Filters
total: 485
filtered: 386
Search results for: adaboost classifier
-
Multiplicative Long Short-Term Memory with Improved Mayfly Optimization for LULC Classification
PublicationLand Use and Land Cover (LULC) monitoring is crucial for global transformation, sustainable land control, urban planning, urban growth prediction, and the establishment of climate regulations for long-term development. Remote sensing images have become increasingly important in many environmental planning and land use surveys in recent times. LULC is evaluated in this research using the Sat 4, Sat 6, and Eurosat datasets. Various...
-
Direct brain stimulation modulates encoding states and memory performance in humans
PublicationPeople often forget information because they fail to effectively encode it. Here, we test the hypothesis that targeted electrical stimulation can modulate neural encoding states and subsequent memory outcomes. Using recordings from neurosurgical epilepsy patients with intracranially implanted electrodes, we trained multivariate classifiers to discriminate spectral activity during learning that predicted remembering from forgetting,...
-
Comparison of Classification Methods for EEG Signals of Real and Imaginary Motion
PublicationThe classification of EEG signals provides an important element of brain-computer interface (BCI) applications, underlying an efficient interaction between a human and a computer application. The BCI applications can be especially useful for people with disabilities. Numerous experiments aim at recognition of motion intent of left or right hand being useful for locked-in-state or paralyzed subjects in controlling computer applications....
-
Application 2D Descriptors and Artificial Neural Networks for Beta-Glucosidase Inhibitors Screening
PublicationBeta-glucosidase inhibitors play important medical and biological roles. In this study, simple two-variable artificial neural network (ANN) classification models were developed for beta-glucosidase inhibitors screening. All bioassay data were obtained from the ChEMBL database. The classifiers were generated using 2D molecular descriptors and the data miner tool available in the STATISTICA package (STATISTICA Automated Neural...
-
Bees Detection on Images: Study of Different Color Models for Neural Networks
PublicationThis paper presents an approach to bee detection in video streams using a neural network classifier. We describe the motivation for our research and the methodology of data acquisition. The main contribution to this work is a comparison of different color models used as an input format for a feedforward convolutional architecture applied to bee detection. The detection process has is based on a neural binary classifier that classifies...
-
Study of Multi-Class Classification Algorithms’ Performance on Highly Imbalanced Network Intrusion Datasets
PublicationThis paper is devoted to the problem of class imbalance in machine learning, focusing on the intrusion detection of rare classes in computer networks. The problem of class imbalance occurs when one class heavily outnumbers examples from the other classes. In this paper, we are particularly interested in classifiers, as pattern recognition and anomaly detection could be solved as a classification problem. As still a major part of...
-
Improving automatic surveillance by sound analysis
PublicationAn automatic surveillance system, based on event detection in the video image can be improved by implementing algorithms for audio analysis. Dangerous or illegal actions are often connected with distinctive sound events like screams or sudden bursts of energy. A method for detection and classification of alarming sound events is presented. Detection is based on the observation of sudden changes in sound level in distinctive sub-bands...
-
Finger Vein Presentation Attack Detection Method Using a Hybridized Gray-Level Co-Occurrence Matrix Feature with Light-Gradient Boosting Machine Model
PublicationPresentation Attack Detection (PAD) is crucial in biometric finger vein recognition. The susceptibility of these systems to forged finger vein images is a significant challenge. Existing approaches to mitigate presentation attacks have computational complexity limitations and limited data availability. This study proposed a novel method for identifying presentation attacks in finger vein biometric systems. We have used optimal...
-
Noise profiling for speech enhancement employing machine learning models
PublicationThis paper aims to propose a noise profiling method that can be performed in near real-time based on machine learning (ML). To address challenges related to noise profiling effectively, we start with a critical review of the literature background. Then, we outline the experiment performed consisting of two parts. The first part concerns the noise recognition model built upon several baseline classifiers and noise signal features...
-
A machine learning approach to classifying New York Heart Association (NYHA) heart failure
PublicationAccording to the European Society of Cardiology, globally the number of patients with heart failure nearly doubled from 33.5 million in 1990 to 64.3 million in 2017, and is further projected to increase dramatically in this decade, still remaining a leading cause of morbidity and mortality. One of the most frequently applied heart failure classification systems that physicians use is the New York Heart Association (NYHA) Functional...
-
Forecasting energy consumption and carbon dioxide emission of Vietnam by prognostic models based on explainable machine learning and time series
PublicationThis study assessed the usefulness of algorithms in estimating energy consumption and carbon dioxide emissions in Viet- nam, in which the training dataset was used to train the models linear regression, random forest, XGBoost, and AdaBoost, allowing them to comprehend the patterns and relationships between population, GDP, and carbon dioxide emissions, energy consumption. The results revealed that random forest, XGBoost, and AdaBoost...
-
Towards bees detection on images: study of different color models for neural networks
PublicationThis paper presents an approach to bee detection in videostreams using a neural network classifier. We describe the motivationfor our research and the methodology of data acquisition. The maincontribution to this work is a comparison of different color models usedas an input format for a feedforward convolutional architecture appliedto bee detection. The detection process has is based on a neural...
-
Optimal selection of input features and an acompanying neural network structure for the classification purposes - skin lesions case study
PublicationMalignant melanomas are the most deadly type of skin cancers however detected early enough give a high chances for successful treatment. The last years saw the dynamic growth of interest of automatic computer-aided skin cancer diagnosis. Every month brings new research results on new approaches to this problem, new methods of preprocessing, new classifiers, new ideas to follow etc. In particular, the rapid development of dermatoscopy,...
-
Detekcja obiektów graficznych i ekstrakcja ich parametrów
PublicationW rozdziale przedstawiono wybrane metody wykrywania obiektów na obrazach, a także sposoby ich opisywania za pomocą parametrów umożliwiających późniejszą klasyfikację. Zaprezentowano algorytmy analizy obrysu obiektu (podział linii brzegowej na tokeny, wykorzystanie symetrii) oraz analizy tekstury (NxM-gramy, lokalne wzorce, filtry Gabora), omówiono także wykrywanie obiektów metodą AdaBoost.
-
Viewpoint independent shape-based object classification for video surveillance
PublicationA method for shape based object classification is presented.Unlike object dimension based methods it does not require any system calibration techniques. A number of 3D object models are utilized as a source of training dataset for a specified camera orientation. Usage of the 3D models allows to perform the dataset creation process semiautomatically. The background subtraction method is used for the purpose of detecting moving objects...
-
Voice command recognition using hybrid genetic algorithm
PublicationAbstract: Speech recognition is a process of converting the acoustic signal into a set of words, whereas voice command recognition consists in the correct identification of voice commands, usually single words. Voice command recognition systems are widely used in the military, control systems, electronic devices, such as cellular phones, or by people with disabilities (e.g., for controlling a wheelchair or operating a computer...
-
Comparison of the effectiveness of automatic EEG signal class separation algorithms
PublicationIn this paper, an algorithm for automatic brain activity class identification of EEG (electroencephalographic) signals is presented. EEG signals are gathered from seventeen subjects performing one of the three tasks: resting, watching a music video and playing a simple logic game. The methodology applied consists of several steps, namely: signal acquisition, signal processing utilizing z-score normalization, parametrization and...
-
Diagnostyka analogowych filtrów wielosekcyjnych oparta na klasyfikato-rach neuronowych z dwucentrowymi funkcjami bazowymi
PublicationPrzedmiotem artykułu jest zastosowanie klasyfikatora z dwucentrowymi funkcjami bazowymi do lokalizacji uszkodzeń w wielosekcyjnych torach analogowych elektronicznych systemów wbudowanych sterowanych mikrokontrolerem. Przedstawiono szczegóły procedury pomiarowej oraz metody detekcji i lokalizacji uszkodzeń toru analogowego z wykorzysta-niem klasyfikatora DB zaimplementowanego w postaci algorytmicznej w kodzie programu mikrokontrolera....
-
When Neural Networks Meet Decisional DNA: A Promising New Perspective for Knowledge Representation and Sharing
PublicationABSTRACT In this article, we introduce a novel concept combining neural network technology and Decisional DNA for knowledge representation and sharing. Instead of using traditional machine learning and knowledge discovery methods, this approach explores the way of knowledge extraction through deep learning processes based on a domain’s past decisional events captured by Decisional DNA. We compare our approach with kNN (k-nearest...
-
Selection of an artificial pre-training neural network for the classification of inland vessels based on their images
PublicationArtificial neural networks (ANN) are the most commonly used algorithms for image classification problems. An image classifier takes an image or video as input and classifies it into one of the possible categories that it was trained to identify. They are applied in various areas such as security, defense, healthcare, biology, forensics, communication, etc. There is no need to create one’s own ANN because there are several pre-trained...
-
Empirical analysis of tree-based classification models for customer churn prediction
PublicationCustomer churn is a vital and reoccurring problem facing most business industries, particularly the telecommunications industry. Considering the fierce competition among telecommunications firms and the high expenses of attracting and gaining new subscribers, keeping existing loyal subscribers becomes crucial. Early prediction of disgruntled subscribers can assist telecommunications firms in identifying the reasons for churn and...
-
A Data Driven Model for Predicting RNA-Protein Interactions based on Gradient Boosting Machine
PublicationRNA protein interactions (RPI) play a pivotal role in the regulation of various biological processes. Experimental validation of RPI has been time-consuming, paving the way for computational prediction methods. The major limiting factor of these methods has been the accuracy and confidence of the predictions, and our in-house experiments show that they fail to accurately predict RPI involving short RNA sequences such as TERRA RNA....
-
New Two-center Ellipsoidal Basis Function Neural Network for Fault Diagnosis of Analog Electronic Circuits
PublicationIn the paper a new fault diagnosis-oriented neural network and a diagnostic method for localization of parametric faults in Analog Electronic Circuits (AECs) with tolerances is presented. The method belongs to the class of dictionary Simulation Before Test (SBT) methods. It utilizes dictionary fault signatures as a family of identification curves dispersed around nominal positions by component tolerances of the Circuit Under Test...
-
Mine counter vehicles for Baltic navy. W: [CD-ROM] Conference proceedings. UDT EUROPE 2002. Undersea Defence Technology Conference and Exhibition. La Spezia, Italy, 18-20 June 2002. Classified Conference, La Spezia, Italy, 21 June 2002 [B.m.w.]**2002 [6 s. 3 rys.]. Pojazdy przeciwminowe dla marynarki dzialającej na Bałtyku.
PublicationW opracowaniu omówiono przeciwminowe systemy opracowane przez PolitechnikęGdańską dla potrzeb Marynarki Wojennej RP. Przedstawiono podstawowe wymaga-nia rozwiązań konstrukcyjnych i zasady użycia.
-
Detection of anomalies in bee colony using transitioning state and contrastive autoencoders
PublicationHoneybees plays vital role for the environmental sustainability and overall agricultural economy. Assisting bee colonies within their proper functioning brings the attention of researchers around the world. Electronics systems and machine learning algorithms are being developed for classifying specific undesirable bee behaviors in order to alert about upcoming substantial losses. However, classifiers could be impaired when used...
-
Verification of the Parameterization Methods in the Context of Automatic Recognition of Sounds Related to Danger
PublicationW artykule opisano aplikację, która automatycznie wykrywa zdarzenia dźwiękowe takie jak: rozbita szyba, wystrzał, wybuch i krzyk. Opisany system składa się z bloku parametryzacji i klasyfikatora. W artykule dokonano porównania parametrów dedykowanych dla tego zastosowania oraz standardowych deskryptorów MPEG-7. Porównano też dwa klasyfikatory: Jeden oparty o Percetron (sieci neuronowe) i drugi oparty o Maszynę wektorów wspierających....
-
Modular machine learning system for training object detection algorithms on a supercomputer
PublicationW pracy zaprezentowano architekturę systemu służącego do tworzenia algorytmów wykorzystujących metodę AdaBoost i służących do wykrywania obiektów (np. twarzy) na obrazach. System został podzielony na wyspecjalizowane moduły w celu umożliwienia łatwej rozbudowy i efektywnego zrównoleglenia implementacji przeznaczonej dla superkomputera. Na przykład, system może być rozszerzony o nowe cechy i algorytmy ich ekstrakcji bez konieczności...
-
The passive operating mode of the linear optical gesture sensor
PublicationThe study evaluates the influence of natural light conditions on the effectiveness of the linear optical gesture sensor, working in the presence of ambient light only (passive mode). The orientations of the device in reference to the light source were modified in order to verify the sensitivity of the sensor. A criterion for the differentiation between two states - "possible gesture" and "no gesture" - was proposed. Additionally,...
-
Automatic labeling of traffic sound recordings using autoencoder-derived features
PublicationAn approach to detection of events occurring in road traffic using autoencoders is presented. Extensions of existing algorithms of acoustic road events detection employing Mel Frequency Cepstral Coefficients combined with classifiers based on k nearest neighbors, Support Vector Machines, and random forests are used. In our research, the acoustic signal gathered from the microphone placed near the road is split into frames and converted...
-
Application of autoencoder to traffic noise analysis
PublicationThe aim of an autoencoder neural network is to transform the input data into a lower-dimensional code and then to reconstruct the output from this code representation. Applications of autoencoders to classifying sound events in the road traffic have not been found in the literature. The presented research aims to determine whether such an unsupervised learning method may be used for deploying classification algorithms applied to...
-
Personal bankruptcy prediction using machine learning techniques
PublicationIt has become crucial to have an early prediction model that provides accurate assurance for users about the financial situation of consumers. Recent studies have focused on predicting corporate bankruptcies and credit defaults, not personal bankruptcies. Due to this situation, the present study fills the literature gap by comparing different machine learning algorithms to predict personal bankruptcy. The main objective of the...
-
Evaluation of sound event detection, classification and localization in the presence of background noise for acoustic surveillance of hazardous situations
PublicationAn evaluation of the sound event detection, classification and localization of hazardous acoustic events in the presence of background noise of different types and changing intensities is presented. The methods for separating foreground events from the acoustic background are introduced. The classifier, based on a Support Vector Machine algorithm, is described. The set of features and samples used for the training of the classifier...
-
Examining Feature Vector for Phoneme Recognition
PublicationThe aim of this paper is to analyze usability of descriptors coming from music information retrieval to the phoneme analysis. The case study presented consists in several steps. First, a short overview of parameters utilized in speech analysis is given. Then, a set of time and frequency domain-based parameters is selected and discussed in the context of stop consonant acoustical characteristics. A toolbox created for this purpose...
-
Development of an AI-based audiogram classification method for patient referral
PublicationHearing loss is one of the most significant sensory disabilities. It can have various negative effects on a person's quality of life, ranging from impeded school and academic performance to total social isolation in severe cases. It is therefore vital that early symptoms of hearing loss are diagnosed quickly and accurately. Audiology tests are commonly performed with the use of tonal audiometry, which measures a patient's hearing...
-
Computer-Aided Detection of Hypertensive Retinopathy Using Depth-Wise Separable CNN
PublicationHypertensive retinopathy (HR) is a retinal disorder, linked to high blood pressure. The incidence of HR-eye illness is directly related to the severity and duration of hypertension. It is critical to identify and analyze HR at an early stage to avoid blindness. There are presently only a few computer-aided systems (CADx) designed to recognize HR. Instead, those systems concentrated on collecting features from many retinopathy-related...
-
Employing Subjective Tests and Deep Learning for Discovering the Relationship between Personality Types and Preferred Music Genres
PublicationThe purpose of this research is two-fold: (a) to explore the relationship between the listeners’ personality trait, i.e., extraverts and introverts and their preferred music genres, and (b) to predict the personality trait of potential listeners on the basis of a musical excerpt by employing several classification algorithms. We assume that this may help match songs according to the listener’s personality in social music networks....
-
Detection, classification and localization of acoustic events in the presence of background noise for acoustic surveillance of hazardous situations
PublicationEvaluation of sound event detection, classification and localization of hazardous acoustic events in the presence of background noise of different types and changing intensities is presented. The methods for discerning between the events being in focus and the acoustic background are introduced. The classifier, based on a Support Vector Machine algorithm, is described. The set of features and samples used for the training of the...
-
Strategie treningu neuronowego estymatora częstotliwości tonu krtaniowego z użyciem generatora syntetycznych samogłosek
PublicationW wielu zastosowaniach telekomunikacyjnych pojawia się problem przetwarzania lub analizy sygnału mowy, w ramach którego, często w obszarze podstawowych algorytmów, stosuje się estymator częstotliwości tonu krtaniowego. Estymator rozpatrywany w tej pracy bazuje na neuronowym klasyfikatorze podejmującym decyzje na podstawie częstotliwości oraz mocy chwilowej wyznaczanych w podpasmach analizowanego sygnału mowy. W pracy rozważamy...
-
Artificial intelligence support for disease detection in wireless capsule endoscopy images of human large bowel
PublicationIn the work the chosen algorithms of disease recognition in endoscopy images were described and compared for theirs efficiency. The algorithms were estimated with regard to utility for application in computer system's support for digestive system's diagnostics. Estimations were achieved in an advanced testing environment, which was built with use of the large collection of endoscopy movies received from Medical University in Gdańsk....
-
Segmentation-Based BI-RADS ensemble classification of breast tumours in ultrasound images
PublicationBackground: The development of computer-aided diagnosis systems in breast cancer imaging is exponential. Since 2016, 81 papers have described the automated segmentation of breast lesions in ultrasound images using arti- ficial intelligence. However, only two papers have dealt with complex BI-RADS classifications. Purpose: This study addresses the automatic classification of breast lesions into binary classes (benign vs. ma- lignant)...
-
Monitoring of odour nuisance on the adjacent areas to the landfill using fast GC and sensory analysis
PublicationThe paper shows the results of investigation on classification of the atmospheric air samples collected in a vicinity of the landfill during August and September period have been presented. The studies was conducted by the use of Fast GC HERACLES II from AlphaMOS company and sensory analysis. About 86% of the atmospheric air samples ollected were classified correctly using PCA and LDA. Based on a classification of the atmospheric...
-
Stock Markets’ Reactions to the Announcement of the Hosts. An Event Study in the Analysis of Large Sporting Events in the Years 1976–2032
PublicationThis study attempts to estimate the impact of the announcements of hosts of large sporting events on domestic stock markets. The research problem is to establish a connection between the uniqueness of a sporting event and investors’ beliefs through stock price behavior. Using appropriate estimation windows, 13 different sporting events classified as large, including mega and major events, were tested. The obtained results show...
-
Metoda i algorytmy sterowania procesami miksowania dźwięku za pomocą gestów w oparciu o analizę obrazu wizyjnego
PublicationGłównym celem rozprawy było opracowanie systemu miksowania dźwięku za pomocą gestów rąk wykonywanych w powietrzu oraz zbadanie możliwości oferowanych przez takie rozwiązanie w porównaniu ze współczesną metodą miksowania sygnałów fonicznych, wykorzystującą środowisko komputera. Opracowany system rozpoznaje zarówno dynamiczne jak i statyczne gesty rąk. Rozpoznawanie gestów dynamicznych zrealizowano w oparciu o metody logiki rozmytej...
-
Rough Set-Based Classification of EEG Signals Related to Real and Imagery Motion
PublicationA rough set-based approach to classification of EEG signals registered while subjects were performing real and imagery motions is presented in the paper. The appropriate subset of EEG channels is selected, the recordings are segmented, and features are extracted, based on time-frequency decomposition of the signal. Rough set classifier is trained in several scenarios, comparing accuracy of classification for real and imagery motion....
-
TOXIC GASES IDENTIFICATION USING SINGLE ELECTROCATALYTIC SENSOR RESPONSES AND ARTIFICIAL NEURAL NETWORK
PublicationThe need for precise detection of toxic gases drives development of new gas sensors structures and methods of processing the output signals from the sensors. In literature, artificial neural networks are considered as one of the most effective tool for the analysis of gas sensors or sensors arrays responses. In this paper a method of toxic gas components identification using a electrocatalytic gas sensor as a detector and an artificial...
-
Wikipedia Articles Representation with Matrix'u
PublicationIn the article we evaluate different text representation methods used for a task of Wikipedia articles categorization. We present the Matrix’u application used for creating computational datasets ofWikipedia articles. The representations have been evaluated with SVM classifiers used for reconstruction human made categories.
-
FEEDB: A multimodal database of facial expressions and emotions
PublicationIn this paper a first version of a multimodal FEEDB database of facial expressions and emotions is presented. The database contains labeled RGB-D recordings of people expressing a specific set of expressions that have been recorded using Microsoft Kinect sensor. Such a database can be used for classifier training and testing in face recognition as well as in recognition of facial expressions and human emotions. Also initial experiences...
-
APPLICATION OF ULTRAFAST GAS CHROMATOGRAPHY TO RECOGNIZE ODOR NUISANCE
PublicationPotentialities of ultrafast gas chromatography applied to periodical monitoring of odor nuisance originating from a municipal landfill have been examined. The results of investigation on classification of the atmospheric air samples collected in a vicinity of the landfill during winter and summer season have been presented. The investigation was performed using ultrafast gas chromatography of Fast/Flash GC type HERACLES II by Alpha...
-
Diagnostic Accuracy of Liquid Biopsy in Endometrial Cancer
PublicationBackground: Liquid biopsy is a minimally invasive collection of a patient body fluid sample. In oncology, they offer several advantages compared to traditional tissue biopsies. However, the potential of this method in endometrial cancer (EC) remains poorly explored. We studied the utility of tumor educated platelets (TEPs) and circulating tumor DNA (ctDNA) for preoperative EC diagnosis, including histology determination. Methods:...
-
Dynamic Signature Vertical Partitioning Using Selected Population-Based Algorithms
PublicationThe dynamic signature is a biometric attribute used for identity verification. It contains information on dynamics of the signing process. There are many approaches to the dynamic signature verification, including the one based on signature partitioning. Partitions are the regions created on the basis of signals describing the dynamics of the signature. They contain information on the shape of the signature characteristic of a...