraz opis dynamiki działania układów sterowania dla protezy dłoni oraz dla układu ramię-przedramię.
-
Synteza, struktura chemiczna i właściwości bezizocyjanianowych poliuretanów otrzymywanych z wykorzystaniem CO2 oraz surowców pochodzenia naturalnego.
PublicationZ uwagi na wciąż rosnącą świadomość proekologiczną, politykę zrównoważonego rozwoju, a także nurt zielonej chemii wiodącym trendem w przemyśle tworzyw sztucznych jest poszukiwanie alternatywnych metod otrzymywania materiałów polimerowych. Komercyjnie poliuretany otrzymywane są w wyniku reakcji poliaddycji di- lub poliizocyjanianów z poliolami i małocząsteczkowymi przedłużaczami łańcucha. Z uwagi na niekorzystne właściwości diizocyjanianów,...
-
Janusz Datta prof. dr hab. inż.
PeopleIn 1988, Janusz Datta finished his studies at the Gdańsk University of Technology (GUT), Faculty of Chemistry. Since then he has been employed at the Faculty of Chemistry in the Department of Polymer Technology. During the first six years of employement he was worked as a scientist. In this period, he travelled extensively to ZACHEM company located in Bydgoszcz to gain practical experience related to chemical processing. In 1994,...