Search results for: INTERACTIONS WITH BIOMOLECULES
-
Agnieszka Witkowska dr hab. inż.
People -
Adolfo Poma
PeopleI am the group leader of the computational modelling of biomolecules divison at the institute of Fundamental Technological Research Polish Academy of Sciences in Poland. My group was hosted between 2021-2022 by International Centre for Research on Innovative Bio-based Materials (ICRI-BioM). In 2008, I got a Master degree in computational physics from the State University of Campinas, Brazil. Then I moved to Germany and under the...
-
Chemical Aspects of Biological Activity of Isothiocyanates and Indoles, the Products of Glucosinolate Decomposition
PublicationThere is growing evidence that cancer chemoprevention employing natural, bioactive compounds may halt or at least slow down the different stages of carcinogenesis. A particularly advantageous effect is attributed to derivatives of sulfur-organic phytochemicals, such as glucosinolates (GLs) synthesized mainly in Brassicaceae plant family. GLs are hydrolysed enzymatically to bioactive isothiocyanates (ITC) and indoles, which exhibit strong...
-
Au nanoparticles identifiction with the use of AFM Volta potential mapping
Open Research DataThe specific physical, chemical and electrochemical electrical properties of gold nanoparticles have led to their extensive use as high-performance chemical and biochemical sensors. The described properties relate to surface plasmon resonance, fluorescence quenching or enhancement, high electrical conductivity and light scattering. The described nanoparticles...
-
Up-to-date strategies and future trends towards the extraction and purification of Capsaicin: A comprehensive review
PublicationBackground According to the current need of manufacturing healthier products, food companies are seeking specific biomolecules that may offer additional added value (i.e., biological activities) to the new food formulations. Capsaicin, as the pungent ingredient of chili peppers, has become so far one of the target biomolecules explored since the 1950s. There is evidence demonstrating that capsaicin exhibits important biological...
-
Effect of urea and glycine betaine on the hydration sphere of model molecules for the surface features of proteins
PublicationWater properties may significantly affect protein stability. Osmolytes are compounds that intrinsically affect water in many different ways and thus can influence proteins with this type of indirect mechanism. In this study, we characterize water properties in ternary solutions: model–water–osmolyte, with two model molecules: N-methylacetamide (NMA) and dimethyl sulfoxide (DMSO) and two osmolytes: glycine betaine (TMG)and urea....
-
Paweł Możejko dr hab.
People -
Application of Aqueous Biphasic Systems Extraction in Various Biomolecules Separation and Purification: Advancements Brought by Quaternary Systems
PublicationAqueous biphasic systems (ABS) extraction is a simple, selective, efficient and easy to scale-up technology that, over the years, has attracted a considerable attention from the researcher community as an alternative methodology in downstream processing of a wide variety of biomolecules. This review summarizes and discusses the fundamental features of ABS, as well as its advantages and disadvantages, as a separation and purification...
-
A comprehensive review on current and emerging technologies toward the valorization of bio‐based wastes and by products from foods
PublicationIndustries in the agro-food sector are the largest generators of waste in the world. Agro-food wastes and by products originate from the natural process of senescence, pretreatment, handling, and manufacturing processes of food and beverage products. Notably, most of the wastes are produced with the transformation of raw materials (such as fruits, vegetables, plants, tubers, cereals, and dairy products) into different processed...
-
Development of polyurethanes for bone repair
PublicationThe purpose of this paper is to review recent developments on polyurethanes aimed at the design, synthesis, modifications, and biological properties in the field of bone tissue engineering. Different polyurethane systems are presented and discussed in terms of biodegradation, biocompatibility and bioactivity. A comprehensive discussion is provided of the influence of hard to soft segments ratio, catalysts, stiffness and hydrophilicity...
-
Unraveling Energy Transfer and Fluorescence Quenching Dynamics in Biomolecular Complexes: A Comprehensive Study of Imiquimod-Rifampicin Interaction.
PublicationIn nature, numerous biomolecules are implicated in charge transfer (CT) and energy transfer (ET) mechanisms crucial for fundamental processes such as photosynthesis. Unveiling these mechanisms is pertinent to multiple disciplines including chemistry, engineering and biochemistry. This letter presents a study involving two molecules forming a model system with efficient ET properties. Specifically, their complex exhibits dark quenching...
-
Enzyme-conjugated MXene nanocomposites for biosensing and biocatalysis acuities
PublicationEngineered two-dimensional (2-D) MXenes-based materials with tunable characteristics and multi-functionalities have brought up new paradigms in the biosensing and catalysis of chemical compounds. The profusion of electroactive functional moieties on the surface of few/multi-layer MXenes facilitates their ability to retain biomolecules such as enzymes resulting in unique dimensions for bioanalytical and biosensing applications....
-
Recent Advances in Graphene Oxide-Based Membranes for Heavy Metal Ions Separation
PublicationGraphene oxide (GO)-based membranes have been widely investigated for separation of dyes, salt ions, heavy metal ions, and biomolecules due to their high mechanical strength, single-layered structure, large surface area, and high affinity. However, due to irregular pore structure, nanochannels, interlayer distance, easy functionalization, swelling effect, and chemical stability under aqueous environment limited their separation...
-
Recent total cross section measurements in electron scattering from molecules
PublicationThe grand-total cross sections (TCSs) for electron scattering from a range of molecules, measured over the period 2009-2019 in various laboratories, with the use of different electron transmission systems, are reviewed. Where necessary, the presented TCS data are also compared to earlier results. Collection of investigated molecular targets (biomolecules, biofuels, molecules of technological application,hydrocarbons) reflects their...
-
Explicit solvent repulsive scaling replica exchange molecular dynamics ( RS‐REMD ) in molecular modeling of protein‐glycosaminoglycan complexes
PublicationGlycosaminoglcyans (GAGs), linear anionic periodic polysaccharides, are crucial for many biologically relevant functions in the extracellular matrix. By interacting with proteins GAGs mediate processes such as cancer development, cell proliferation and the onset of neurodegenerative diseases. Despite this eminent importance of GAGs, they still represent a limited focus for the computational community in comparison to other classes...
-
Silica In Silico: A Molecular Dynamics Characterization of the Early Stages of Protein Embedding for Atom Probe Tomography
PublicationA novel procedure for the application of atom probe tomography (APT) to the structural analysis of biological systems, has been recently proposed, whereby the specimen is embedded by a silica matrix and ablated by a pulsed laser source. Such a technique, requires that the silica primer be properly inert and bio-compatible, keeping the native structural features of the system at hand, while condensing into an amorphous, glass-like...
-
Molecular Targets for Anticandidal Chemotherapy
PublicationA relatively small number of anticandidal chemotherapeutics used in clinical practice is at least in part consequence of a limited number of their molecular targets: ergosterol in the membrane, lanosterol demethylase, b(1!3) glucan synthase, and DNA/RNA biosynthesis. Much more potential novel targets have been revealed by the comparative genomic studies identifying essential genes unique for Candida albicans or resulted from recognition...
-
High-performance graphene-based biosensor using a metasurface of asymmetric silicon disks
PublicationIn recent years, optical biosensors widely applicable for medical applications, have received much attention. In this paper, we propose a high-performance polarization-insensitive optical biosensor based on a graphene-dielectric metasurface. The metasurface consists of an asymmetric dielectric disk array that supports a high Q-factor Fano resonance. The provided sharp Fano resonance results in an enhanced light-matter interaction...
-
Chitosan-based electrospun nanofibers for encapsulating food bioactive ingredients: A review
PublicationToday, society has been more aware of healthy food products and related items containing bioactive compounds, which potentially contribute to human health. Unfortunately, the long-term stability and bioactivity of biologically active compounds against environmental factors compromise their target and effective action. In this way, lab-designed vehicles, such as nanoparticles and nanofibers, provide enough properties for their preservation...
-
Deep eutectic solvents for the food industry: extraction, processing, analysis, and packaging applications – a review
PublicationFood factories seek the application of natural products, green feedstock and eco-friendly processes, which minimally affect the properties of the food item and products. Today, water and conventional polar solvents are used in many areas of food science and technology. As modern chemistry evolves, new green items for building eco-friendly processes are being developed. This is the case of deep eutectic solvents (DESs), named the...
-
Rapid Characterization of the Human Breast Milk Lipidome Using a Solid-Phase Microextraction and Liquid Chromatography-Mass Spectrometry-Based Approach.
PublicationHuman breast milk (HBM) is a biofluid consisting of various biomolecules such as proteins, lipids, carbohydrates, minerals and bioactive substances. Due to its unique and complex composition, HBM provides not only nutritional components required for the growth of the infant, but also additional protection against infections. Global insight into the composition of HBM is crucial to understanding the health benefits infants receive...
-
Dominant Pathways of Adenosyl Radical-Induced DNA Damage Revealed by QM/MM Metadynamics
PublicationBrominated nucleobases sensitize double stranded DNA to hydrated electrons, one of the dominant genotoxic species produced in hypoxic cancer cells during radiotherapy. Such radiosensitizers can therefore be administered locally to enhance treatment efficiency within the solid tumor while protecting the neighboring tissue. When a solvated electron attaches to 8-bromoadenosine, a potential sensitizer, the dissociation of bromide...
-
Phase I and phase II metabolism simulation of antitumor-active 2-hydroxyacridinone with electrochemistry coupled on-line with mass spectrometry.
PublicationHere, we report the metabolic profile and the results of associated metabolic studies of 2-hydroxyacridinone (2-OH-AC), the reference compound for antitumor-active imidazo- and triazoloacridinones. Electrochemistry coupled with mass spectrometry was applied to simulate the general oxidative metabolism of 2-OH-AC for the first time. The reactivity of 2-OH-AC products to biomolecules was also examined. The usefulness of the electrochemistry...
-
Deep eutectic solvents microbial toxicity: Current state of art and critical evaluation of testing methods
PublicationDeep eutectic solvents (DESs) were described at the beginning of 21st century and they consist of a mixture of two or more solid components, which gives rise to a lower melting point compared to the starting materials. Over the years, DESs have proved to be a promising alternative to traditional organic solvents and ionic liquids (ILs) due to their low volatility, low inflammability, easy preparation, and usually low cost of compounds...
-
Electrochemical determination of neurotransmitter serotonin using boron/nitrogen co-doped diamond-graphene nanowall-structured particles
PublicationElectrode fouling is a major issue in biological detection due to the adhesion of the protein itself and polymerization of biomolecules on the electrode surface, impeding the electron transfer ability and decreasing the current response. To overcome this issue, the use of anti-fouling material, especially boron-doped diamond (BDD) electrode, is an alternative way. However, the electrocatalytic activity of BDD is inadequate compared...
-
Qualitative analysis of phospholipids and their oxidised derivatives – used techniques and examples of their applications related to lipidomic research and food analysis
PublicationPhospholipids (PLs) are important biomolecules that not only constitute structural building blocks and scaffolds of cell and organelle membranes, but also play a vital role in cell biochemistry and physiology. Moreover, dietary exogenous PLs are characterized by high nutritional value and other beneficial health effects, which are confirmed by numerous epidemiological studies. For this reason, PLs are of high interest in lipidomics...
-
Designing a High-sensitivity Microscale Triple-band Biosensor based on Terahertz MTMs to provide a perfect absorber for Non-Melanoma Skin Cancer diagnostic
PublicationNon-melanoma skin cancer (NMSC) is among the most prevalent forms of cancer originating in the top layer of the skin, with basal cell carcinoma (BCC) and squamous cell carcinoma (SCC) being its primary categories. While both types are highly treatable, the success of treatment hinges on early diagnosis. Early-stage NMSC detection can be achieved through clinical examination, typically involving visual inspection. An alternative,...
-
Practical Approach to Large-Scale Electronic Structure Calculations in Electrolyte Solutions via Continuum-Embedded Linear-Scaling Density Functional Theory
PublicationWe present the implementation of a hybrid continuum-atomistic model for including the effects of a surrounding electrolyte in large-scale density functional theory (DFT) calculations within the Order-N Electronic Total Energy Package (ONETEP) linear-scaling DFT code, which allows the simulation of large complex systems such as electrochemical interfaces. The model represents the electrolyte ions as a scalar field and the solvent...
-
Physics-Based Coarse-Grained Modeling in Bio- and Nanochemistry
PublicationCoarse-grained approaches, in which groups of atoms are represented by single interaction sites, are very important in biological and materials sciences because they enable us to cover the size- and time-scales by several orders of magnitude larger than those available all-atom simulations, while largely keeping the details of the systems studied. The coarse-grained approaches differ by the scheme of reduction and by the origin...
-
Clickable polysaccharides for biomedical applications: A comprehensive review
PublicationRecent advances in materials science and engineering highlight the importance of designing sophisticated biomaterials with well-defined architectures and tunable properties for emerging biomedical applications. Click chemistry, a powerful method allowing specific and controllable bioorthogonal reactions, has revolutionized our ability to make complex molecular structures with a high level of specificity, selectivity, and yield...
-
Anticancer Study on IrIII and RhIII Half-Sandwich Complexes with the Bipyridylsulfonamide Ligand
PublicationTwo non-platinum compounds, organometallic half-sandwich complexes [(η 5 -Cp)IrCl(L)]PF 6 (1) and [(η 5 -Cp)RhCl(L)]PF 6 (2) were prepared by treating pentamethylcyclopentadienyl chloride dimers of iridium(III) or rhodium(III) with the obtained 4-amino-N-(2,2'-bipyridin-5- yl)benzenesulfonamide ligand (L) and ammonium hexafluorophosphate. The crystal structures of ligand (L) and complexes 1 and 2 were obtained and then analyzed. Coordination...