Search results for: : carbon nanotubes
-
Bulk synthesis of carbon-filled silicon carbide nanotubes with a narrow diameter distribution
Publication -
Adsorption of anionic dye Direct Red 23 onto magnetic multi-walled carbon nanotubes-Fe3C nanocomposite: Kinetics, equilibrium and thermodynamics
Publication -
The possibility to use multi-walled carbon nanotubes as a sorbent for dispersive solid phase extraction of selected pharmaceuticals and their metabolites: Effect of extraction condition
Publication -
Highly sensitive large strain cellulose/multiwalled carbon nanotubes (MWCNTs)/thermoplastic polyurethane (TPU) nanocomposite foams: From design to performance evaluation
PublicationAerogel-based polymer composite foams are promising for large strain piezoresistive sensors, but their aerogel skeleton is partially destroyed during the foaming process, limiting their sensitivity. Herein, the thermoplastic polyurethane was synthesized on the aerogel skeleton to obtain cellulose/multiwalled carbon nanotubes (MWCNTs)/thermoplastic polyurethane (TPU) nanocomposite materials foamed with the aid of supercritical carbon...
-
Post-critical buckling of truncated conical carbon nanotubes considering surface effects embedding in a nonlinear Winkler substrate using the Rayleigh-Ritz method
PublicationThis research predicts theoretically post-critical axial buckling behavior of truncated conical carbon nanotubes (CCNTs) with several boundary conditions by assuming a nonlinear Winkler matrix. The post-buckling of CCNTs has been studied based on the Euler-Bernoulli beam model, Hamilton’s principle, Lagrangian strains, and nonlocal strain gradient theory. Both stiffness-hardening and stiffness-softening properties of the nanostructure...
-
Damped forced vibration analysis of single-walled carbon nanotubes resting on viscoelastic foundation in thermal environment using nonlocal strain gradient theory
PublicationIn this paper, the damped forced vibration of single-walled carbon nanotubes (SWCNTs) is analyzed using a new shear deformation beam theory. The SWCNTs are modeled as a flexible beam on the viscoelastic foundation embedded in the thermal environment and subjected to a transverse dynamic load. The equilibrium equations are formulated by the new shear deformation beam theory which is accompanied with higher-order nonlocal strain...
-
Advanced oxidation (H2O2 and/or UV) of functionalized carbon nanotubes (CNT-OH and CNT-COOH) and its influence on the stabilization of CNTs in water and tannic acid solution
Publication -
Determination of mefenamic acid in urine and pharmaceutical samples by HPLC after pipette-tip solid phase microextraction using zinc sulfide modified carbon nanotubes
Publication -
Stability analysis of single-walled carbon nanotubes embedded in winkler foundation placed in a thermal environment considering the surface effect using a new refined beam theory
PublicationThis article is devoted to investigate the stability of different types of Single Walled Carbon Nanotubes (SWCNTs) such as zigzag, chiral, and armchair types which are rested in Winkler elastic foundations exposing to both the low and high temperature environments. Also, the Surface effects which include surface energy and surface residual stresses, are taken into consideration in this study. It may be noted that the surface energy...
-
Dispersive solid-phase extraction using multi-walled carbon nanotubes combined with liquid chromatography–mass spectrometry for the analysis of β-blockers: Experimental and theoretical studies
Publication -
Near-Infrared-Triggered Nitrogen Fixation over Upconversion Nanoparticles Assembled Carbon Nitride Nanotubes with Nitrogen Vacancies
Publication -
A Systematic and Comparative Study of Binary Metal Catalysts for Carbon Nanotube Fabrication Using CVD and Laser Evaporation
Publication -
Influence of C60and Fullerene Soot on the Oxidation Resistance of Vegetable Oils
Publication -
Anna Danuta Dettlaff dr inż.
PeopleShe received her Master of Science degree in engineering with honours in 2013 at the Gdańsk University of Technology at the Department of Analytical Chemistry. In 2013-2017, she was a PhD student in the field of Chemical Technology at Faculty of Chemistry. Her doctoral dissertation was entitled “Nanocomposites based on conducting polymer and carbon materials for supercapacitor application”. In 2015, she was doing a three-month...
-
Structure and thermoelectric properties of bismuth telluride—Carbon composites
PublicationCarbon nanotubes and amorphous carbon have been introduced into a bismuth telluride matrix (0.15 and 0.30 wt.% ratio) to investigate the influence of the carbon on the composite’s thermoelectric properties. Composites with well-dispersed additives have been obtained by sonication and ball-milling methodology. Carbon nanotubes and an amorphous carbon addition led to a decrease in electric conductivity from 1120 S/cm to 77 S/cm....
-
Chemical properties of bismuth telluride – carbon composites.
Open Research DataCarbon nanotubes and amorphous carbon have been introduced into bismuth telluride matrix (in 0.15 and 0.30 wt % ratio) in order to investigate influence of carbon on composite’s thermoelectric properties. Composites with well-dispersed additives have been obtained by sonication and ball-milling. Chemical composition of materials was confirmed by XPS...
-
Comparison of Properties of the Hybrid and Bilayer MWCNTs—Hydroxyapatite Coatings on Ti Alloy
PublicationCarbon nanotubes are proposed for reinforcement of the hydroxyapatite coatings to improve their adhesion, resistance to mechanical loads, biocompatibility, bioactivity, corrosion resistance, and antibacterial protection. So far, research has shown that all these properties are highly susceptible to the composition and microstructure of coatings. The present research is aimed at studies of multi-wall carbon nanotubes in three different...
-
On the Buckling Response of Axially Pressurized Nanotubes Based on a Novel Nonlocal Beam Theory
PublicationIn the present study, the buckling analysis of single-walled carbon nanotubes (SWCNT) on the basis of a new refined beam theory is analyzed. The SWCNT is modeled as an elastic beam subjected to unidirectional compressive loads. To achieve this aim, the new proposed beam theory has only one unknown variable which leads to one equation similar to Euler beam theory and is also free from any shear correction factors. The equilibrium...
-
Fabrication and characterization of composite TiO2 nanotubes/ boron-doped diamond electrodes towards enhanced supercapacitors
PublicationThe composite TiO2 nanotubes / boron-doped diamond electrodes were deposited using Microwave Plasma Enhanced Chemical Vapor Deposition resulting in the improved electrochemical performance. This composite electrode can deliver high specific capacitance of 7.46 mF cm‐− 2 comparing to boron-doped diamond (BDD) deposited onto flat Ti plate (0.11 mF cm‐− 2).The morphology and composition of composite electrode were characterized...
-
Effects of UV light irradiation on fluctuation enhanced gas sensing by carbon nanotube networks
PublicationThe exceptionally large active surface-to-volume ratio of carbon nanotubes makes it an appealing candidate for gas sensing applications. Here, we studied the DC and low-frequency noise characteristics of a randomly oriented network of carbon nanotubes under NO2 gas atmosphere at two different wavelengths of the UV light-emitting diodes. The UV irradiation allowed to sense lower concentrations of NO2 (at least 1 ppm) compared to...
-
Generation-recombination and 1/f noise in carbon nanotube networks
PublicationThe low-frequency noise is of special interest for carbon nanotubes devices, which are building blocks for a variety of sensors, including radio frequency and terahertz detectors. We studied noise in as-fabricated and aged carbon nanotube networks (CNNs) field-effect transistors. Contrary to the majority of previous publications, as-fabricated devices demonstrated the superposition of generation-recombination (GR) and 1/f noise...
-
Induced-fit binding of laccase to gold and carbon electrodes for the biological fuel cell applications
PublicationAnalogues of laccase natural substrates (syringic, veratric, ferulic, vanillic, isovanillic, 3,5-dimethoxybenzoic aldehydes) were employed to bind and orient laccase molecules in a way which facilitates adsorption of the catalyst molecules and their electrical connection with the conductive support. Laccase was bound efficiently to these substrates both on gold and carbon electrodes forming, respectively, 2D and 3D films sensitive...
-
Nonlocal Vibration of Carbon/Boron-Nitride Nano-hetero-structure in Thermal and Magnetic Fields by means of Nonlinear Finite Element Method
PublicationHybrid nanotubes composed of carbon and boron-nitride nanotubes have manifested as innovative building blocks to exploit the exceptional features of both structures simultaneously. On the other hand, by mixing with other types of materials, the fabrication of relatively large nanotubes would be feasible in the case of macroscale applications. In the current article, a nonlinear finite element formulation is employed to deal with...
-
Formation of Highly Conductive Boron-Doped Diamond on TiO2 Nanotubes Composite for Supercapacitor or Energy Storage Devices
PublicationIn the present paper, we report the phenomena of the formation of the novel composite nanostructures based on TiO2 nanotubes (NTs) over-grown by thin boron-doped diamond (BDD) film produced in Microwave Plasma Enhanced Chemical Vapor Deposition (PE MWCVD). The TiO2 nanotube array overgrown by boron-doped diamond immersed in 0.1 M NaNO3 can deliver high specific capacitance of 7.46 mF cm−2. The composite electrodes were characterized...
-
Electrical and noise responses of carbon nanotube networks enhanced by UV light for nitrogen dioxide sensing
Open Research DataNetworks consisting of randomly oriented carbon nanotubes (CNN) were investigated toward nitrogen dioxide detection by means of electrical and low-frequency noise measurements. UV-activation of CNN layers improved gas sensitivity and reduced the limit of detection, especially by employing 275 nm-LED. This data set includes DC resistance measurements...
-
Characteristics of silver-dopped carbon nanotube coating destined for medical applications
PublicationCarbon nanotubes are materials demonstrating outstanding mechanical, chemical, and physical properties and are considered coatings of titanium implants. The present research is aimed to characterize the microstructure and properties of the multi-wall carbon nanotubes (MWCNTs) layer decorated with silver nanoparticles (Ag NPs) on the Ti13Nb13Zr alloy destined for long-term implants. The electrophoretic deposition of coatings...
-
Spray-deposited carbon-nanotube counter-electrodes for dye-sensitized solar cells
PublicationCarbon nanotubes due to their catalytic properties are a promising alternative to platinum counter electrodes (CE) for dye-sensitized solar cells (DSSC). In this study, counter electrodes were made from double-walled carbon nanotube (DWCNT) ink using the spray printing technique and afterwards they were thermally treated at temperatures ranging from 120 to 300 °C. Morphology and structure was studied using scanning electron microscopy...
-
Mechanical Properties of Twisted Carbon Nanotube Bundles with Carbon Linkers from Molecular Dynamics Simulations
PublicationThe manufacturing of high-modulus, high-strength fibers is of paramount importance for real-world, high-end applications. In this respect, carbon nanotubes represent the ideal candidates for realizing such fibers. However, their remarkable mechanical performance is difficult to bring up to the macroscale, due to the low load transfer within the fiber. A strategy to increase such load transfer is the introduction of chemical linkers...
-
Materials for Mediator-free Electron Transfer in the Enzymatic Electrodes of Biobatteries and Biofuel Cells
PublicationWe present functionalization of single-walled carbon nanotubes (SWCNTs) and their application in the enzymatic fuel cells construction. SWCNTs were covalently modified with different types of aromatic moieties. Free radical reaction was employed to create direct carbon-carbon bond between moiety and SWCNTs. In second approach functionalization takes place through amide bonding. Functionalized SWCNTs were characterized by spectroscopy...
-
On analysis of nanocomposite conical structures
PublicationThis research examines the analysis of rotating truncated conical baskets reinforced by carbon nanotubes around the two independent axes. A time-dependent analysis is considered, and the nonlinear dynamic governing equations are extracted using the energy method. Carbon nanotubes (CNTs) reinforced the conical basket, and the structure's mechanical properties are determined based on the several distributions of carbon nanotubes....
-
Hydrothermal modification of TiO2 nanotubes in water and alkali metal electrolytes (LiNO3, NaNO3, KNO3) – Direct evidence for photocatalytic activity enhancement
PublicationThe influence of hydrothermal annealing (HA) of TiO2 nanotubes (TiO2-NTs) in various baths (H2O, LiNO3, NaNO3, KNO3 performed for 4 h, 24 h, 64 h), on their photocatalytic and photoelectrocatalytic properties, was studied. The use of electrolytes was to enable the monitoring of photoactivity changes as a result of the expected impact on the population of hydroxyl groups on the surface. The assumption turned out to be correct and...
-
Photocatalytic activity of nitrogen doped TiO2 nanotubes prepared by anodic oxidation: The effect of applied voltage, anodization time and amount of nitrogen dopant
PublicationNitrogen doped TiO2 nanotube arrays were prepared by anodizing Ti foils in an organic electrolyte containing specified amounts of urea as nitrogen precursor. The photocatalytic activity of the samples was evaluated by analyzing the degradation kinetics of phenol in water. The influence of tubes’ length, tubes’ surface morphology and amount of nitrogen in the TiO2 lattice on hydroxyl radical formation efficiency, photocatalytic...
-
Buckling analysis of a non-concentric double-walled carbon nanotube
PublicationOn the basis of a theoretical study, this research incorporates an eccentricity into a system of compressed double-walled carbon nanotubes (DWCNTs). In order to formulate the stability equations, a kinematic displacement with reference to the classical beam hypothesis is utilized. Furthermore, the influence of nanoscale size is taken into account with regard to the nonlocal approach of strain gradient and the van der Waals interaction...
-
Effects of Basalt and Carbon Fillers on Fire Hazard, Thermal, and Mechanical Properties of EPDM Rubber Composites
PublicationDue to growing restrictions on the use of halogenated flame retardant compounds, there is great research interest in the development of fillers that do not emit toxic compounds during thermal decomposition. Polymeric composite materials with reduced flammability are increasingly in demand. Here, we demonstrate that unmodified graphene and carbon nanotubes as well as basalt fibers or flakes can act as effective flame retardants...
-
Effects of Surface Energy and Surface Residual Stresses on Vibro-Thermal Analysis of Chiral, Zigzag, and Armchair Types of SWCNTs Using Refined Beam Theory
PublicationIn this article, vibration characteristics of three different types of Single-Walled Carbon Nanotubes (SWCNTs) such as armchair, chiral, and zigzag carbon nanotubes have been investigated considering the effects of surface energy and surface residual stresses. The nanotubes are embedded in the elastic substrate of the Winkler type and are also exposed to low and high-temperature environments. A new refined beam theory namely, one-variable...
-
Sandwich Biobattery with Enzymatic Cathode and Zinc Anode Integrated with Sensor
PublicationCarbon paper covered with side-naphthylated multi walled carbon nanotubes was used as the conducting support for the construction of a biocathode in a hybrid biofuel cell. Laccase Carrena unicolor enzyme was employed as the catalyst for the 4e reduction of oxygen and a zinc disc covered with hopeite was used as the anode. Derivatized carbon nanotubes increase the working surface of the electrode and provide direct contact with...
-
Electrically Conductive Carbon‐based (Bio)‐nanomaterials for Cardiac Tissue Engineering
PublicationA proper self-regenerating capability is lacking in human cardiac tissue which along with the alarming rate of deaths associated with cardiovascular disorders makes tissue engineering critical. Novel approaches are now being investigated in order to speedily overcome the challenges in this path. Tissue engineering has been revolutionized by the advent of nanomaterials, and later by the application of carbon-based nanomaterials...
-
Piotr Konieczka prof. dr hab. inż.
People -
Galerkin Finite Element Process for Entropy Production and Thermal Evaluation of Third-Grade Fluid Flow: A Thermal Case Study
Publication: A fluid’s moving class improves its heat transmission capability, as well as its rigidity, owing to multivariate molecule suspension. In this way, nanofluids are superior to common fluids. In this study, we evaluated the features of ease and heat transfer. Furthermore, we investigated permeable media, heat source, variable heat conductivity, and warm irradiation results. A mathematical technique known as the Galerkin finite element...
-
Experimental investigation of thermal energy storage in shell-and-multi-tube unit with nano-enhanced phase change material
PublicationThis paper deals with thermal energy storage with use of nanoparticle enhanced phase change material in shell-and-multitube unit. The experiments are conducted under atmospheric pressure. Paraffin wax and two different fatty acids are used as base phase change material. Graphite and multi-walled carbon nanotubes serve as nanoparticles. Graphite nanoparticles are tested at the concentrations of 0.1%, 1% and 5% by weight, while multi-walled...
-
Wpływ stopowania laserowego z użyciem nanorurek węglowych stopu Ti13Nb13Zr do zastosowań biomedycznych na jego wybrane własności mechaniczne
PublicationDo eksperymentu użyto stopu tytanu Ti13Nb13Zr, który ze względu na swój skład chemiczny i właściwości mechaniczne stanowi materiał do zastosowań w inżynierii medycznej. Celem pracy była ocena wpływu stopowania laserowego stopu Ti13Nb13Zr z powłoką z wielościennych nanorurek węglowych na jego właściwości mechaniczne (chropowatość, nanotwardość, moduł Younga). Do wytworzenia powłoki węglowej wykorzystano metodę osadzania elektroforetycznego (EDP)....
-
Understanding the capacitance of thin composite films based on conducting polymer and carbon nanostructures in aqueous electrolytes
PublicationIn this work electrochemical performance of thin composite films consisted of poly(3,4-ethylenedioxythiophene) (PEDOT), graphene oxide (GOx) and oxidized multiwalled carbon nanotubes (oxMWCNTs) is investigated in various sulphates (Li2SO4, Na2SO4, K2SO4, MgSO4) and acidic (H2SO4) electrolytes. Capacitance values, rate capability and cycling stability achieved for the composite layers are correlated with the electrolytes’ properties...
-
Reliable renewable energy – application of electrochemical capacitors for electrical energy storage
PublicationThis paper presents electrical energy storage devices such as electrochemical capacitors, their principle of operation and electrode materials most commonly used in their manufacturing technology. Moreover, our research on development of new nanocomposite materials based on multi-walled carbon nanotubes and conducting polymer is shown. Additionally, the possibility and advantages of application of supercapacitors for accumulation...
-
Encapsulation of an anticancer drug Isatin inside a host nano-vehicle SWCNT: a molecular dynamics simulation
PublicationThe use of carbon nanotubes as anticancer drug delivery cargo systems is a promising modality as they are able to perforate cellular membranes and transport the carried therapeutic molecules into the cellular components. Our work describes the encapsulation process of a common anticancer drug, Isatin (1H-indole-2,3-dione) as a guest molecule, in a capped single-walled carbon nanotube (SWCNT) host with chirality of (10,10). The...
-
Mechanical and Corrosion Properties of Laser Surface-Treated Ti13Nb13Zr Alloy with MWCNTs Coatings
Publication: Titanium and its alloys is the main group of materials used in prosthetics and implantology. Despite their popularity and many advantages associated with their biocompatibility, these materials have a few significant disadvantages. These include low biologic activity—which reduces the growth of fibrous tissue and allows loosening of the prosthesis—the possibility of metallosis and related inflammation or other allergic reactions,...
-
Microstructure and mechanical properties of laser surface-treated Ti13nb13zr alloy with MWCNTs coatings
PublicationLaser surface modification of titanium alloys is one of the main methods of improving the properties of titanium alloys used in implantology. This study investigates the microstructural morphology of a laser-modified surface layer on a Ti13Nb13Zr alloy with and without a carbon nanotube coating deposited by electrophoretic deposition. Laser modification was performed for samples with and without carbon nanotube coating for two...
-
Laser-Induced Graphitization of Polydopamine on Titania Nanotubes
PublicationSince the discovery of laser-induced graphite/graphene, there has been a notable surge of scientific interest in advancing diverse methodologies for their synthesis and applications. This study focuses on the utilization of a pulsed Nd:YAG laser to achieve graphitization of polydopamine (PDA) deposited on the surface of titania nanotubes. The partial graphitization is corroborated through Raman and XPS spectroscopies and supported...
-
Influence of nanoparticle concentration on thermal properties of thermal oil-MWCNT nanofluid
PublicationResults of the measurements of dynamic viscosity, thermal conductivity, electrical conductivity and pH of thermal oil-MWCNT (TO-MWCNT) nanofluid have been presented. Nanoparticles were tested at the concentration of 0.001%, 0.005%, 0.01%, 0.05%, and 0,1% by weight. Thermal oil (TO) was selected as a base liquid, because of possible application in ORC systems as an intermediate heating agent. Multi-walled carbon nanotubes were used...
-
Infrared response of multiwalled boron nitride nanotubes
Publication -
Electronic structure of multiwall boron nitride nanotubes
Publication