Filters
total: 21421
filtered: 13716
-
Catalog
- Publications 13716 available results
- Journals 158 available results
- Conferences 17 available results
- Publishing Houses 7 available results
- People 851 available results
- Inventions 113 available results
- Projects 444 available results
- Laboratories 20 available results
- Research Teams 50 available results
- Research Equipment 11 available results
- e-Learning Courses 3667 available results
- Events 683 available results
- Open Research Data 1684 available results
Chosen catalog filters
displaying 1000 best results Help
Search results for: dna vaccine
-
Advancing Solar Energy: Machine Learning Approaches for Predicting Photovoltaic Power Output
PublicationThis research is primarily concentrated on predicting the output of photovoitaic power, an essential field in the study of renewable energy. The paper comprehensively reviews various forecasting methodologies, transitioning from conventional physical and statistical methods to advanced machine learning (ML) techniques. A significant shift has been observed from traditional point forecasting to machine learning-based forecasting...
-
Variable Resolution Machine Learning Optimization of Antennas Using Global Sensitivity Analysis
PublicationThe significance of rigorous optimization techniques in antenna engineering has grown significantly in recent years. For many design tasks, parameter tuning must be conducted globally, presenting a challenge due to associated computational costs. The popular bio-inspired routines often necessitate thousands of merit function calls to converge, generating prohibitive expenses whenever the design process relies on electromagnetic...
-
Machine learning for the management of biochar yield and properties of biomass sources for sustainable energy
PublicationBiochar is emerging as a potential solution for biomass conversion to meet the ever increasing demand for sustainable energy. Efficient management systems are needed in order to exploit fully the potential of biochar. Modern machine learning (ML) techniques, and in particular ensemble approaches and explainable AI methods, are valuable for forecasting the properties and efficiency of biochar properly. Machine-learning-based forecasts,...
-
Driver’s Condition Detection System Using Multimodal Imaging and Machine Learning Algorithms
PublicationTo this day, driver fatigue remains one of the most significant causes of road accidents. In this paper, a novel way of detecting and monitoring a driver’s physical state has been proposed. The goal of the system was to make use of multimodal imaging from RGB and thermal cameras working simultaneously to monitor the driver’s current condition. A custom dataset was created consisting of thermal and RGB video samples. Acquired data...
-
Machine-aided detection of SARS-CoV-2 from complete blood count
PublicationThe current gold standard for SARS-CoV-2 detection methods lacks the functionality to perform population screening. Complete blood count (CBC) tests are a cost-effective way to reach a wide range of people – e.g. according to the data of the Central Statistical Office of Poland from 2016, there are 3,000 blood diagnostic laboratories in Poland, and 46% of Polish people have at least one CBC test per year. In our work, we show...
-
Sensorless Multiscalar Control of Five-Phase Induction Machine with Inverter Output Filter
PublicationThe paper presents a complete solution for speed sensorless control system for five-phase induction motor with voltage inverter, LC filter and nonlinear control of combined fundamental and third harmonic flux distribution. The control principle, also known as multiscalar control, nonlinear control or natural variables control, is based on a use of properly selected scalar variables in control feedback to linearize controlled system....
-
Application of Support Vector Machine for Determination of Impact of Traffic-Induced Vibrations on Buildings
PublicationThe aim of the article is to present an algorithm of Support Vector Machine created to forecast the impact of traffic-induced vibrations on residential buildings. The method is designed to classify the object into one of two classes. The classification into the first class means that there is no impact of vibrations on the building, while classification to the second class indicates the possible influence and suggests the execution...
-
Experimental tuning of AuAg nanoalloy plasmon resonances assisted by machine learning method
PublicationPlasmonic nanostructures based on AuAg nanoalloys were fabricated by thermal annealing of metallic films in an argon atmosphere. The nanoalloys were chosen because they can extend the wavelength range in which plasmon resonance occurs and thus allow the design of plasmonic platforms with the desired parameters. The influence of initial fabrication parameters and experimental conditions on the formation of nanostructures was investigated....
-
Slowly-closing valve behaviour during steam machine accelerated start-up
PublicationThe paper discusses the state of stress in a slowly-closing valve during accelerated start-up of a steam turbine. The valve is one of the first components affected by high temperature gradients and is a key element on which the power, efficiency and safety of the steam system depend. The authors calibrated the valve model based on experimental data and then performed extended Thermal-FSI analyses relative to experiment. The issue...
-
Analytical model of torsional vibrations of typical sawing machine main drive system
PublicationPrzedstawiono model fizyczny i matematyczny drgań skrętnych napędu głównego typowej pilarki tarczowej. Model tworzą elementy sztywne SES połączone między sobą za pośrednictwem elementów sprężysto - tłumiących EST w układzie szeregowym. W modelu matematycznym uwzględniono: właściwości dynamiczne silnika napędowego, wymiary piły tarczowej, cechy materiału obrabianego (wymiary, rodzaj drewna, wilgotność drewna) oraz właściwości dynamiczne...
-
Improving operating efficiency of a gas turboset via cooperation with an absorption refrigerating machine
PublicationThe analysis of increase of ambient air temperature entering the compressor on reduction in power output from the turbine and increase fuel use was conduced. For medium size gas turbine operates in winter and summer conditions elementary power and economical values was calculated. Conditions of the determination of turbine inlet air cooling solution (using thermal storage for reduce equipment size) are presented
-
Machine learning techniques combined with dose profiles indicate radiation response biomarkers
Publication -
Machine Learning and data mining tools applied for databases of low number of records
Publication -
Overcoming “Big Data” Barriers in Machine Learning Techniques for the Real-Life Applications
Publication -
<title>Management system of ELHEP cluster machine for FEL photonics design</title>
Publication -
From the Dynamic Lattice Liquid Algorithm to the Dedicated Parallel Computer – mDLL Machine
Publication -
Evaluation of Machine Learning Methods for the Experimental Classification and Clustering of Higher Education Institutions
PublicationHigher education institutions have a big impact on the future of skills supplied on the labour market. It means that depending on the changes in labour market, higher education institutions are making changes to fields of study or adding new ones to fulfil the demand on labour market. The significant changes on labour market caused by digital transformation, resulted in new jobs and new skills. Because of the necessity of computer...
-
Genetic Algorithm Approach for Gains Selection of Induction Machine Extended Speed Observer
PublicationThe subject of this paper is gains selection of an extended induction machine speed observer. A high number of gains makes manual gains selection difficult and due to nonlinear equations of the observer, well-known methods of gains selection for linear systems cannot be applied. A method based on genetic algorithms has been proposed instead. Such an approach requires multiple fitness function calls; therefore, using a quality index...
-
Nonadaptive estimation of the rotor speed in an adaptive full order observer of induction machine
PublicationThe article proposes a new method of reproducing the angular speed of the rotor of a cage induction machine designed for speed observers based on the adaptive method. In the proposed solution, the value of the angular speed of the rotor is not determined by the classical law of adaptation using the integrator only by an algebraic relationship. Theoretical considerations were confirmed by simulation and experimental tests.
-
A Proposed Machine Learning Model for Forecasting Impact of Traffic-Induced Vibrations on Buildings
PublicationTraffic-induced vibrations may cause various damages to buildings located near the road, including cracking of plaster, cracks in load-bearing elements or even collapse of the whole structure. Measurements of vibrations of real buildings are costly and laborious. Therefore the aim of the research is to propose the original numerical algorithm which allows us to predict, with high probability, the nega-tive dynamic impact of traffic-induced...
-
Analyzing the Effectiveness of the Brain–Computer Interface for Task Discerning Based on Machine Learning
PublicationThe aim of the study is to compare electroencephalographic (EEG) signal feature extraction methods in the context of the effectiveness of the classification of brain activities. For classification, electroencephalographic signals were obtained using an EEG device from 17 subjects in three mental states (relaxation, excitation, and solving logical task). Blind source separation employing independent component analysis (ICA) was...
-
Preeclampsia Risk Prediction Using Machine Learning Methods Trained on Synthetic Data
PublicationThis paper describes a research study that investigates the use of machine learning algorithms on synthetic data to classify the risk of developing preeclampsia by pregnant women. Synthetic datasets were generated based on parameter distributions from three real patient studies. Four models were compared: XGBoost, Support Vector Machine (SVM), Random Forest, and Explainable Boosting Machines (EBM). The study found that the XGBoost...
-
Machine learning-based seismic response and performance assessment of reinforced concrete buildings
PublicationComplexity and unpredictability nature of earthquakes makes them unique external loads that there is no unique formula used for the prediction of seismic responses. Hence, this research aims to implement the most well-known Machine Learning (ML) methods in Python software to propose a prediction model for seismic response and performance assessment of Reinforced Concrete Moment-Resisting Frames (RC MRFs). To prepare 92,400 data...
-
Detection of People Swimming in Water Reservoirs with the Use of Multimodal Imaging and Machine Learning
PublicationEvery year in many countries, there are fatal unintentional drownings in different water reservoirs like swimming pools, lakes, seas, or oceans. The existing threats of this type require creating a method that could automatically supervise such places to increase the safety of bathers. This work aimed to create methods and prototype solutions for detecting people bathing in water reservoirs using a multimodal imaging system and...
-
Machine learning approach to packaging compatibility testing in the new product development process
PublicationThe paper compares the effectiveness of selected machine learning methods as modelling tools supporting the selection of a packaging type in new product development process. The main goal of the developed model is to reduce the risk of failure in compatibility tests which are preformed to ensure safety, durability, and efficacy of the finished product for the entire period of its shelf life and consumer use. This kind of testing...
-
Predicting emotion from color present in images and video excerpts by machine learning
PublicationThis work aims at predicting emotion based on the colors present in images and video excerpts using a machine-learning approach. The purpose of this paper is threefold: (a) to develop a machine-learning algorithm that classifies emotions based on the color present in an image, (b) to select the best-performing algorithm from the first phase and apply it to film excerpt emotion analysis based on colors, (c) to design an online survey...
-
Influence of frame sawing machine´s kinematics on saw blade tooth wear.
PublicationW pracy przedstawiono wpływ kinematyki pilarki ramowej na zużycie ostrzy piłtrakowych.
-
Anti-PD-1 inhibits Foxp3+ Treg cell conversion and unleashes intratumoural effector T cells thereby enhancing the efficacy of a cancer vaccine in a mouse model
Publication -
Differences in sequences between HBV-relaxed circular DNA and covalently closed circular DNA
Publication -
Towards neural knowledge DNA
PublicationIn this paper, we propose the Neural Knowledge DNA, a framework that tailors the ideas underlying the success of neural networks to the scope of knowledge representation. Knowledge representation is a fundamental field that dedicates to representing information about the world in a form that computer systems can utilize to solve complex tasks. The proposed Neural Knowledge DNA is designed to support discovering, storing, reusing,...
-
Viability of decisional DNA in robotics
PublicationThe Decisional DNA is an artificial intelligence system that uses prior experiences to shape future decisions. Decisional DNA is written in the Set Of Experience Knowledge Structure (SOEKS) and is capable of capturing and reusing a broad range of data. Decisional DNA has been implemented in several fields including Alzheimer’s diagnosis, geothermal energy and smart TV. Decisional DNA is well suited to use in robotics due to the...
-
Decisional DNA and Optimization Problem
PublicationMany researchers have proved that Decisional DNA (DDNA) and Set of Experience Knowledge Structure (SOEKS or SOE) is a technology capable of gathering information and converting it into knowledge to help decision-makers to make precise decisions in many ways. These techniques have a feature to combine with different tools, such as data mining techniques and web crawlers, helping organization collect information from different sources...
-
Interactions of antitumor triazoloacridinones with DNA
PublicationW niniejszej pracy zbadano oddziaływanie sześciu wybranych pochodnych triazoloakrydonu z DNA. Analiza wiskozymetryczna pokazała, że związki te interkalują do DNA. Jednocześnie dalsze badania wykazały, że proces interkalacji nie jest istotny aktywności cytotoksycznej tej grupy związków. Badania z wykorzystaniem fibroblastów dowiodły, że jedna z pochodnych triazoloakrydonu, związek C-1305, po uprzedniej metabolicznej aktywacji indukuje...
-
Abstract DNA-type systems
PublicationAbstrakcyjny system typu DNA jest definiowany przez zestaw nieliniowych kinetycznych równań z wielomianowymi nieliniowościami, które przyjmują rozwiązania solitonowe związane z geometrią helis. Zestaw równań pozwala na dwie różne reprezentacje Laxa: forma von Neumanna i Darboux-kowariantna para Laxa. Wyjaśniamy dlaczego nie-Kolmogorowskie modele prawdopodobieństwa pojawiające się w kinetyce solitonowej są naturalnie związane z...
-
Opinia na temat wpływu budowanego w ciągu drogi S7 mostu przez Wisłę w Kiezmarku na kształtowanie hydrodynamiki przepływu wód i rozmycia dna w warunkach umocnienia dna w rejonie podpór nurtowych
PublicationCelem pracy było wykonanie obliczeń hydraulicznych i hydrologicznych sprawdzających wpływ budowy w korycie głównym Wisły podpór nurtowych nr 10 i 11 wraz z wariantowymi umocnieniami dna i filarów mostu drogowego budowanego w Kiezmarku na dynamikę przepływu wody w rzece i erozję dna Wisły w przekroju mostowym.
-
A Pertussis Outer Membrane Vesicle-Based Vaccine Induces Lung-Resident Memory CD4 T Cells and Protection Against Bordetella pertussis, Including Pertactin Deficient Strains
Publication -
Neural Networks, Support Vector Machine and Genetic Algorithms for Autonomous Underwater Robot Support
PublicationIn this paper, artificial neural networks, a classification technique called support vector machine and meta-heuristics genetic algorithm have been considered for development in autonomous underwater robots. Artificial neural networks have been used for seabed modelling as well as support vector machine has been applied for the obstacles classification to avoid some collision problems. Moreover, genetic algorithm has been applied...
-
Techniki szybkiego prototypowania w budowie maszyn = Rapid prototyping techniques in machine building
PublicationW artykule omówiono przygotowanie oraz wykonanie poszczególnych elementów maszyn za pomocą techniki szybkiego prototypowania. W pierwszej części przedstawiono technologię wydruku przestrzennego oraz właściwości materiału budulcowego. Druga część artykułu została poświęcona przykładowym wydrukom i ich zastosowaniom w maszynach.
-
Sensorless control system of induction machine supplied by voltage source inverter with output filter
PublicationThe paper focuses on sensorless control of the induction machines supplied by inverter with the output filters. “The novel” idea of the speed observer which is based on the backstepping approach is shown. The standard structure of the exponential observer is extended by the integrators and additional Z vector. The simulation and experimental results validate the proposed solution.
-
A FPTAS for minimizing total completion time in a single machine time-dependent scheduling problem
PublicationIn this paper a single machine time-dependent scheduling problem with total completion time criterion is considered. There are given n jobs J1,…,Jn and the processing time pi of the ith job is given by pi=a+bisi, where si is the starting time of the ith job (i=1,…,n),bi is its deterioration rate and a is the common base processing time. If all jobs have deterioration rates different and not smaller than a certain constant u>0,...
-
Advances in Architectures, Big Data, and Machine Learning Techniques for Complex Internet of Things Systems
PublicationTe feld of Big Data is rapidly developing with a lot of ongoing research, which will likely continue to expand in the future. A crucial part of this is Knowledge Discovery from Data (KDD), also known as the Knowledge Discovery Process (KDP). Tis process is a very complex procedure, and for that reason it is essential to divide it into several steps (Figure 1). Some authors use fve steps to describe this procedure, whereas others...
-
Polymeric Bearings as a new base isolation system suitable for mitigating machine-induced vibrations
PublicationThe present paper summarizes the preliminary results of the experimental shaking table investigation conducted in order to verify the effectiveness of a new base isolation system consisting of Polymeric Bearings in reducing strong horizontal machine-induced vibrations. Polymeric Bearing considered in the present study is a prototype base isolation system, which was constructed with the use of a specially prepared flexible polymer...
-
Load effect impact on the exploitation of concrete machine foundations used in the gas and oil industry
PublicationMachine foundations is a critical topic in the gas and oil industry, which design and exploitation require extensive technical knowledge. Machine foundations are the constructions which are intended for mounting on it a specific type of machine. The foundation has to transfer dynamic and static load from machine to the ground. The primary difference between machine foundations and building foundations is that the machine foundations...
-
Quality evaluation of computer aided information retrieval from machine typed paper documents
PublicationCelem międzynarodowego projektu memorial jest wspomagane komputerowo rozpoznawanie maszynopisów. Referat prezentuje zagadnienie pomiaru jakości takiego procesu. Wskazano w nim potencjalne miejsca pojawiania się błędów oraz przedstawiono i sklasyfikowano odpowiednie miary.
-
A machine learning approach to classifying New York Heart Association (NYHA) heart failure
PublicationAccording to the European Society of Cardiology, globally the number of patients with heart failure nearly doubled from 33.5 million in 1990 to 64.3 million in 2017, and is further projected to increase dramatically in this decade, still remaining a leading cause of morbidity and mortality. One of the most frequently applied heart failure classification systems that physicians use is the New York Heart Association (NYHA) Functional...
-
Detection of circulating tumor cells by means of machine learning using Smart-Seq2 sequencing
PublicationCirculating tumor cells (CTCs) are tumor cells that separate from the solid tumor and enter the bloodstream, which can cause metastasis. Detection and enumeration of CTCs show promising potential as a predictor for prognosis in cancer patients. Furthermore, single-cells sequencing is a technique that provides genetic information from individual cells and allows to classify them precisely and reliably. Sequencing data typically...
-
Machine-learning methods for estimating compressive strength of high-performance alkali-activated concrete
PublicationHigh-performance alkali-activated concrete (HP-AAC) is acknowledged as a cementless and environmentally friendly material. It has recently received a substantial amount of interest not only due to the potential it has for being used instead of ordinary concrete but also owing to the concerns associated with climate change, sustainability, reduction of CO2 emissions, and energy consumption. The characteristics and amounts of the...
-
Game theory-based virtual machine migration for energy sustainability in cloud data centers
PublicationAs the demand for cloud computing services increases, optimizing resource allocation and energy consumption has become a key factor in achieving sustainability in cloud environments. This paper presents a novel approach to address these challenges through an optimized virtual machine (VM) migration strategy that employs a game-theoretic approach based on particle swarm optimization (PSO) (PSO-GTA). The proposed approach leverages...
-
From Data to Decision: Interpretable Machine Learning for Predicting Flood Susceptibility in Gdańsk, Poland
PublicationFlood susceptibility prediction is complex due to the multifaceted interactions among hydrological, meteorological, and urbanisation factors, further exacerbated by climate change. This study addresses these complexities by investigating flood susceptibility in rapidly urbanising regions prone to extreme weather events, focusing on Gdańsk, Poland. Three popular ML techniques, Support Vector Machine (SVM), Random Forest (RF), and...
-
Fast Machine-Learning-Enabled Size Reduction of Microwave Components Using Response Features
PublicationAchieving compact size has emerged as a key consideration in modern microwave design. While structural miniaturization can be accomplished through judicious circuit architecture selection, precise parameter tuning is equally vital to minimize physical dimensions while meeting stringent performance requirements for electrical characteristics. Due to the intricate nature of compact structures, global optimization is recommended,...