Search results for: BOUNDARY CONDITIONS STOCHASTICALLY MODIFIED
-
Heat transfer characteristics of hybrid microjet – Microchannel cooling module
PublicationThe paper presents experimental investigation of heat transfer intensification in a microjet–microchannel cooling module. Applied technology takes benefits from two very attractive heat removal techniques. When jets are impinging on the surface, they have a very high kinetic energy at the stagnation point, also in microchannels boundary layer is very thin allowing to obtain very high heat fluxes. Main objective of this paper was...
-
DISTRIBUTION OF FLOWS IN A CHANNEL NETWORK UNDER STEADY FLOW CONDITIONS
PublicationThe article presents an algorithm for calculating the distribution of flow in a junction of open channel network under steady flow conditions. The article presents a simplified calculation algorithm used to estimate the distribution of flow in a network of channels under steady flow conditions. The presented algorithm is based on the continuity equation and a simplified energy equation. To describe the relationship between the...
-
THERMAL ANALYSIS AND DESIGN OF HYBRID MICROCHANNEL-MICROJET TEST PROBE
PublicationThe paper presents the numerical investigation of a microjet- microchannel cooling module. In which microjets of water are impinging into the microchannels and forming a liquid film on the impingement surface. Applied technology takes benefits from two very attractive heat removal techniques. When lminar jets are impinging on the surface have a very high kinetic energy at the stagnation point, also in microchannels boundary layer...
-
Comparative Analysis of Numerical and Experimental Studies of the Airflow Around the Sample of Urban Development
PublicationIn this paper, on the background of a short overview of the recent advances in the field of Environmental Wind Engineering (EWE), a comparison of wind tunnel experiment and numerical simulation for some cases of airflow around an urban layout have been reported. The purpose of the study is quantitative and qualitative comparison of measurements in the wind tunnel as well as numerical simulation using Ansys Fluent software. The...
-
NUMERICAL MODELLING AND EXPERIMENTATION OF HISTORICAL CARPENTRY CORNER LOG JOINTS
PublicationThe main purpose of this research is to determine the stress distributions on the contact surfaces between the logs of the historical carpentry corner joints. The additional purpose is to compare the stress distribution for four different boundary conditions in the case of dry and wet pine wood. The paper presents the results of numerical analysis of the shortcorner dovetail connection and the saddle notch corner joint, which are...
-
COMPARISON OF HEAT TRANSFER CHARACTERISTICS IN SURFACE COOLING WITH BOILING MICROJETS OF WATER, ETHANOL AND HFE7100
PublicationThe basis of microjet technology is to produce laminar jets which when impinging the surface have a very high kinetic energy at the stagnation point. Boundary layer is not formed in those conditions, while the area of film cooling has a very high turbulence resulting from a very high heat transfer coefficient. Applied technology of jet production can result with the size of jets ranging from 20 to 500μm in breadth and 20 to 100μm...
-
Functionalization of indium-tin-oxide electrodes by laser-nanostructured gold thin films for biosensing applications
Publicationof a relatively large area formed by pulsed laser nanostructuring of thin gold films arereported and discussed. The SEM inspection of modified electrodes reveals the presence of the nearlyspherical and disc-shaped particles of dimensions in the range of 40–120 nm. The NP-array geometry canbe controlled by selection of the laser processing conditions. It is shown that particle size and packingdensity of the array are important factors...
-
Modeling the Effects of Slowly Biodegradable Substrate at Large WWTP in Northern Poland
PublicationThe essential study was divided into two parts: experimental investigation and mathematical modeling using special platform to computer simulations. In the first part of research an innovative measurement procedure for an indirect determination of the effect of biodegradable particulate and colloidal Xs substrate was developed and implemented. The results of laboratory tests were used futher to verify the mechanism of the hydrolysis...
-
Cure kinetics of epoxy/MWCNTs nanocomposites: Isothermal calorimetric and rheological analyses
PublicationA combinatorial route has been applied in cure kinetics study of epoxy nanocomposites containing multi-walled carbon nanotubes (MWCNTs) based on differential scanning calorimetry and rheokinetic analyses under isothermal conditions. Pristine and amine-modified MWCNTs bearing primary and secondary amines were used at very low concentrations (0.1 and 0.3 wt.% based on epoxy weight). Model-free and model-fitting methods were applied...
-
AN ATTEMPT AT IDENTIFYING THE INFLUENCE OF TEST HEAD ASSEMBLY STIFFNESS ON THE RESULTS OF A TRIBOLOGICAL EXPERIMENT CONDUCTED UNDER MICRO-OSCILLATION CONDITIONS
PublicationThe outcome of experimental research on a group of dry bearing materials carried out under small oscillation conditi ons and using a test rig designed and made at Gdansk University of Technology inspired the decision to find out if the stiffness of test head elements in fluenced the generated results. Therefore, a computer model utilising finite elements was devised and used to simulate the workings of the test head. The mode l...
-
On the Buckling Response of Axially Pressurized Nanotubes Based on a Novel Nonlocal Beam Theory
PublicationIn the present study, the buckling analysis of single-walled carbon nanotubes (SWCNT) on the basis of a new refined beam theory is analyzed. The SWCNT is modeled as an elastic beam subjected to unidirectional compressive loads. To achieve this aim, the new proposed beam theory has only one unknown variable which leads to one equation similar to Euler beam theory and is also free from any shear correction factors. The equilibrium...
-
Optimized photodegradation of palm oil agroindustry waste effluent using multivalent manganese–modified black titanium dioxide
PublicationThis article presents a methodological approach to use manganese (Mn3+Mn7+)-modified black titanium dioxide (Mn/BTiO2) as a photocatalyst to optimize and improve visible-light-driven photodegradation of treated agro-industrial effluent (TPOME). A modified wet chemical process was used to prepare BTiO2. The BTiO2 was then wet impregnated with Mn and calcined at 300 °C for 1 h to produce Mn/BTiO2. The activity of Mn/BTiO2 was investigated...
-
Heat transfer characteristics of hybrid microjet -microchannel cooling module
PublicationThe paper presents the experimental investigation of heat transfer intensification in a microjet- microchannel cooling module. Applied technology takes benefits from two very attractive heat removal techniques. When jets are impinging on the surface, they have a very high kinetic energy at the stagnation point, also in microchannels boundary layer is very thin allowing to obtain very high heat fluxes. Main objective of this paper...
-
Experimental and Computational Fluid Dynamics Studies on Straight and U-Bend Double Tube Heat Exchangers with Active and Passive Enhancement Methods
PublicationIn this work, the authors wanted to demonstrate the possibility to increase the heat transfer efficiency by using simple wire coil inserts to create turbulent flow in the boundary layer as well as air blowing into the annulus of the pipe. Experimental investigations were carried out for four heat exchanger constructions, i.e., plain double tube, turbulized double tube, plain U-bend double tube, U-tube with turbulator, plain double...
-
Heat Transfer of the Multicolor-Laser-Sources-Irradiated Nanoparticles in Reference to Thermal Processes
PublicationUnlike the standard materials, metallic nanoparticles offer enhancing the heat convertion rate which implies the maximum and average temperature boost significantly in the considered system. The work’s purpose is to examine heat transfer in the metallic nanoparticles which have been deposited on a glassy substrate, enabling the nanostructures thermoablation. Furthermore, the functionalized substrate is irradiated with multicolor-laser-sources,...
-
Numerical analysis of vacuum drying of a porous body in the integrated domain
Publicationn the present study, the vacuum drying process of an apple slice is numerically modeled based on a control volume method. Transient two-dimensional Navier– Stokes, energy, moisture, and Luikov equations are solved by numerical coding (Fortran) to simulate the simultaneous heat and mass transfer in the ambient and apple slice, respectively. The privilege of using Luikov's model is that the capillary forces are considered, and a...
-
An optimal form of the finite element mass matrix in the analysis of longitudinal vibrations of rods
PublicationIn this paper, an attempt is made to find the optimal form of the mass matrix of a rod finite element, which allows one to obtain the smallest errors in the longitudinal frequency determination of natural vibrations of any boundary conditions within the whole range of determined frequencies. It is assumed that the mass matrix can be treated as a linear combination of the consistent and diagonal matrices. Based on analytical considerations,...
-
Mechanism of Solute and Thermal Characteristics in a Casson Hybrid Nanofluid Based with Ethylene Glycol Influenced by Soret and Dufour Effects
PublicationThis article models a system of partial differential equations (PDEs) for the thermal and solute characteristics under gradients (concentration and temperature) in the magnetohydrodynamic flow of Casson liquid in a Darcy porous medium. The modelled problems are highly non-linear with convective boundary conditions. These problems are solved numerically with a finite element approach under a tolerance of 10−8. A numerical algorithm...
-
Performance of a hybrid microjet – microchannel cooling module
PublicationThe paper presents the experimental investigation of a microjet- microchannel cooling module. In which microjets of water are impinging into the microchannels and forming a liquid film on the impingement surface. Applied technology takes benefits from two very attractive heat removal techniques. When lminar jets are impinging on the surface have a very high kinetic energy at the stagnation point, also in microchannels boundary...
-
Differential Quadrature Method for Dynamic Buckling of Graphene Sheet Coupled by a Viscoelastic Medium Using Neperian Frequency Based on Nonlocal Elasticity Theory
PublicationIn the present study, the dynamic buckling of the graphene sheet coupled by a viscoelastic matrix was studied. In light of the simplicity of Eringen's non-local continuum theory to considering the nanoscale influences, this theory was employed. Equations of motion and boundary conditions were obtained using Mindlin plate theory by taking nonlinear strains of von Kármán and Hamilton's principle into account. On the other hand, a...
-
VARIANT DESIGNING IN the PRELIMINARY SMALL SHIP DESIGN PROCESS
PublicationShip designing is a complex process, as the ship itself is a complex, technical multi-level object which operates in the air/water boundary environment and is exposed to the action of many different external and internal factors resulting from the adopted technical solutions, type of operation, and environmental conditions. A traditional ship design process consists of a series of subsequent multistage iterations, which gradually...
-
Plate heat exchanger with porous structure for potential use in ORC system
PublicationThe experimental analysis of passive heat transfer intensification in the case of plate heat exchanger has been carried out. The passive intensification was obtained by a modification of the heat transfer surface, which was covered by a metallic porous microlayer. The experiment was accomplished in two stages. In the first stage the commercial stainless steel gasketed plate heat exchanger was investigated, while in the second one...
-
Plate heat exchanger with porous structure for potential use in ORC system
PublicationThe experimental analysis of passive heat transfer intensification in the case of plate heat exchanger has been carried out. The passive intensification was obtained by a modification of the heat transfer surface, which was covered by a metallic porous microlayer. The experiment was accomplished in two stages. In the first stage the commercial stainless steel gasketed plate heat exchanger was investigated, while in the second one...
-
Influence of metallic porous microlayer on pressure drop and heat transfer of stainless steel plate heat exchanger
PublicationThe experimental analysis of passive heat transfer intensification in the case of plate heat exchanger has been carried out. On the heat transfer surface of heat exchanger the metallic porous layer was created. The experiment was accomplished in two stages. In the first stage the commercial stainless steel gasketed plate heat exchanger was investigated, while in the second one – the identical heat exchanger but with the modified...
-
Coupled Urban Areas Inundation Model with Interaction Between Storm Water System and Surface Flow - Case Study of Sea Level Impact on Seaside Areas Flooding
PublicationInundations are becoming more frequent than ever. What is connected with increasing area of impervious surface in cities. This makes predicting urban flooding and its scale especially important. At the seaside we observe additional conditions such as sea level that makes accurate numerical modelling of issue even harder. With complex approach to the matter which is simultaneous calculation of storm water conduit flow and overland...
-
Damage detection in a bolted lap joint using guided waves
PublicationThe paper presents the experimental investigation of guided waves application to the condition assessment of prestressed bolted connections and a concept of new quantitative indicator. The main goal of the research was the analysis of the influence of the contact conditions changes to the characteristics of a propagating disturbance. The experimental tests were carried out for a single bolted lap joint. The excitation and acquisition...
-
Ocean mixed layer dynamics: high-resolution simulations of wind, wave and convective effects
Open Research DataThis dataset contains results of high-resolution numerical simulations of the ocean mixed layer (OML) forced by wind, waves and cooling from the atmosphere, i.e., under strongly turbulent, convective conditions. The goal is to provide detailed, three-dimensional information about OML circulation, turbulent kinetic energy, and temperature and salinity...
-
MnWO4/reduced graphene oxide-based electrochemical sensing platform for simultaneous detection of catechol and resorcinol
Publicationn this study, a novel electrochemical sensor for accurate and sensitive catechol determination was demonstrated employing a screen-printed graphite electrode (SPGE) modified with MnWO4/reduced graphene oxide (MnWO4/rGO) nanocomposite. The MnWO4/rGO nanocomposite has been successfully prepared by using hydrothermal technique, and it was then characterized using several microscopic and spectroscopic methods (XRD, FE-SEM, and EDS)....
-
On existence and uniqueness of weak solutions for linear pantographic beam lattices models
PublicationIn this paper, we discuss well-posedness of the boundary-value problems arising in some “gradientincomplete” strain-gradient elasticity models, which appear in the study of homogenized models for a large class ofmetamaterials whosemicrostructures can be regarded as beam lattices constrained with internal pivots. We use the attribute “gradient-incomplete” strain-gradient elasticity for a model in which the considered strain energy...
-
Flexomagneticity in buckled shear deformable hard-magnetic soft structures
PublicationThis research work performs the first time exploring and addressing the flexomagnetic property in a shear deformable piezomagnetic structure. The strain gradient reveals flexomagneticity in a magnetization phenomenon of structures regardless of their atomic lattice is symmetrical or asymmetrical. It is assumed that a synchronous converse magnetization couples both piezomagnetic and flexomagnetic features into the material structure....
-
The influence of stainless steels microstructure evolution on the mechanical properties of pressure installation elements
PublicationIn this paper results of FEM analysis performed for pipe and 90o elbow, made of super duplex stainless steel, after precipitation of sigma phase (),were presented. Heat treatment conditions simulate accidental overheating that can occur in nuclear installations after cooling circulation fails. For initial and modified microstructure tensile test was performed and numerical description of work hardening curves was done. Verification...
-
The influence of stainless steels microstructure evolution on the mechanical properties of pressure installation elements
PublicationIn this paper results of FEM analysis performed for pipe and 90o elbow, made of super duplex stainless steel, after precipitation of sigma phase (s), were presented. Heat treatment conditions simulate accidental overheating that can occur in nuclear installations after cooling circulation fails. For initial and modified microstructure tensile test was performed and numerical description of work hardening curves was done. Verification...
-
Emulsifi ers from renewable materials: an eco-friendly synthesis and properties
PublicationThe focus of this study was the preparation of novel bio based polyglycerol emulsifiers characterized by a one pot synthesis, thus by modified properties with respect to interfacial activity and effectiveness as emulsion stabilizers. The final products of the esterification process, carried out in the presence of carboxylates were used directly as emulsifiers (without purification or fractionation). Polyglycerol emulsifiers obtained...
-
Development and Validation of SPE-HPLC-MS/MS Method for Determining Cyclophosphamide in Surface Waters
PublicationA rapid and selective method for trace amounts determination of cyclophosphamide in surface water samples has been developed. A solid phase extraction SPE method for extraction and clean-up procedure has been optimized for determination by reversed-phase high-performance liquid chromatography with tandem mass spectrometry. The analyses proceed in the positive ion mode by means of the electrospray ionization method (ESI). Clean...
-
Evaluation of the Cathodic Electrodeposition Effectiveness of the Hydroxyapatite Layer Used in Surface Modification of Ti6Al4V-Based Biomaterials
PublicationThe important issue associated with the design and the fabrication of the titanium and titanium alloy implants is the increase of their biointegration with bone tissue. In the presented paper, the research results concerning the conditions used in the cathodic deposition of hydroxyapatite on the surface Ti6Al4V substrates primarily modified by the production of TiO2 nanoporous coatings, TiO2 nanofibers, and titanate coatings, are...
-
Influence of metallic porous microlayer on pressure drop and heat transfer of stainless steel plate heat exchanger
PublicationThe experimental analysis of passive heat transfer intensification in the case of plate heat exchanger has been carried out. The metallic porous layer was created on the heat transfer surface of analyzed unit. The experiment was accomplished in two stages. In the first stage the commercial stainless steel gasketed plate heat exchanger was investigated, while in the second one – the identical heat exchanger but with the modified...
-
On thermal stability of piezo-flexomagnetic microbeams considering different temperature distributions
PublicationBy relying on the Euler–Bernoulli beam model and energy variational formula, we indicate critical temperature causes in the buckling of piezo-flexomagnetic microscale beams. The corresponding size-dependent approach is underlying as a second strain gradient theory. Small deformations of elastic solids are assessed, and the mathematical discussion is linear. Regardless of the pyromagnetic effects, the thermal loading of the thermal...
-
Rotor Blade Geometry Optimisation in Kaplan Turbine
PublicationThe paper presents the description of method and results of rotor blade shape optimisation. The rotor blading constitutes a part ofturbine flow path. Optimisation consists in selection of the shape that minimises ratio of polytrophic loss. Shape of the blade isdefined by the mean camber line and thickness of the airfoil. Thickness is distributed around the camber line based on the ratio ofdistribution. Global optimisation was done...
-
Minimal parameter implicit solvent model for ab initioelectronic-structure calculations
PublicationAbstract - We present an implicit solvent model for ab initio electronic-structure calculations which is fully self-consistent and is based on direct solution of the nonhomogeneous Poisson equation. The solute cavity is naturally defined in terms of an isosurface of the electronic density according to the formula of Fattebert and Gygi (J. Comput. Chem., 23 (2002) 662). While this model depends on only two parameters, we demonstrate...
-
Mathematical model of pennate muscle
PublicationThe purpose of this study is to create a new mathematical model of pennate striated skeletal muscle. This new model describes behaviour of isolated flat pennate muscle in two dimensions (2D) by taking into account that rheological properties of muscle fibres depend on their planar arrangement. A new mathematical model is implemented in two types: 1) numerical model of unipennate muscle (unipennate model); 2) numerical model of...
-
Effects of subfilter velocity modelling on dispersed phase in LES of heated channel flow
PublicationA non-isothermal turbulent flow with the dispersed phase is modelled using the Large Eddy Simulation (LES) approach for fluid, one-way coupled with the equations of point-particle evolution. The channel is heated at both walls and isoflux boundary conditions are applied for fluid. Particle velocity and thermal statistics are computed. Of particular interest are the r.m.s. profiles and the probability density function of particle...
-
On the plastic buckling of curved carbon nanotubes
PublicationThis research, for the first time, predicts theoretically static stability response of a curved carbon nanotube (CCNT) under an elastoplastic behavior with several boundary conditions. The CCNT is exposed to axial compressive loads. The equilibrium equations are extracted regarding the Euler–Bernoulli displacement field by means of the principle of minimizing total potential energy. The elastoplastic stress-strain is concerned...
-
Bending and buckling formulation of graphene sheets based on nonlocal simple first-order shear deformation theory
PublicationThis paper presents a formulation based on simple first-order shear deformation theory (S-FSDT) for large deflection and buckling of orthotropic single-layered graphene sheets (SLGSs). The S-FSDT has many advantages compared to the classical plate theory (CPT) and conventional FSDT such as needless of shear correction factor, containing less number of unknowns than the existing FSDT and strong similarities with the CPT. Governing...
-
Experimental investigation on straight and u-bend double tube heat exchanger with active and passive enhancement methods
PublicationAuthors in this work want to demonstrate the possibility to increase the heat transfer efficiency by using simple wire coil inserts to create turbulent flow in the boundary layer as well as air blowing into the annulus of the pipe. In the study, Wilson plot approach was applied in order to estimate heat transfer coefficients for all heat exchanger (HX) configurations. The study focuses on experimental values of heat transfer coefficient...
-
Comparative analysis of different numerical models of a steel radial gate
PublicationHydrotechnical structures are important components in water management system and general flooding safety. Their reliability should be ensured since potential damage might lead to catastrophic consequences. Weir gates are considered to be highly vulnerable elements of each hydro power plant, with regard to its dynamic resistance. The aim of the paper is to compare different numerical models and their influence on the results of...
-
Numerical assessment of ultimate strength of severe corroded stiffened plates
PublicationThe objective of this work is to investigate numerically (using the non-linear FEM and the approach stipulated by the Common Structural Rules) the severe nonuniform corrosion degradation effect on the ultimate strength of stiffened plates and compare the results to the already published experimental works. Different factors governing structural behavior of corroded stiffened plates are investigated, such as corrosion degradation level,...
-
HEAT TRANSFER CHARACTERISTICS OF ENHANCED SHELL AND COIL HEAT EXCHANGER
PublicationIn the paper authors presented their own constructions of shell and tube heat exchangers with intensified heat transfer. The shell and coils heat exchangers are in common use in heat ventilations and air conditioning systems. Those types of recuperators are quite simple constructions, the low value of pressure drops and good conditions of heat transfer. The present study shows an experimental investigation of the heat transfer...
-
Implementation of Hermite-Ritz method and Navier’s Technique for Vibration of Functionally Graded Porous Nanobeam Embedded in Winkler-Pasternak Elastic Foundation Using bi-Helmholtz type of nonlocal elasticity
PublicationPresent study is devoted to investigating the vibration characteristics of Functionally Graded (FG) porous nanobeam embedded in an elastic substrate of Winkler-Pasternak type. Classical beam theory (CBT) or Euler-Bernoulli beam theory (EBT) has been incorporated to address the displacement of the FG nanobeam. Bi-Helmholtz type of nonlocal elasticity is being used to capture the small scale effect of the FG nanobeam. Further, the...
-
Influence of soil anisotropic stiffness on the deformation induced by an open pit excavation.
PublicationIn this paper, the problem of deformation induced by an open pit excavation in anisotropic stiff soils is analysed by FE modelling. The presented research is focused on the influence of material model with anisotropic stiffness on the accuracy of deformation predictions as compared with the field measurements. A new hyperelastic-plastic model is applied to simulate anisotropic mechanical behaviour of stiff soils. It is capable...
-
Investigations On Water Circulation in Animal Sea-Water Basins – On the Example of Seals′ Breeding Pools
PublicationThis paper presents general comments concerning investigations on water circulation in animal breeding pools containing sea water. As an example are given results of computer simulation of water circulation in seals’ breeding pools situated in Marine Station at Hel, belonging to Oceanographic Institute, Gdansk University. A mathematical model of three main pools was prepared with taking into account their inflow and outflow water...