Search results for: ANN MODEL
-
Design and Analysis of Artificial Neural Network (ANN) Models for Achieving Self-Sustainability in Sanitation
PublicationThe present study investigates the potential of using fecal ash as an adsorbent and demonstrates a self-sustaining, optimized approach for urea recovery from wastewater streams. Fecal ash was prepared by heating synthetic feces to 500 °C and then processing it as an adsorbent for urea adsorption from synthetic urine. Since this adsorption approach based on fecal ash is a promising alternative for wastewater treatment, it increases...
-
ANN for human pose estimation in low resolution depth images
PublicationThe paper presents an approach to localize human body joints in 3D coordinates based on a single low resolution depth image. First a framework to generate a database of 80k realistic depth images from a 3D body model is described. Then data preprocessing and normalization procedure, and DNN and MLP artificial neural networks architectures and training are presented. The robustness against camera distance and image noise is analysed....
-
A review on application of artificial neural network (ANN) for performance and emission characteristics of diesel engine fueled with biodiesel-based fuels
PublicationBiodiesel has been emerging as a potential and promising biofuel for the strategy of reducing toxic emissions and improving engine performance. Computational methods aiming to offer numerical solutions were inevitable as a study methodology which was sometimes considered the only practical method. Artificial neural networks (ANN) were data-processing systems, which were used to tackle many issues in engineering and science, especially...
-
Exergy and Energy Analyses of Microwave Dryer for Cantaloupe Slice and Prediction of Thermodynamic Parameters Using ANN and ANFIS Algorithms
PublicationThe study targeted towards drying of cantaloupe slices with various thicknesses in a microwave dryer. The experiments were carried out at three microwave powers of 180, 360, and 540 W and three thicknesses of 2, 4, and 6 mm for cantaloupe drying, and the weight variations were determined. Artificial neural networks (ANN) and adaptive neuro-fuzzy inference systems (ANFIS) were exploited to investigate energy and exergy indices of...
-
An ANN-Based Method for On-Load Tap Changer Control in LV Networks with a Large Share of Photovoltaics—Comparative Analysis
PublicationThe paper proposes a new local method of controlling the on-load tap changer (OLTC) of a transformer to mitigate negative voltage phenomena in low-voltage (LV) networks with a high penetration of photovoltaic (PV) installations. The essence of the method is the use of the load compensation (LC) function with settings determined via artificial neural network (ANN) algorithms. The proposed method was compared with other selected...
-
An agent-based approach to ANN training
Publication -
Some engineering applications of ANN in CAD
PublicationW pracy przedstawiono zastosowanie sztucznych sieci neuronowych: dla obliczeń i doboru regulatora pneumatycznego, w optymalizacji pneumatycznych układów napędowych i w optymalizacji systemu amortyzacji siedziska.
-
Adaptive CAD-Model Construction Schemes
PublicationTwo advanced surrogate model construction techniques are discussed in this paper. The models employ radial basis function (RBF)interpolation scheme or artificial neural networks (ANN) with a new training algorithm. Adaptive sampling technique is applied withrespect to all variables. Histograms showing the quality of the models are presented. While the quality of RBF models is satisfactory, theperformance of the ANN models obtained...
-
Application of ANN and PCA to two-phase flow evaluation using radioisotopes
PublicationIn the two-phase flow measurements a method involving the absorption of gamma radiation can be applied among others. Analysis of the signals from the scintillation probes can be used to determine the number of flow parameters and to recognize flow structure. Three types of flow regimes as plug, bubble, and transitional plug – bubble flows were considered in this work. The article shows how features of the signals in the time and...
-
Implementation and performance evaluation of the agent-based algorithm for ANN training
Publication -
Approaches to experiment based friction modeling: polynomial approximation versus ann approximation
PublicationBadano warunki (poziom wymuszeń), przy których następowało wzbudzenie drgań mechanicznych przy tarciu ślizgowym konforemnego skojarzenia próbek wykonanych z Al2O3 (płaskie czoło tulei obracającej się względem swojej osi - powierzchnia płaska). Uzyskane dane eksperymentalne wykorzystano następnie do zbudowania modeli - stosując aproksymację wielomianami albo sztuczną siecią neuronową (ANN).
-
Potential and Use of the Googlenet Ann for the Purposes of Inland Water Ships Classification
PublicationThis article presents an analysis of the possibilities of using the pre-degraded GoogLeNet artificial neural network to classify inland vessels. Inland water authorities monitor the intensity of the vessels via CCTV. Such classification seems to be an improvement in their statutory tasks. The automatic classification of the inland vessels from video recording is a one of the main objectives of the Automatic Ship Recognition and...
-
On thermal and Flow Expert Systems Based on Artificial Neural Network (ANN)
PublicationZaprezentowano możliwość realizacji jednego z zadań systemów eksperckich, polegającego na określaniu rozmiaru eksploatacyjnej degradacji parametrów geometrycznych układów łopatkowych turbin. Dyskusję przeprowadzono w oparciu o zastosowanie wybranego typu sztucznej sieci neuronowej (SSN). Badano jakość i dokładność polegającą na dobrej identyfikacji rozmiaru degradacji przez tę wybraną SSN wykrywającą rozmiar degradacji geometrycznej....
-
Survival time prognosis under a Markov model of cancer development
PublicationIn this study we look at a breast cancer data set of women from Pomerania region collected in year 1987-1992 in the Medical University of Gdańsk. We analyze the clinical risk factors in conjunction with Markov model of cancer development. We evaluate Artificial Neural Network (ANN) survival time prediction via a simulation study.
-
Artificial Neural Network (ANN)-Based Voltage Stability Prediction of Test Microgrid Grid
Publication -
Application of artificial neural networks (ANN) as multiple degradation classifiers in thermal and flow diagnostics
PublicationPrzedyskutowano problem zwiększenia dokładności rozpoznawania wielokrotnych degradacji eksploatacyjnych urządzeń składowych dużych obiektów energetycznych. Zastosowani sieć neuronową (SSN) o skokowych funkcjach przejścia. Sprawdzono możliwości przyspieszenia treningu sieci neuronowych. Zastosowano modułową metodę budowy SSN, polegającą na dedykowaniu pojedynczej sieci do rozpoznawania tylko jednego typu degradacji.
-
An ANN-Based Approach for Prediction of Sufficient Seismic Gap between Adjacent Buildings Prone to Earthquake-Induced Pounding
PublicationEarthquake-induced structural pounding may cause major damages to structures, and therefore it should be prevented. This study is focused on using an artificial neural network (ANN) method to determine the sufficient seismic gap in order to avoid collisions between two adjacent buildings during seismic excitations. Six lumped mass models of structures with a different number of stories (from one to six) have been considered in...
-
ANN based evaluation of the NOx concentration in the exhaust gas of a marine two-stroke diesel engine
Publication -
Heavy duty vehicle fuel consumption modelling using artificial neural networks
PublicationIn this paper an artificial neural network (ANN) approach to modelling fuel consumption of heavy duty vehicles is presented. The proposed method uses easy accessible data collected via CAN bus of the truck. As a benchmark a conventional method, which is based on polynomial regression model, is used. The fuel consumption is measured in two different tests, performed by using a unique test bench to apply the load to the engine. Firstly,...
-
Mathematical modeling and prediction of pit to crack transition under cyclic thermal load using artificial neural network
PublicationThe formation of pitting is a major problem in most metals, which is caused by extremely localized corrosion that creates small holes in metal and subsequently, it changes into cracks under mechanical load, thermo-mechanical stress, and corrosion process factors. This research aims to study pit to crack transition phenomenon of steel boiler heat tubes under cyclic thermal load, and mathematical modeling...
-
Neural network model of ship magnetic signature for different measurement depths
PublicationThis paper presents the development of a model of a corvette-type ship’s magnetic signature using an artificial neural network (ANN). The capabilities of ANNs to learn complex relationships between the vessel’s characteristics and the magnetic field at different depths are proposed as an alternative to a multi-dipole model. A training dataset, consisting of signatures prepared in finite element method (FEM) environment Simulia...
-
Artificial neural network prophecy of ion exchange process for Cu (II) eradication from acid mine drainage
PublicationThe removal of heavy metal ions from wastewater was found to be significant when the cation exchange procedure was used effectively. The model of the cation exchange process was built using an artificial neural network (ANN). The acid mine drainage waste’s Cu(II) ion was removed using Indion 730 cation exchange resin. Experimental data from 252 cycles were recorded. In a column study, 252 experimental observations validated the...
-
Comparison of ANN Classifier to the Neuro-Fuzzy System for Collusion Detection in the Tender Procedures of Road Construction Sector
Publication -
Optimized Computational Intelligence Model for Estimating the Flexural Behavior of Composite Shear Walls
PublicationThis article presents a novel approach to estimate the flexural capacity of reinforced concrete-filled composite plate shear walls using an optimized computational intelligence model. The proposed model was developed and validated based on 47 laboratory data points and the Transit Search (TS) optimization algorithm. Using 80% of the experimental dataset, the optimized model was selected by determining the unknown coefficients of...
-
Application of a hybrid mechanistic/machine learning model for prediction of nitrous oxide (N2O) production in a nitrifying sequencing batch reactor
PublicationNitrous oxide (N2O) is a key parameter for evaluating the greenhouse gas emissions from wastewater treatment plants. In this study, a new method for predicting liquid N2O production during nitrification was developed based on a mechanistic model and machine learning (ML) algorithm. The mechanistic model was first used for simulation of two 15-day experimental trials in a nitrifying sequencing batch reactor. Then, model predictions...
-
Applying artificial neural networks for modelling ship speed and fuel consumption
PublicationThis paper deals with modelling ship speed and fuel consumption using artificial neural network (ANN) techniques. These tools allowed us to develop ANN models that can be used for predicting both the fuel consumption and the travel time to the destination for commanded outputs (the ship driveline shaft speed and the propeller pitch) selected by the ship operator. In these cases, due to variable environmental conditions, making...
-
Prediction of metal deformation due to line heating; an alternative method of mechanical bending, based on artificial neural network approach
PublicationLine heating is one of the alternative methods of forming metals and this kind of forming uses the heating torch as a source of heat input. During the process, many parameters are considered like the size of the substrate, thickness, cooling method, source power intensity, the travel speed of the power source, the sequence of heating, and so on. It is important to analyze the factors affecting the...
-
Numerical Modelling for Prediction of Compression Index from Soil Index Properties in Jimma town, Ethiopia
PublicationIn this study, correlations are developed to predict compression index (Cc) from index parameters so that one can be able to model Jimma soils with compression index using simple laboratory tests. Undisturbed and disturbed soil samples from twelve different locations in Jimma town were collected. Laboratory tests like specific gravity, grain size analysis, Atterberg limit, and one-dimensional consolidation test for a total of twenty-four...
-
Estimation of the Ultimate Strength of FRP Strips-to-Masonry Substrates Bond
PublicationFiber-Reinforced Polymers (FRP) were developed as a new method over the past decades due to their many beneficial mechanical properties, and they are commonly applied to strengthen masonry structures. In this paper, the Artificial Neural Network (ANN), K-fold Cross-Validation (KFCV) technique, Multivariate Adaptive Regression Spline (MARS) method, and M5 Model Tree (M5MT) method were utilized to predict the ultimate strength of...
-
Modelowanie przepływu pary przez okołodźwiękowe wieńce turbinowe z użyciem sztucznych sieci neuronoych
PublicationNiniejszy artykuł stanowi opis modelu przepływu pary przez okołodźwiękowe stopnie turbinowe, stworzonego w oparciu o sztuczne sieci neuronowe (SSN). Przedstawiony model neuronowy pozwala na wyznaczenie rozkładu wybranych parametrów w analizowanym przekroju kanału przepływowego turbiny dla rozpatrywanego zakresu wartości ciśnienia wlotowego.
-
Heavy Duty Vehicle Fuel Consumption Modelling Based on Exploitation Data by Using Artificial Neural Networks
PublicationOne of the ways to improve the fuel economy of heavy duty trucks is to operate the combustion engine in its most efficient operating points. To do that, a mathematical model of the engine is required, which shows the relations between engine speed, torque and fuel consumption in transient states. In this paper, easy accessible exploitation data collected via CAN bus of the heavy duty truck were used to obtain a model of a diesel...
-
From Data to Decision: Interpretable Machine Learning for Predicting Flood Susceptibility in Gdańsk, Poland
PublicationFlood susceptibility prediction is complex due to the multifaceted interactions among hydrological, meteorological, and urbanisation factors, further exacerbated by climate change. This study addresses these complexities by investigating flood susceptibility in rapidly urbanising regions prone to extreme weather events, focusing on Gdańsk, Poland. Three popular ML techniques, Support Vector Machine (SVM), Random Forest (RF), and...
-
Automatic music set organizatio based on mood of music / Automatyczna organizacja bazy muzycznej na podstawie nastroju muzyki
PublicationThis work is focused on an approach based on the emotional content of music and its automatic recognition. A vector of features describing emotional content of music was proposed. Additionally, a graphical model dedicated to the subjective evaluation of mood of music was created. A series of listening tests was carried out, and results were compared with automatic mood recognition employing SOM (Self Organizing Maps) and ANN (Artificial...
-
Cost-Efficient Multi-Objective Design of Miniaturized Microwave Circuits Using Machine Learning and Artificial Neural Network
PublicationDesigning microwave components involves managing multiple objectives such as center frequencies, impedance matching, and size reduction for miniaturized structures. Traditional multi-objective optimization (MO) approaches heavily rely on computationally expensive population-based methods, especially when exe-cuted with full-wave electromagnetic (EM) analysis to guarantee reliability. This paper introduces a novel and cost-effective...
-
Mutual Coupling Reduction in Antenna Arrays Using Artificial Intelligence Approach and Inverse Neural Network Surrogates
PublicationThis paper presents a novel approach to reduce undesirable coupling in antenna arrays using custom-designed resonators and inverse surrogate modeling. To illustrate the concept, two stand-ard patch antenna cells with 0.07λ edge-to-edge distance are designed and fabricated to operate at 2.45 GHz. A stepped-impedance resonator is applied between the antennas to suppress their mutual coupling. For the first time, the optimum values...
-
Rotor Blade Geometry Optimisation in Kaplan Turbine
PublicationThe paper presents the description of method and results of rotor blade shape optimisation. The rotor blading constitutes a part ofturbine flow path. Optimisation consists in selection of the shape that minimises ratio of polytrophic loss. Shape of the blade isdefined by the mean camber line and thickness of the airfoil. Thickness is distributed around the camber line based on the ratio ofdistribution. Global optimisation was done...
-
Predicting the peak structural displacement preventing pounding of buildings during earthquakes
PublicationThe aim of the present paper is to verify the effectiveness of the artificial neural network (ANN) in predicting the peak lateral displacement of multi-story building during earthquakes, based on the peak ground acceleration (PGA) and building parameters. For the purpose of the study, the lumped-mass multi-degree-of-freedom structural model and different earthquake records have been considered. Firstly, values of stories mass and...
-
Mai’a K. Davis Cross, Ireneusz Paweł Karolewski (red.), European-Russian Power Relations in Turbulent Times, University of Michigan Press, Ann Arbor 2021, ss. 311.
Publication -
DEEP LEARNING BASED ON X-RAY IMAGING IMPROVES COXARTHROSIS DETECTION
PublicationObjective: The purpose of the study was to create an Artificial Neural Network (ANN) based on X-ray images of the pelvis, as an additional tool to automate and improve the diagnosis of coxarthrosis. The research is focused on joint space narrowing, which is a radiological symptom showing the thinning of the articular cartilage layer, which is translucent to X-rays. It is the first and the most important of the radiological signs...
-
Ship Resistance Prediction with Artificial Neural Networks
PublicationThe paper is dedicated to a new method of ship’s resistance prediction using Artificial Neural Network (ANN). In the initial stage selected ships parameters are prepared to be used as a training and validation sets. Next step is to verify several network structures and to determine parameters with the highest influence on the result resistance. Finally, other parameters expected to impact the resistance are proposed. The research utilizes...
-
Deep-Learning-Based Precise Characterization of Microwave Transistors Using Fully-Automated Regression Surrogates
PublicationAccurate models of scattering and noise parameters of transistors are instrumental in facilitating design procedures of microwave devices such as low-noise amplifiers. Yet, data-driven modeling of transistors is a challenging endeavor due to complex relationships between transistor characteristics and its designable parameters, biasing conditions, and frequency. Artificial neural network (ANN)-based methods, including deep learning...
-
A decision-making system supporting selection of commanded outputs for a ship's propulsion system with a controllable pitch propeller
PublicationThe ship's operators have to make decisions regarding the values of commanded outputs (commanded engine speed and pitch ratio) which ensure maximum vessel speed and minimum fuel consumption. Obviously, the presented decision problems are opposed. Therefore, there is a need for a compromise solution that enables more flexible vessel voyage planning. This paper deals with development of a computer-aided system supporting selection...
-
Efficient Calibration of Cost-Efficient Particulate Matter Sensors Using Machine Learning and Time-Series Alignment
PublicationAtmospheric particulate matter (PM) poses a significant threat to human health, infiltrating the lungs and brain and leading to severe issues such as heart and lung diseases, cancer, and premature death. The main sources of PM pollution are vehicular and industrial emissions, construction and agricultural activities, and natural phenomena such as wildfires. Research underscores the absence of a safe threshold for particulate exposure,...
-
Quantitative Risk Assessment in Construction Disputes Based on Machine Learning Tools
PublicationA high monetary value of the construction projects is one of the reasons of frequent disputes between a general contractor (GC) and a client. A construction site is a unique, one-time, and single-product factory with many parties involved and dependent on each other. The organizational dependencies and their complexity make any fault or mistake propagate and influence the final result (delays, cost overruns). The constant will...
-
Prediction of maximum tensile stress in plain-weave composite laminates with interacting holes via stacked machine learning algorithms: A comparative study
PublicationPlain weave composite is a long-lasting type of fabric composite that is stable enough when being handled. Open-hole composites have been widely used in industry, though they have weak structural performance and complex design processes. An extensive number of material/geometry parameters have been utilized for designing these composites, thereby an efficient computational tool is essential for that purpose. Different Machine Learning...
-
Comparative study on total nitrogen prediction in wastewater treatment 1 plant and effect of various feature selection methods on machine learning algorithms performance
PublicationWastewater characteristics prediction in wastewater treatment plants (WWTPs) is valuable and can reduce the number of sampling, energy, and cost. Feature Selection (FS) methods are used in the pre-processing section for enhancing the model performance. This study aims to evaluate the effect of seven different FS methods (filter, wrapper, and embedded methods) on enhancing the prediction accuracy for total nitrogen (TN) in the WWTP...
-
Food analysis using artificial senses.
PublicationNowadays, consumers are paying great attention to the characteristics of food such as smell, taste, and appearance. This motivates scientists to imitate human senses using devices known as electronic senses. These include electronic noses, electronic tongues, and computer vision. Thanks to the utilization of various sensors and methods of signal analysis, artificial senses are widely applied in food analysis for process monitoring...
-
Application 2D Descriptors and Artificial Neural Networks for Beta-Glucosidase Inhibitors Screening
PublicationBeta-glucosidase inhibitors play important medical and biological roles. In this study, simple two-variable artificial neural network (ANN) classification models were developed for beta-glucosidase inhibitors screening. All bioassay data were obtained from the ChEMBL database. The classifiers were generated using 2D molecular descriptors and the data miner tool available in the STATISTICA package (STATISTICA Automated Neural...
-
Energy consumption optimization in wastewater treatment plants: Machine learning for monitoring incineration of sewage sludge
PublicationBiomass management in terms of energy consumption optimization has become a recent challenge for developed countries. Nevertheless, the multiplicity of materials and operating parameters controlling energy consumption in wastewater treatment plants necessitates the need for sophisticated well-organized disciplines in order to minimize energy consumption and dissipation. Sewage sludge (SS) disposal management is the key stage of...
-
Machine-learning-based precise cost-efficient NO2 sensor calibration by means of time series matching and global data pre-processing
PublicationAir pollution remains a considerable contemporary challenge affecting life quality, the environment, and economic well-being. It encompasses an array of pollutants—gases, particulate matter, biological molecules—emanating from sources such as vehicle emissions, industrial activities, agriculture, and natural occurrences. Nitrogen dioxide (NO2), a harmful gas, is particularly abundant in densely populated urban areas. Given its...